

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.6, No.11, November 2017 DOI:10.15693/ijaist/2017.v6i11.529-534

Performance Analysis of Coordinated Check pointing

Protocols

Krishnamurthy Ramasubramanian

Asistant Professor, Department of CSE

Samskruti College of Engineering and Technology,

Kondapur (V), Ghatkesar (Mdl), Hyderabad

Abstract

Check-pointing can be coordinated, uncoordinated, or

communication-induced. Log-based protocols

combine check pointing with logging of

nondeterministic events, encoded in tuples called

determinants. Depending on how determinants are

logged, log-based protocols can be pessimistic,

optimistic, or causal. Throughout the survey, we

highlight the research issues that are at the core of

rollback recovery and present the solutions that

currently address them. We also compare the

performance of different rollback-recovery protocols

with respect to a series of desirable properties and

discuss the issues that arise in the practical

implementations of these protocols. This paper

presents the protocols which have been appeared in

the literature for checkpointing in distributed systems.

Keywords: Checkpoint, checkpointing protocols,

Distributed systems, rollback recovery, fault tolerant

computing. Message-logging

1. Introduction

The term Distributed Systems consists of several

computers that do not share memory or a clock, each

computer having its own memory and runs its own

operating system and communicate with each other by

exchanging messages over a communication network

[22].A mobile distributed system (MDS) is a

distributed system where some of processes are

running on mobile hosts (MHs). A mobile distributed

system having fixed and mobile station

interconnected through a communication network.

The fixed station is located at the fixed location and

the mobile station moves from one location to another

in the network. Mobile Hosts (MHs) are becoming

common in distributed systems due to their

accessibility, cost, and mobile connectivity. The term

“mobile” means able to move while retaining its

network

connection.Checkpoint-based rollback-recovery

techniques can be classified into three categories:

uncoordinated checkpointing, coordinated

checkpointing, and communication-induced

checkpointing.A distributed system containing more

several processes that execute on geographically

dispersed computers and collaborate via message-

passing with each other to achieve a common

goal[19].checkpoint is one of the most prominent

techniques for providing fault-tolerance, and can

also be used for debugging and migration in both

uniprocessor and distributed

systems[20,21].particularly ,checkpointing is the act

of saving a program’s state on stable storage, and

restart is the act of restarting an application from its

saved state. Especially, if an application takes

periodic checkpoints, then in case of failure, it is

possible to restart iit from the latest checkpoint,

thereby avoiding loss of all the computation that was

carried before that checkpoint.Many distributed

check pointing protocols produce control overhead

[22].control overhead is the overhead due to control

information. During the past years a large number of

check pointing protocols have been proposed for

distributed systems [5].Most of these protocols were

never implemented or tested. The distributed mobile

systems use check pointing for providing fault

tolerance. In this case, when fault or failures of

process occur, an application with mobile should

rollback to a consistent global checkpoint as close as

possible to the end of the computationA local

checkpoint is a recorded state of process. A global

checkpoint is a set of local checkpoints one from each

process in a distributed system [6].A consistent

global checkpoint is one in which every message that

has been received is also shown to have been sent in

the corresponding state of sender.A distributed

mobile system contains of both static Mobile service

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.6, No.11, November 2017 DOI:10.15693/ijaist/2017.v6i11.523-528

530

Stations and Mobile Hosts. A set of wireless

communication links and dynamic links can be

established between a mobile service station and

mobile host, and a set of high-speed communication

link is assumed between the mobile service stations.

A mobile service station may communicate with a

number of mobile hosts but a mobile host

communicates with the rest of the system via the

mobile service station it is connected to.

2. Check pointing Protocols

Check pointing is a standard method for the repair of

faults in systems. The idea is to save the state of the

system on a stable periodic to prevent breakdowns.

That way when you restart after a power failure, the

state saved newest restored and execution resumes

its course before the crash. The overall status of a

distributed system is defined by the union of local

states of all processes belonging to the system.

Taking checkpoints is the process of periodically

saving the state of a running process to durable

storage. Checkpointing allows a process that fails to

be restarted from the point its state was last saved,

or its checkpoint. If the host processor has not failed,

temporal redundancy can be used to roll back and

restart the process on the same platform. As in other

systems, this method is widely used in grids [21, 22].

Otherwise, if the host has failed, the process may be

migrated, or transferred, to a different execution

environment where it can be restarted from a

checkpoint (a technique also referred to as failover).

This section begins by discussing checkpoint and

process migration methods used in commercial and

science grid systems that are based on methods used

in high performance cluster computing. This is

followed by discussion of new methods being

developed or adapted for scaled grid environments,

together with related issues that need to be resolved.

