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Abstract— Removal of haze from videos has been a 
challenging problem due to its ill-posed nature. In this 
paper,we propose a simple but powerful color attenuation 
prior for haze removal. By creating a linear model for 
modeling the scene depth of the hazy image under this novel 
prior and learning the parameters of the model with a 
supervised learning method, the depth information can be 
well recovered. With the depth map of the hazy image, we 
can easily estimate the transmission and restore the scene 
radiance via the atmospheric scattering model, and thus 
effectively remove the haze from   video. 

Index Terms— dehazing, image restoration, depth 
restoration. 

1. INTRODUCTION 

Images taken in bad weather usually lose   contrast 

and fidelity, resulting    from the fact that light is 

absorbed and scattered by the turbid medium such as 

particles and water droplets in the atmosphere during 

the process of propagation. Moreover, most 

automatic systems, which strongly depend on the 

definition of the input images, fail to work normally 

caused by the degraded images. Therefore, improving 

the technique of image haze removal will benefit 

many image understanding and computer vision 

applications such as aerial imagery [1], image 

classification [2]–[5], image/video retrieval [6]–[8], 

remote sensing [9]–[11] and video analysis and 

recognition  [12]–[14].Since concentration of the  

haze  is  different  from  place to place and it is hard 

to detect in a hazy image, Image dehazing  is  thus  a  

challenging  task.  Early researchers use the 

traditional techniques of image processing to remove 

the haze from a single image (for instance, 

histogram-based dehazing methods [15]–[17]). 

However, the dehazing effect is limited, because a 

single hazy image can hardly provide much 

information. Later, researchers try to improve the 

dehazing performance with multiple images. In [18]–

[20], polarization- based methods are used for 

dehazing with multiple images which are taken with   

different degrees of   polarization. In [24] and [25], 

dehazing is conducted based on the given depth 

in fo rma t io n.  I n  this paper, we propose a novel 

color attenuation prior for image dehazing. This 

simple and powerful prior can help to create a linear 

model for the scene depth of the hazy image. By 

learning the parameters of the linear model with     a 

supervised learning method, the bridge between the 

hazy image and its corresponding depth map is built 

effectively. With the recovered depth information, we 

can easily remove the haze from a single hazy image. 

To describe the formation of a hazy image, the 

atmospheric    scattering    model,    which    is    

proposed b y  

I(x) = J(x)t(x) + A(1 − t (x)), (1) 

t (x) = e−βd(x), (2) 

where   x   is  the  position  of  the  pixel  within    

the  image, I is the hazy image, J is the scene 

radiance representing the haze-free image, A is the 

atmospheric light, t is the medium transmission, β 
is the scattering coefficient of the atmosphere and d 

is the depth of scene. I, J and A are all three-

dimensional vectors in RGB space. Since I is 

known, the goal of dehazing is to estimate A and t, 

then restore J according to Equation (1). It is worth 

noting that the depth of  the  scene  d  is  the most 

important information. Since the  scattering 

coefficient β can be regarded as a constant in 

homogeneous atmosphere condition [55], the 

medium transmission t can be estimated easily  

according  to  Equation  (2)  if  the  depth  of  the 

scene is given. Moreover, in the ideal case, the 

range of  d(x) is [0, +∞) as the scenery objects 

that appear in the image can be very far from the 

observer, and we   have: 

I(x) = A,  d(x) → ∞. (3) 

Equation (3) shows that the intensity of the pixel, 

which  makes the depth tend to infinity, can stand  

for the  value of the atmospheric light A. Note that, 

if d(x) is  large enough,     t (x) tends to be very 

small according to Equation (2), and I(x) equals A 

approximately. Therefore, instead of calculating the 

atmospheric light A by Equation (3), we can 

estimate A by the following equation given a  
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Threshold threshold  : 

I(x) = A, d(x) ≥ dthresold. (4) 

We also notice the fact that it is not hard to satisfy 

this constraint: d(x)> dthresold . In most cases, a 

hazy image taken outdoor has a distant view that is 

kilometres away from the observer. In other words, 

the pixel belonging to the region with a distant view 

in the image should have a very large depth 

dthreshold . Assuming that every hazy image has a 

distant view, we have: 

d(x) ≥ dthresold, x ∈ {x |∀y : d(y) ≤ d(x)} (5) 

  
Fig. 2. The concentration of the haze is positively correlated with 
the difference between the brightness and the saturation.  (a)  A 
hazy image. 

(b) The close-up patch of a dense-haze region and its histogram. (c) 

The close-up patch of a moderately hazy region and its histogram. 

(d) The close-up patch of a haze-free region and its h i s t o g r a m  Based on this assumption, the atmospheric light A is given by: A = I(x), x ∈ {x |∀y : d(y) ≤ d(x)}. (6) 

On this condition, the task of  dehazing can  be  

further con-verted into depth information restoration. 

