
International Journal of Advanced Information Science and Technology (IJAIST)        ISSN: 2319:268 

Vol.2, No.4, April 2013                                                             DOI:10.15693/ijaist/2013.v2i4.177-181 
 

177 

 

Reed-solomon decoder based on nielson‟s algorithm 

for Low-latency interpolation 
       R.Manojprabhakaran

1
, M.Darani kumar

2
  

1
Department of ECE, Karpagam University, Coimbatore 

           
2
Asst. Professor/ ECE, Karpagam University, Coimbatore 

 
   Abstract - In wireless, satellite, and space communication 

systems, reducing error is critical. Algebraic soft decision 

decoding (ASD) of RS codes can obtain significant coding 

gain over the hard-decision decoding (HDD).  Compared 

with other ASD algorithms, the low-complexity Chase 

(LCC) decoding algorithm needs less computation 

complexity with similar or higher coding gain. Besides 

employing complicated interpolation algorithm, the LCC  

decoding  can  also  be  implemented  based on  the Nielson 

algorithm. The Nielson algorithm works with a different 

scheduling, takes care of the limited growth of the 

polynomials, and shares the common interpolation points, 

.RS  decoder  can  speed  up  by  57%  and  the area  will be 

reduced  to 62%  compared  with  the original  design for  η 

= 3. 

 

Keywords - Algebraic soft decision decoding (ASD), hard-
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I.INTRODUCTION 

 Reed–Solomon (RS) codes are widely employed 

as the error control code in numerous digital 

communication and storage systems. Berlekamp 

developed the first  practical decoding procedure for RS 

codes in 1968 [2]. In recent years, the error control 

capability was improved by Koetter and Vardy [3], by 

incorporating the reliability information from the channel 

into the  algebraic  soft-decision  (ASD)  decoding  

process.  Among all ASD algorithms, the low-

complexity Chase (LCC) decoding needs to interpolate 

2^η  test vectors with maximum multiplicity one. Hence, 

the LCC decoding has less computation complexity and 

similar  or higher coding gain compared with other ASD 

algorithms. 

 The Nielson‟s algorithm [5], [6] can be 

employed to implement the interpolation. Various 

techniques have been proposed to reduce the complexity 

of the interpolation based on this algorithm. The 

interpolation complexity can be further reduced by 

optimizing the discrepancy coefficient computation and 

candidate polynomial updating involved in each iteration 

of the Nielson‟s algorithm. 

Usually,  the  interpolation  is  the  common  

method  in  the LCC  decoding  algorithm  to  get  the  

error  locator  and  the evaluator   polynomial.   By   

applying   the   re-encoding   and the coordinate 

transformation technique, the number of points needs  to  

be  interpolated  can  be  reduced  to  n - k  for  an (n, k) 

RS code [4]–[6]. Much work has been done directly to 

simplify the complicated interpolation procedure [7], [8]. 

The decoding (HDD), the inversion-less Berlekamp–

Massey (iBM)[11] algorithm. In this HDD-based LCC 

decoding algorithm, the test vectors are selected for 

correction during the decoding on occurrence of the 

HDD  failure. Generally, this method leads to saved area 

and shorter latency for the LCC decoder. However, 

syndromes of all test vectors are needed in the LCC 

decoding and there are 2^η  test vectors. Since η could be 

more than three to get higher coding gain, it requires a 

great number of hardware to compute and store these 

syndromes. Moreover, extra clock  periods  are  

necessary  to  finish  the  syndrome computation of each 

test vector before the key equation solver (KES) starts. 

 As  the  result,  the  decoding latency  and  the  

area are  reduced to  64%  and  62%  for  η = 3,  

respectively, which leads  to  2.5  times  speed  over  area  

ratio  than  the  decoder in  [9].  Further  analysis  shows  

the  area  of  the  proposed decoder is 69% of the decoder 

based on RCMI  for η = 5, with 13% speed up. 