Most notable is the issue of finding efficient

methods for checkpointing many concurrent,

intercommunicating processes, so that in the event of

failure,they can resume from a common saved state

[9]. Check pointing can be initiated either from

within grid systems or within applications.There are

two main classes of protocols: coordinated

checkpointing and message logging.

A. Coordinated checkpointing protocols:

 Coordinated checkpointing is an attractive approach

for transparently adding fault tolerance to distributed

applications without requiring additional programmer

efforts. In this approach, thestate of each process in

the system is periodically saved on stable storage,

which is called a checkpoint of the process. To recover

from a failure, the system restarts its execution from a

previous error free, consistent global state recorded

by the checkpoints of all processes. More specifically,

the failed processes are restarted on any available

machine and their address spaces are restored from

their latest checkpoints on stable storage. Other

processes may have to roll back to their checkpoints

on stable storage in order to restore the entire system

to a consistent state. Coordinated checkpointing

simplifies failure recovery and eliminates domino

effects in case of failures by preserving a consistent

global checkpoint on stable storage. However, the

approach suffers from high overhead associated with

the checkpointing process. Two approaches are used

to reduce the overhead: First is to minimize the

number of synchronization messages and the number

of checkpoints, the second is to make the

checkpointing process non-blocking. The protocol

requires processes coordinate their checkpoints to

form a consistent global state. A global state is

consistent if it does not include any orphan messages

(i.e, a message received but not already sent). This

approach simplifies the recovery and avoids the

domino effect, since every process always restarts at

the resume point later. Also, the protocol requires

each process to maintain only one permanent

checkpoint in stable storage, reducing the overhead

due to storage and release of checkpoints (garbage

collection)Its main drawback however is the large

latency that require interaction with the outside

world, in this case the solution is to perform a

checkpoint after every input / output.To improve the

performance of the backup coordinated, several

techniques have been proposed.We have

implemented as non-blocking coordinated

checkpointing and Communication induced

checkpointing

1) Non-blocking coordinated checkpointing a

non-blocking checkpointing algorithm does not

require any process to suspend its underlying

computation. When processes do not suspend their

computations, it is possible for a process to receive a

computation message from another process which is

already running in a new checkpoint interval. If this

situation is not properly dealt with, it may result in an

inconsistency. This algorithm uses markers to

coordinate the backup, and operates under the

assumption of FIFO channels. a comparison of

protocols for coordinated checkpoint blocking and

non-blocking has been made. Experiments have

shown that the synchronization between nodes

induced by the protocol blocking further penalize the

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.6, No.11, November 2017 DOI:10.15693/ijaist/2017.v6i11.529-534

performance of the calculation with a non-blocking

protocol. However, using frequencies of taken

checkpoints usual performance of the blocking

approach is better on a cluster to high-performance

communications.

2) Communication induced checkpointing this

protocol defines two types of checkpoints [19]: local

checkpoints taken by processes independently, to

avoid the synchronization of coordinated backup

and forcedcheckpoints based on messages sent and

received and dependency information carried

'piggyback' on these posts, so to avoid the domino

effect of uncoordinated backup, ensuring the

advancement of online collection. Unlike coordinated

checkpoint protocols, the additional cost due to the

medium access protocol disappears because the

protocol does not require any message exchange to

force a checkpoint: this information is inserted

piggyback on the messages exchanged.

B. Message-Logging protocols: Message logging

is a common technique used to build systems that can

tolerate process crash failure. These protocols

required that each process occurs. Indeed, during the

process execution, the determinants of messages are

stored in volatile memory, before being saved

periodically on stable support. The storage stable

memory is asynchronous: the protocol does not

require the application to be blocked during the

backup memory stable. Induced latency is then very

low. However, a failure may occur before the

messages are saved on stable storage. In this case, the

information stored in volatile memory of the process

down is lost and the messages sent by this process are

orphaned. This can produce a domino effect of

rollbacks, which increases the recovery time.Thus,

message logging protocols implement an abstraction

of a resilient process in which the crash of a process is

translated into intermittent unavailability of that

process. All message logging protocols require that

the state of a recovered process be consistent with the

states of the other processes. This consistency

requirement is usually expressed in terms of orphan

processes, which are surviving processes whose states

are inconsistent with the recovered state of crashed

process. Thus, in the terminology of message logging,

message logging protocols must guarantee that there

are no orphan processes, either through careful

logging of through a somewhat complex recovery

protocol. The logging mechanism uses the fact that a

process can be modeled as a sequence of

deterministic state intervals, each event begins with a

non-deterministic. An event may be receiving a

message, or issued or other event in the process. It is

deterministic if from a given initial state, it always

happens at the same final state. [19] The principle of

Logging is to record on a reliable storage any

occurrences of non-deterministic events to be able to

replay them in recovering from a failure. During

execution, each process performs periodic backups of

their states, and recorded in a log information about

messages exchanged between processes.There are

three message-logging categories: pessimistic,

optimistic, and causal.