However, it is also   a challenging task to obtain the 

depth map from a single hazy image. 

In the next section, we present a novel color 

attenuation prior which is useful for restoring the 

depth information from a single hazy image 

directly.Figure 3 illustrates the imaging process. In 

the haze-free condition, the scene element reflects 

the energy that is from the illumination source (e.g., 

direct sunlight, diffuse skylight and light reflected 

by the ground), and little energy is lost when it 

reaches the imaging system. The imaging system 

collects the incoming energy reflected from the 

scene element and focuses it onto the image plane. 

Without the influence of the haze, outdoor images 

are usually with vivid color (see Figure 3(a)). In 

hazy weather, in contrast, the situation becomes 

more complex (see Figure 3(b)).  There  are  two  

mechanisms  (the  direct  attenuation  and  the  

airlight)  in  imaging   under 

 To understand this, we review the 

atmospheric scattering model. The term J(x)t(x) in 

Equation (1) is used for describing the direct 

attenuation. It reveals the fact that the intensity of 

the pixels within the image will decrease in      a 

multiplicative manner. So it turns out that the 

brightness tends to decrease under the influence of 

the direct attenuation. On the other hand, the white 

or gray airlight, which is formed by the scattering of 

the environmental illumination, enhances the 

brightness and reduces the saturation. We can also 

explain this by the atmospheric scatter model.  The 

rightmost term A(1−t(x)) in Equation (1) represents 

the effect of the airlight. It can be deduced from this 

term that the effect of the white or gray airlight on 

the observed values is additive. Thus, caused by the 

airlight, the brightness is increased while the 

saturation is decreased. Since the airlight plays a 

more i mp o r t a n t  role in most cases, hazy regions 

in the image are characterized by high brightness 

and low saturation. 

What’s more, the denser the haze is, the stronger the 

influence of the airlight would be. This allows us to 

utilize the difference between the brightness and the 

saturation to estimate the concentration of the haze. 

In Figure 4, we show that the difference increases 

along with the concentration of the haze in a hazy 

image, as we expected. Since the concentration of 

the haze increases along with the change of the 

scene depth in general, we can make an 

assumption that the depth of the scene is positively 

correlated with the concentration of the haze and 

we   have: 

d(x) ∝ c(x) ∝ v(x) − s(x), (7) 

Where d is the scene depth, c is  the  concentration  of  

the haze, v is the brightness of the scene and s is the 

saturation.  We regard this statistics as color 

attenuation prior. Figure 5 gives the geometric 

description of the color attenuation prior through the 

HSV color model.Figure 5(a) is the HSV color 

model, and Figure 5(b-d) are the near, moderate-

distance and far scene depths, respectively. Vector I 

indicates the hazy image, passing through the origin 

and performing the projec- tion of the vector I onto a 

horizontal plane Setting the angle between vector I 

and its projection as α, according to the HSV color 

model, when α varies between 0 and 90 degrees, the 

higher the  value  of  α  is,  the  higher  the  value  of  

tangent α is, which indicates the greater the difference 

between the component of I in the direction of V and 

the component of I in the direction of S. As the depth 

increases, the value v increases and the saturation s 

decreases, and therefore α increases. In other words, 

the angle α is positively correlated with the depth. 
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Fig. 3The process of imaging under different weather onditions. (a) 
The process of imaging in sunny weather. (b) The process of 
imaging in hazy   weather. 

 

  
  
 
 
 
 
 
 
 

 
 

 
 
Fig. 4. Difference between brightness and saturation increases 

along with the concentration of the haze. (a) A hazy image. (b) 

Difference between brightness and saturation. 

We can create a linear model, i.e., a more accurate 

expression, as follows: 

d(x) = θ0 + θ1v(x) + θ2s(x) + ε(x), (8) 

where x is the position within the image, d is  the  
scene  depth,  v  is  the  brightness  component  of  the  

hazy  image,  s is the saturation component, θ0, θ1, 

θ2 are the unknown linear coefficients, ε(x) is a 

random variable representing the random error of the 

model, and ε can be regarded as a random image. We 

use a Gaussian density for ε with zero mean and 

variable σ 2 (i.e. ε(x) ∼ N(0,σ 2)). According to the 

property of the Gaussian distribution, we  have:d(x) 

∼ p(d(x)|x, θ0, θ1, θ2,σ 2) = N(θ0 + θ1v + θ2s,σ 2).
 (9) 

One  of  the  most  important  advantages  of  this  

model   is that it has  the  edge-preserving  property.  

To illustrate this, we Due to that σ can never be too 

large in practice, the value      of ε(x) tends to be very 

low and close to zero. In this case, the value of 6ε is 

low enough to be ignored. 