II.RELATED WORK 

Reed-Solomon codes are block based error 

correcting codes with a wide range of applications in 

digital communications and storage. It is vulnerable to 

the random errors but strong to burst errors. Hence, it has 

good performance in fading channel which have more 

burst errors. In coding theory Reed–Solomon (RS) codes 

are cyclic error correcting codes invented by Irving 

S.Reed and Gustave Solomon. They described a 

systematic way of building codes that could detect and 

correct multiple random symbol errors. By adding t 

check symbols to the data, an RS code can detect any 

combination of up to t erroneous symbols, and correct up 

to [t/2] symbols. As an erasure code, it can correct up to t 

known erasures, or it can detect and correct combinations 

of errors and erasures. Reed-Solomon codes are used to 

correct errors in many systems including: 

• Storage devices (including tape, Compact Disk, DVD, 

barcodes, etc) 

• Wireless or mobile communications (including cellular 

telephones, microwave     links, etc) 

•   Satellite communications 

•   Digital television / DVB 
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The Reed -Solomon encoder takes a block of 

digital data and adds extra "redundant" bits. Errors  occur 

during transmission or storage for a number of reasons 

(for example noise or interference, scratches on a CD, 

etc). The Reed -Solomon decoder processes each block 

and attempts to correct errors and recover the original 

data. The number and type of errors that can be corrected 

depends on the characteristics of the Reed -Solomon 

code. 

A. Historical background 

On January 2, 1959, Irving Reed and Gus 

Solomon submitted a paper to the Journal of the Society 

for Industrial and Applied Mathematics. In June of 1960 

the paper was published: five pages under the rather 

unpretentious title "Polynomial Codes over Certain 

Finite Fields". This paper described a new class of error-

correcting codes that are now called Reed-Solomon 

codes. In the decades since their discovery, Reed-

Solomon codes have enjoyed countless applications, 

from living rooms all over the planet to spacecraft that 

are now well beyond the orbit of Pluto. Reed-Solomon 

codes have been an integral part of the 

telecommunications revolution in the last half of the 

twentieth century. 

B.  Encoding of  RS codes 

Reed Solomon codes are a subset of BCH codes 

and are linear block codes. A Reed   -Solomon code is 

specified as RS (n, k) with s-bit symbols. This means that 

the encoder takes k data symbols of s bits each and adds 

parity symbols to make an n symbol codeword. There are 

n-k parity symbols of s bits each. A Reed Solomon 

decoder can correct up to t symbols that contain errors in 

a codeword, where 2t = n-k. 

Given a symbol size s, the maximum codeword 

length (n) for a Reed-Solomon code is  n = 2s  –1. For 

example, the maximum length of a code with 8 bit 

symbols (s=8) is 255 bytes. Reed  Solomon codes may 

be shortened by (conceptually) making a number of data 

symbols zero at the encoder, not transmitting them, and 

then reinserting them at the decoder. The amount of 

processing "power" required to encode and decode Reed 

Solomon codes is related to the number of parity 

symbols per codeword. A large value of t means that a 

large number of errors can be corrected but requires 

more   computational power than a small value of t [6]. 

C. Decoding of  RS codes 

Reed-Solomon algebraic decoding procedures 

can correct errors and erasures. An erasure occurs when 

the position of an erred symbol is known. A decoder can 

correct up to  t errors or   up to 2t erasures. Erasure 

information can often be supplied by the demodulator in 

a digital communication system, i.e. the demodulator 

"flags" received symbols that are likely to contain errors 

[7]. 

When a codeword is decoded, there are three possible  

outcomes: 

1. If 2s + r < 2t (s errors, r erasures) then the original 

transmitted code word will always be recovered, 

OTHERWISE 

2. The decoder will detect that it cannot recover the 

original code word and indicate this fact. 

OR 

3. The decoder will mis-decode and recover an incorrect 

code word without any indication. 