i) Pessimistic message-logging

This protocol was designed under the assumption that

a failure may occur after any nondeterministic event

(i.e. message reception). Then, each message is saved

on a stable storage before to be delivering to the

application. These protocols are often made reference

to the synchronized because when logging process

logs an event of nondeterministic stable memory, it

waits for an acknowledgment to continue its

execution. In a pessimistic logging system, the status

of each process can be recovered independently. This

property has four advantages:

o Process can send messages to the outside

without using a special protocol

o The process restarted at the most recent

checkpoint.

o Recovery is simple because the effects of a

failure are limited only on the fail process

o The garbage collector is simple

The main drawback is the high latency of

communications, which results in degradation of the

applications response time. Several approaches have

been developed to minimize synchronizations:

 The use of semiconductor memories such as

nonvolatile stable support

 The sender based message logging (SBML)

[14] which preserves the determinant or the

message in the volatile memory of the

transmitter, instead of a remote memory

ii) Optimistic message-logging

This protocol uses the assumption that the logging of

a message on reliable support will be complete before

a failure, the determinants of messages are stored in

volatile memory, before being saved periodically on

stable support. The storage stable memory is

asynchronous: the protocol does not require the

application to be blocked during the backup memory

stable. Induced latency is then very low. However, a

failure may occur before the messages are saved on

stable storage. In this case, the information stored in

volatile memory of the process down is lost and the

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.6, No.11, November 2017 DOI:10.15693/ijaist/2017.v6i11.523-528

532

messages sent by this process are orphaned. This can

produce a domino effect of rollbacks, which

increases the recovery time.

iii) Causal message-logging

This protocol combines the advantages of both

previous methods. As optimistic logging, it avoids

the synchronized access to stable, except during the

input / output. As pessimistic logging, it allows the

process to make interactions with the outside world

independently, and does not create process orphan.

Causal logging protocols piggyback determinants of

messages previously received on outgoing messages

so that they are stored by their receivers.

3. Checkpointing Protocols in Comparison

Many checkpointing protocols were incepted at a time

where the communication overhead far exceeded the

overhead of accessing stable storage. Furthermore, the

memory available to run processes tended to be small.

These tradeoffs naturally favored uncoordinated

 checkpointing schemes over coordinated

checkpointing schemes. Current technological trends

however have reversed this tradeoff. In modern

systems, the overhead of coordinating checkpoints is

negligible compared to the overhead of saving the

states [10]. Using concurrent and incremental

checkpointing, the overhead of either

 coordinated or un coordinated checkpointing is

 essentially the same. Therefore, uncoordinated

checkpointing is not likely to be an attractive

technique in practice given the negligible performance

gains. These gains do not justify the complexities of

finding a consistent recovery line after the failure, the

susceptibility to the domino effect, the high storage

overhead of saving multiple checkpoints of each

process, and the overhead of garbage collection. It

follows that coordinated checkpointing is superior to

uncoordinated checkpointing when all aspects are

considered on the balance.A recent study has also

shed some light on the behavior of communication-

induced checkpointing [20]. It presents an analysis of

these protocols based on a prototype implementation

and validated simulations, showing that

communication-induced checkpointing does not scale

well as the number of processes increases. The

occurrence of forced checkpoints at random points

within the execution due to communication

messages makes it very difficult to predict the

required amount of stable storage for a particular

application run. Also, this unpredictability affects the

policy for placing local checkpoints and makes CIC

protocols cumbersome to use in practice.

Furthermore, the study shows that the benefit of

autonomy in allowing processes to take local

checkpoints at their convenience does not seem to

hold. In all experiments, a process takes at least twice

as many forced checkpoints as local, autonomous

ones.

Check

pointing

protoc

ols

Advantages Disadvantages

A Process coordintes

thecheckpointing

Large delay

in computing

the output

B Lower run time

overhead during

execution

Recovery from

the failure is

slow

C Eliminate useless

checkpoint

Processes are

forced to take

additional

checkpoint to

advance the

global

recovery line

D Improve effcient Incorrect

replay of

messages can

cause orphan

messages Comparison between Checkpointing

protocols here A-Coordinated

checkpointing; B-Un Coordinated

checkpointing; C-Communicaion induced

checkpointing; D-Message Logging based

checkpointing

4. Performance Analysis of

Distributed Checkpointing Protocols

Sync-and-Stop (SaS) is a coordinated checkpointing

protocol [1]. It was shown in [2] that SaS ∈ 1-

rollback. In this protocol there are no forced

checkpoints, therefore, F(SaS) = 0. Regarding the

control overhead, in each phase ofSaS, the

coordinator broadcasts three messages and the other

n − 1 processes send two reply messages. Notice that

the protocol needs an 8-bit control messages.