 

 

 

 

 

 

 

 

Fig. 5. The geometric description of the color attenuation prior. 

(a) The HSV color model. (b) The near scene depth condition. (c) 

The moderate-distance condition. (d) The far scene depth 

condition. 

 

we have:∇ d = θ1∇ v + θ2∇ s + ∇ε. (10) 

A 600 × 450 random image ε with σ = 0.05 and its 

corresponding gradient image 6ε are shown in 
Figure 6(e) and Figure 6(d), respectively.    As can 

be seen, both the gradient image 6ε and the 
random image ε are very dark. It turns out that the 
edge distribution of d is independent of ε given a 
small σ. In addition, since v and s are actually the 
two single-channel images (the value channel and 
the saturation channel of the HSV color space) into 
which the hazy image I splits, Equation (10) ensures 
that d has an edge only if I has an edge. We give an 
example to illustrate this in Figure 6.  Figure 6(a) is 
the hazy image. Figure    6(b) shows the edge 
distribution of the hazy image. Figure 6(c) shows 

the Sobel image 6d = θ16v + θ26s + 6ε, where 
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θ1 is simply set to 1.0, θ2 is set to −1.0, and ε is a 
random image as mentioned. As we can see, Figure 
6(b) is similar . 

D. Estimation of the Depth Information 

As the relationship among the scene depth d, the 

bright- ness v and the saturation s has been 

established and the coefficients have been estimated, 

we can restore the depth  map of a given input hazy 

image according to Equation (8). However, this 

model may fail to work in some particular situations. 

For instance, the white objects in an image are 

usually with high values of the brightness and low 

values of the saturation. Therefore, the proposed 

model tends to consider the scene objects with white 

color as being distant. Unfortunately, this 

misclassification will result in inaccurate estimation 

of the depth in some cases. Based on the assumption 

that the   scene depth is locally constant, we process 

the raw depth map   by:Where Kr(x) is an r × r 

neighborhood centered at x , and dr is the depth map 

with scale r . As shown in Figure 8(c), the new depth 

map d15 can well handle the geese regions. is also 

obvious that the blocking artifacts appear in the 

image. To refine the depth map, we use the guided 

image filtering [43] to smooth the image.In order to 

check the validity of the assumption, we collected a 

large database of outdoor hazy images from several 

well-known photo websites and computed the scene 

depth map of each hazy image with its brightness and 

saturation components 

2. SCENE RADIANCE RECOVERY 

A. Estimation of the Atmospheric  Light 

We have explained the main idea of estimating the 

atmospheric light in Section II. In this section, we 

describe the method in more detail. As the depth map 

of the input hazy image has been recovered, the 

distribution of the scene depth is known. Figure 10(a) 

shows the estimated depth map of a hazy image. 

Bright regions in the map stand for distant places.  

According to Equation (6), we pick the top 0.1 

percent brightest pixels in the depth map, and select 

the pixel with highest intensity in the corresponding 

hazy image I among these brightest pixels  as  the  

atmospheric  light  A  (see Figure 10(b) and Figure  

10(c)). 

B. Scene Radiance Recovery 

Now that  the depth of the scene d  and the 

atmospheric  light A are known, we can estimate the 

medium transmission   t   easily  according  to  

Equation  (2)  and  recover  the  scene 

Complexity 

Given an image of size m × n and radius r , the 
complexity of the proposed dehazing algorithm is only 

O(m ×n×r), when the linear coefficients θ0, θ1, θ2 

in Equation (8) are obtained. 
Ihis approach is much faster than others and 

achieves efficient processing even when the given 

hazy image is large. The high efficiency of the 

proposed approach mainly benefits from the fact 

that the linear model based on the color attenuation 

prior significantly simplifies the estimation of the 

scene depth and the transmission. 

3. DISCUSSIONS AND CONCLUSION 

In this paper, we have proposed a novel linear 

color attenu- ation prior, based on the difference 

between the brightness and the saturation of the 

pixels within the hazy image.  By creating a linear 

model for the scene depth of the hazy image with 

this simple but powerful prior and learning the 

parameters of the model using a supervised learning 

method, the depth information can be well 

recovered. By means of the depth map obtained by 

the proposed method, the scene radi- ance of the 

hazy image can be recovered easily. Experimental 

results show that the proposed approach achieves 

dramatically high efficiency and outstanding 

dehazing effects as well. 

Although we have found a way to model the 

scene depth with the brightness and the saturation of 

the hazy image, there is still a common problem to 

be solved.  That is, the scattering coefficient β in 

the atmospheric scattering model cannot be regarded 

as a constant in inhomogeneous atmosphere 

conditions [55.To overcome this challenge, some 

more advanced physical models [63] can be taken 

into account.  We leave this problem for our future 

work. 
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