The probability of each of the three possibilities 

depends on the particular Reed  -Solomon code and on 

the number and distribution of errors. 

D. Coding gain 

The advantage of using Reed Solomon codes is 

that the probability of an error remaining in the decoded 

data is (usually) much lower than the probability of an 

error if Reed Solomon is not used. This is often 

described as coding gain. 

 

III.ASD ALGORITHM 

A. Finite (Galois) field arithmetic 

Reed-Solomon codes are based on a specialist 

area of mathematics known as Galois fields or finite 

fields. A finite field has the property that arithmetic 

operations (+, -, x, / etc.) on field elements always have a 

result in the field. A Reed - Solomon encoder or decoder 

needs to carry out these arithmetic operations. These 

operations require special hardware or software functions 

to implement [8,9]. 

B. Generator polynomial 

A Reed-Solomon codeword is generated using a 

special polynomial. All valid code words are exactly 

divisible by the generator polynomial. The general form 

of the generator polynomial is: 

g(x) = (x-ai)( x-ai1)….-  i (a+2t)  x        (3.1) 

and the codeword is constructed using: 

c(x) = g(x).i(x)             (3.2) 

where g(x) is the generator polynomial, i(x) is 

the information block, c(x) is a valid codeword and a is 

referred to as a primitive element of the field. Example: 

Generator for RS(255,249) 

g(x) = (x-a0) (x-a1) (x-a2) (x-a3) (x-a4) (x-a5)    (3.3) 

g(x) = x6+g5x5+g4x4 + g3x3  + g2x2  

                                                    + g1x1  + g0      (3.4) 

C. Encoder architecture 

The 2t parity symbols in a systematic Reed  -

Solomon codeword are given by: 

p(x) = i(x). xn-k mod g(x)                      (3.5) 

An architecture f or a systematic RS (255,249) 

encoder each of the 6 registers holds a symbol (8 bits). 
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The arithmetic operators carry out finite field addition or 

multiplication on a complete symbol. 

D. Decoder architecture 

The received codeword r(x) is the original 

(transmitted) codeword c(x) plus errors: 

r(x) = c(x) + e(x)          (3.6) 

A Reed-Solomon decoder attempts to identify 

the position and magnitude of up to t errors (or 2t 

erasures) and to correct the errors or erasures. Decoding 

is done by adopting the following steps: 

(1) Multiplicity assignment: 

First selects the η most unreliable code 

positions. Each of these code positions is assigned two 

interpolation points: (αj, βj) and (αj, βj). 

(2) Interpolation:  

Find a minimal bivariate polynomial P(X,Y)             

that passes through all the points with the prescribed 

multiplicities. 

(3) Find an error locator polynomial 

This can be done using the Berlekamp -Massey 

algorithm or Euclid‟s algorithm. Euclid‟s  al used in 

practice because it is easier to implement however, the 

Berlekamp-Massey algorithm tends to lead to more 

efficient hardware and software implementations. 

(4) Find the roots of this polynomial(Factorization): 

 This is done using the Chien search algorithm. 

Find all the factors of P(X,Y) of the form g-f(x) with deg 

f(x)<k. 

(5) Finding the Symbol Error Values 

Again, this involves solving simultaneous 

equations with t unknowns. A widely used fast algorithm 

is the Forney algorithm. 

IV.LCC decoding algorithm based on Nielson‟s 

algorithm 

 An (n, k) RS code constructed over the finite 

field GF (2q), n = 2q−1, having the maximum separable 

distance d = 2t +1 = n−k. For the ASD decoding, there 

are generally three steps, multiplicity assignment, 

interpolation, and factorization. The hard-decision 

codeword should be, 

rHD(x) = r0_HD + r1_HD ・ x ・ ・ ・ + r(n−1)_HD 

・ xn−1        (4.1) 

and the second-best decision codeword should be , 

r2HD(x) = r0_2HD + r1_2HD ・ x ・ ・ ・ + 

r(n−1)_2HD ・ xn−1     (4.2) 

 

The multiplicity assignment first compares the 

reliability of each symbol in one codeword. The 

reliability can be expressed as the ratio of probability 

between the hard-decision symbol ri_HD and the second-

best decision symbol ri_2HD for position i, 0 ≤ i ≤ n − 1, 

Pro(ri |ri_HD)/Pro(ri |ri_2HD).  