Therefore, M(SaS) = 5(n − 1)(wm + 8 · wb). Chandy-

Lamport (C-L) [7] is a coordinated checkpointing

protocol in which there is no need to block the

application execution. C-L belongs to 1-rollback and

since there are no forced checkpoints, F(C-L) = 0. In

a fully connected network with n nodes, C-L

generates 2n(n − 1) messages per checkpoint [1] and

the marker since is 8-bit, where it should distinguish

between different runs of C-L. Therefore, M(C-L) =

2n(n − 1)(wm + 8 · wb). Fixed-Dependency-Interval

(FDI) was suggested in [19].Wang showed that FDI

is Z-path free (ZPF) [3]. By [1], ZPF ⊆ 1-rollback.

Therefore, FDI ∈ 1-rollback. Also, the dependency

vector is piggybacked on each message. Thus,

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.6, No.11, November 2017 DOI:10.15693/ijaist/2017.v6i11.529-534

M(FDI) = n · MR(E) for an execution E. However,

the number of forced checkpoints clearly depends on

the 40 number of processes 50 60 70 communication

induced checkpointing protocol ensuring ZCF by

preventing potential Z-cycles from being created.

By [2], BQC ∈ n-rollback. Moreover, Alvisi et al [4]

showed that BQC is worse than BCS but F(BQC) =

2. Lastly, the protocol propagates n2 32-bit values

on each application message to help processes detect

suspected Z-cycles. Therefore, we have that

M(BQC) = MR(E)(32 · n2 · wb + ǫ), where ǫ is the

delayfor intercepting every data message. d-

Bounded Cycles (d-BC) is a communication

induced checkpointing protocol that allows bounded

cycles to be formed [2]. By [2], d-BC belongs to (n

− 1)d-rollback. Upon a new checkpoint Cp,i, process

p broadcasts a cut of size no more that d · n,

therefore, M(d-BC) = n · wm + d · n2 · wb.

Moreover, d-BC forces checkpoints by calling C-L

only if a cycle of size d is generated. Since a Z-cycle

is a special case of a cycle, then the conditions of

generating cycles and Z-cycles are almost

equivalent. Also since ZCF = 1-BC, then by [4] we

have that F(1-BC) = 2.

5. Related Work

There has been much work on checkpointing

performance analysis [11, 12, 15, 17]. Most of these

works do not take into account the rollback

propagation. Ours is the first to incorporate all

parameters that affect the performance in distributed

environments into an analytical measure. Mishra and

Wang [11] evaluated several checkpointing protocols

by implementing and running them with test

applications. Ziv and Bruck [17] compared four

checkpointing protocols by using the Markov Reward

Model [13]. Our approach differs from [17] in that we

provide a technique for comparing any checkpointing

protocol based on rollback propagation. ziv and Bruck

presented in [18] a checkpoint scheme for duplex

systems, and conducted a performance analysis for

their scheme in the duplex system. However, it is not

a general system for distributed executions. Vaidya

defined the overhead ratio for uniprocessor systems as

a function of the checkpoint overhead and latency

[14], and proved that the optimum checkpoint interval

depends on o. Additionally, he claimed that the

overhead ratio can be computed for distributed

systems as in uniprocessor systems by taking the

values of parameters either to be the maximum or the

average over all processes. In [16], Vaidya computed

the overhead ratio for the two-level recovery

approach. This approach tolerates single failures with

a low overhead and multiple failures with a higher

overhead. Plank and Thomason [14] presented a

method for estimating the overhead ratio for

coordinated checkpointing. By assuming coordinated

checkpointing, they do not care about rollback

propagation. Moreover, they do not address the

control overhead incurred by control information.

6. Conclusion

We have reviewed some fundamental concepts of

checkpointing protocols in distributed systems. This

paper presents a comprehensive model of rollback

recovery protocols that encompasses a wide range of

check point/restart protocols. Included coordinated

checkpoint and uncoordinated checkpoint protocols.

This model provides the first tool for a quantitative

assessment of all these protocols. Hence the concept

of checkpoint is introduced before planned

disconnection so that checkpointing can be

completed without any delay resulting enhanced

fault tolerance in the proposed scheme.