Unreliable set R  is formed in multiplicity 

assignment by selection of the     n − k unreliable symbol 

positions according to the ratio of probability, while the 

set of rest k reliable symbol positions is denoted as R. 

Multiplicity given as, 

m(x) = m0+m1 ・ x ・ ・ ・+mn−1 ・ xn−1     (4.3) 

Points with position i , i ∈ R  are given 

multiplicity of one, mi = 1, while points with position i , i 

∈ R are assigned mi = 0. The set of the most unreliable η 

symbol positions in R  is denoted as Z, and the symbols 

in these positions are assigned both  ri_HD and ri_2HD, i 

∈ Z, while in other n − η positions, only one  hard-

decision symbol  ri_HD are given, i ∈ R + R  − Z. In 

this way, multiplicity assignment can generate 2η test 

vectors by selecting between ri_HD and ri_2HD,   i ∈ Z. 

In this paper, we focus on the interpolation step. Popular 

interpolation algorithms include the Nielson‟s algorithm 

and the Lee-O‟Sullivan (LO) algorithm [13]. However, 

the LO algorithm cannot take in more points once the 

interpolation started. In this paper, we use the Nielson‟s 

algorithm in our design. The pseudo codes of this 

algorithm are listed in Algorithm 1. 

Algorithm 1. Nielson’s interpolation for m=1,L=1 

Input: Interpolation points (α.β) 

Initialization: g₀ (x, y)=1, g₁ (x, y)=y, deg₀=1,deg₁= -1 

Interpolation: 

For i=0 to length (α) – 1 

A1: δ₀= g₀ (αi, βi),δ₁= g₁ (αi,βi) 

if(min(deg₀,deg₁)=deg₀ ) and δ₀ ≠ 0) 

A2:g₁ (x, y)= g₁ (x, y).δ₀+ g₀ (x, y).δ₁ 

A3: g₀ (x, y)= g₀ (x, y)(x+ αi) 

deg₀=deg₀+1 

elsif(min(deg₀ .deg₁)=deg₁)and δ₁≠0) 

A2: g₀ (x, y)= g₁ (x, y).δ₀+ g₀ (x, y).δ₁ 
A3: g₁ (x, y)=g₁ (x, y)(x+ αi) 

deg₁=deg₁+1 

Output: g₀ (x, y), g₁ (x, y) 

 

The re-encoding and coordinate transformation 

[7], [8] can convert the Y coordinate of the k most 

reliable interpolation points to zero. As a result, the  

interpolation over these points can be presolved by 

simple univariate interpolation. In addition, the point-

serial scheme [9], [10] and a hybrid finite field element 

representation [11] can be employed to increase the 

speed of the discrepancy coefficient computation. The 

decoder based on Nielsons algorithm is given in fig.1.  

By employing the re-encoding and the 

coordinate transformation, the number of points need to 

be interpolated is reduced to n−k and the values of the 
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interpolation points are transformed to βi_HD and 

βi_2HD from ri_HD and ri_2HD, i ∈ Z and to βi_HD 

from ri_HD, i ∈ R  − Z. After get the interpolation 

polynomials of 2^η test vectors, the polynomial selection 

algorithm is required to select the correct interpolation 

polynomial for the successful decoding.  

By comparing the degree of the error location 

polynomial and its roots number, the correct 

interpolation result can be selected. If the degree equals 

the root number, this polynomial will be regarded as the 

right interpolation result. After the polynomial selection, 

the Chien search and Forney algorithm (CSFA) could be 

applied to correct the error symbols in the codeword. 

Finally, an erasure decoding is used to recover the whole 

codeword. 

 Each position in Z will be also assigned two 

symbols, ri_HD and ri_2HD, i ∈ Z. The positions in R, 

which are reliable will only have the hard decision 

symbol, ri_HD, i ∈ R. Thus, 2^η test vectors can also be 

generated. Instead of interpolating the 2^η test vectors 

and choosing interpolation results, the syndromes of all 

test vectors are calculated in the Nielson decoding 

algorithm based on the same decoding performance. 

V.HARDWARE AND LATENCY ANALYSES 

A. Hardware Analyses 
The interpolation module, the Factorization, and 

the BMA (IFB) are in one stage, so the proposed decoder 

consists of three pipelining stages, Interpolation, 

Factorization and CSFA,The advantage of adopting 

Chien search again in CSFA is to eliminate roots storage 

in the polynomial selection module. To estimate the 

hardware requirement of the whole decoder, a serial 

approximation is assumed. In GF(2^8), by employing the 

composite field arithmetic, a regular multiplier needs 64 

XOR gates and 48 AND gates while an inverter consists 

of 121 XOR gates and 36 AND gates.  

 

 

 The hardware requirement of the decoder is 

reduced to 19426/31414 = 62%. The reduction in area 

comes from the three parts, Interpolation, the 

Factorization, and the BMA. The saving in polynomial is 

8638 − 2928 − 844 = 4866 XOR gates and the KES saves 

11696 − 8640 = 3056 XOR gates. Since only one 

polynomial selection module is required in the proposed 

decoder. 

 However, the contribution of the Nielson 

algorithm is more than 4866 XOR gates, because without 

this algorithm, the RiBM would require additional 2t 

(2^η − 1) bytes registers to store the syndrome results of 

2^η − 1 test vectors for pipelining, which equals 2688 

XOR gates for η = 3 and 5760 XOR gates for η = 4. For η 

= 4, the proposed decoder needs 19594 XOR gates. The 

hardware requirement of the decoder is reduced to 

19594/54278 = 36%. 

 
Table 1 : Throughput analysis  

 

 Registers LUTs Slice 
Max clock 

Frequency 
Throughput 

Proposed 

LCC 

decoder 

2247 5621 1534 
149.5 

MHz 

1109.0 

Mb/s 

LCC 

decoder 

in [12] 

5399 5114 2527 
150.5 

MHz 
710.7 Mb/s 

 

B. Latency Analysis 

The decoding latency is decided by the longest stage 

latency. The interpolation module takes 255 clock 

periods, then the codeword and syndromes are passed to 

the IFB module. The output of decoder is given in Fig. 2. 

 

Fig. 6.1. RS decoder based on Nielson algorithm
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For the IFB, the Interpolation 2t clock periods to 

update the next test vector. What should be noted is that 

there are two additional clock periods at the beginning of 

update to select the point to be updated and get the value 

in Sdiff , only for the first test vector. It also takes the  2t 

clock periods to carry out the error locator polynomial and 

the error evaluator polynomial of one test vector. The  

throughput and the area will be given in table.1. 

 

Fig.2 Output waveform of Nielson algorithm based RS decoder 

The modified polynomial selection needs n/p + 1 

clock periods to finish the root search after the KES 

finishes on one test vector. It will add n/p + 1 clock 

periods to the stage latency after the KES and the  update 

all finish in the IFB, if the polynomial selection is put into 

the second pipelining stage. However, it saves the memory 

of one codeword as the stage number is reduced from 4 to 

3. 

VI. CONCLUSION 

Nielson algorithm was proposed in this brief and 

the improved RS decoder, gives better performance on 

throughput and area. The proposed decoder is 

significantly more efficient than prior designs. Next, we 

will focus on further improving the throughput of the RS 

decoder by reducing test vectors. Less RAM is required 

for pipelining. 
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