References

1) J. S. Plank. Efficient Checkpointing on MIMD

Architectures. PhD thesis, Princeton Unversity, January

1993.

2) A. Agbaria, H. Attiya, R. Friedman, and R. Vitenberg.

Quantifying Rollback Propagation in

DistributedCheckpointing. In 20th Symposium on

Reliable Distributed Systems, pages 36–45, New Orleans,

October 2001.

3) Y. M. Wang. Consistent Global Checkpoints that Contain

a Given Set ofCheckpoints. IEEETransactions on

Computers, 42(4):456–486, April 1997.

4) L. Alvisi, E. Elnozahy, S. Rao, S. A. Husain, and A. D.

Mel. An Analysis of Communication Induced

Checkpointing. In Proceesings ofthe 29th Fault-

Tolerance Computing Symposium, pages 242–249,

Madison, Wisconsin, June 1999.

5) G.H.Forman and J.Zahorjan, The changes of Mobile

computing ,computer pp 38-47,Apr-1994

6) Ms.Pooja Sharma and Dr.Ajay khuntala " A survey of

checkpointing Algorithm in Mobile Ad Hoc

Network"Globl Journal of Computer Science and

Technolgy 2012. [7]Sarmistha Neogy,Anupam

siha,pradip k Das ,CCMUL: A Checkpoinying

protocolfor distributed system processes,IEEE,2004.

7) B.bhargava,S.R.Lian "Independent checkpointing and

concurrent rollback for recovery in distributed systems-

An Optimistic approach". proc 7th IEEE Symp.Rliable

Distributed syst. pp 3-12 1988 oct.

8) L. Alvisi, E.N. Elnozahy, S. Rao, S. A. Husain and A. Del

Mel. “An analysis of communication-induced

checkpointing.” In Proceedings of the Twenty Ninth

International Symposium on Fault-Tolerant Computing,

Jun. 1999.

9) D.B. Johnson. “Distributed system fault tolerance using

message logging and checkpointing.” Rice University,

Dec. 1989.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.6, No.11, November 2017 DOI:10.15693/ijaist/2017.v6i11.523-528

534

10) S. Mishra and D. Wang. Choosing an Appropriate

Checkpointing and Rollback Recovery Algorithm for

LongRunning Parallel and Distributed Applications. In

11th ISCA International Conference on Computers and

their Applications, San Francisco, CA, March 1996

11) J. S. Plank and M. G. Thomason. Processor allocation

and checkpoint interval selection in cluster computing

systems. Journal of Parallel and Distributed Computing,

61(11):1570–1590, November 2001.

12) K. S. Trivedi. Probability and Statistics with Reliablity,

Queuing, and Computer Scince Applications. Prentice-

Hall, USA, 1982.

13) Nitin Vaidya. On Checkpoint Latency. In Pacific Rim

International Symposium on Fault-Tolerant Systems,

Newport Beach, December 1995.

14) Nitin H. Vaidya. Another Two-Level Failure Recovery

Scheme: Performance Impact of Checkpoint Placement

and Checkpoint Latency. Technical Report TR94-068,

Deprt. of Computer Science, Texas A&M University,

1994.

15) Y. M. Wang. Consistent Global Checkpoints that

Contain a Given Set ofCheckpoints. IEEETransactions

on Computers, 42(4):456–486, April 1997.

16) Ziv and J. Bruck. Analysis of Checkpointing Schemes

for Multiprocessor Systems. In Proceeding ofthe 13th

Symposium on Reliable Distributed Systems, pages 52–

61, 1994.

17) Ziv and J. Bruck. Efficient checkpointing over local area

network. In IEEE Workshop on Fault-Tolerant Parallel

and Distributed Systems, June 1994.

18) Ch.D.V.Subba Rao and MM Naidu : A new efficient

coordinated checkpointing protocol combined with

selective sender based message logging , IEEE,2008.

19) Acharya and B.R.Badrinath ,checkpointing distributed

Applications on Mobil computers,proc.3rd Int'l

conf.parallel and distributed Information systems,

sept.1994.

20) R.Prakash and M.Singhal, "Low-cost checkpointing and

failure recovery in mobile computing systems," IEEE

Trans.parallel and distributed systems pp.1035-1048,oct

1996

21) Lalit kumar p.kumar "A synchronous checkpointing

protocol for mobile distributed systems: probabilistic

approach" Int.Journal of information and computer society

2007.

Author Profile

Krishnamurthy Ramasubramanian

Asst.Prof., Department of

CSE,Samskruti College of Engineering

and Technology,Kondapur (V),

Ghatkesar (Mdl), Hyderabad

