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Abstract-- This paper models a cyclostationary input signal using 

white Gaussian random process with periodically time varying 

power. LMS and NLMS algorithms are applied for the above system 

identification model. Mathematical models are observed for mean 

and mean-square deviation behavior of the adaptive weight 

calculations with input cyclostationarity. Mean square error 

performance is calculated while the surface moves in weight space 

over time. Stochastic behavior of the LMS and NLMS algorithm are 

inferred. Behavior of LMS and NLMS algorithms can be accurately 

analyzed for this input signal by drawing simple models. Finally, the 

performance of the two algorithms is compared. 

 
Index terms-- cyclostationary; LMS algorithm; NLMS algorithm; 

adaptive filters; Analysis.    

I. INTRODUCTION 

Processes encountered in statistical signal processing, 
communication, and time series analysis applications are often 
assumed stationary. Due to the varying nature of physical 
phenomena, manmade operations tend this assumption 
violated. Mostly all the man made signals and modulated 
signals in communication process are cyclostationary in 
nature. In Some cases multiple periodicities are involved. For 
most manmade signals encountered in communication, radar, 
telemetry, bio medicine, and sonar systems some parameters 
do vary periodically with time. Examples include sinusoidal 
carriers in amplitude, frequency and phase modulation 
systems, periodic keying of amplitude, frequency or phase in 
digital modulation systems and periodic scanning in ECG, 
television, facsimile, and some radar systems. This typically 
requires that random signal to be modeled as cyclostationary 
where the statistical parameters vary in time. In these cases the 
form of the performance surface is periodic with the same 
period as the input auto correlation matrix. Cyclostationarity 
also arises in signals of natural origins, due to the presence 
rhythmic, seasonal, or cyclic behavior. Examples include time 
series data encountered in meteorology, economics, 
atmospheric science, climatology, oceanology astronomy, bio 
medicine and hydrology.  

An important aspect of adaptive filter performance is its 
ability to track time variations of the underlying signal 
statistics. The performance surface deformation of 
cyclostationary signal affects the adaptive convergence and is 
independent of changes in optimum weights. This transient 
performance deformation can be observed by standard 
analytical models. Previously LMS behavior for 
cyclostationary input is studied only its convergence in the 

mean. An analysis of LMF algorithm behavior for non-
stationary inputs has been presented recently. Here the 
analytical model derived for LMF behavior was valid only for 
a specific form of the input auto correlation matrix and cannot 
be easily extend it to a general time varying input statistics. 
Hence, the study of the behavior of LMS and NLMS 
algorithms under cyclostationary inputs must be inferred by 
using a new model. Adaptive solutions involving 
cyclostationary signals have been sought for many application 
areas. In particular communication, radar and sonar systems 
frequently need such type of solutions. Thus a statistical 
analysis of adaptive algorithms under cyclostationary inputs 
could have significant impact on a wide variety of problems 
involving cyclostationary processes. 

The analysis of adaptive filter behavior is measured for the 

modeled cyclostationary input signal. Additive white Gaussian 

noise is utilized for the generation of cyclostationary input 

signal with periodically time varying power to perform 

adaptive filtering. 

This paper presents the modeling of cyclostationary input 
signal by a white Gaussian random process with periodically 
time-varying power. Then by the adaptive filters known as 
LMS, NLMS, filtering has been done on the generated input 
cyclostationarity. This modeled input noisy signal is used to 
study the adaptive performance for input signals with 
sinusoidal and pulsed power variation with adaptive 
transversal filter structures. The cases of fast, moderate, slow 
power variations are considered. Mean and mean square 
deviation (MSD) behavior of the adaptive weights with these 
input cyclostationarities are observed here.  

This paper is formulated as follows. Section II depicts the 
problem definition and statistical assumptions used to solve 
the problem. Section III generates the input cyclostationary 
signal. Section IV studies the LMS algorithm. Section V 
studies the NLMS algorithm. Section VI gives MSD analysis 
of the above three algorithms. Section VII depicts the 
comparison of algorithms utilized. Section VIII presents the 
Results. Finally section IX produces the Conclusions. Section 
X gives the References. 
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II. PROBLEM DEFINITION AND STATISTICAL ASSUMPTIONS 

A. System Identification Model  

This paper studies the system identification model given 

in Fig.1.The N-dimensional input vector to the adaptive  

 
Fig1. System identification model 

 

Filter tap weights is given by Y (n) = [y(n), y(n-1),…..,y (n-

N+1)]
T
.  

Where the super script T means transpose. The observation 

noise is assumed zero-mean white Gaussian with variance σ0
2 

and independent of Y (n). 

 

The standard random walk model is used for the unknown 

channel, 

 

                        H(n+1) = H(n) + Q(n) 
Where H(n) is the response of the channel and Q(n) is a 

white Gaussian vector with zero-mean and covariance matrix 
E[Q(n)Q

T
(n)] = σq

2
(n)I, where I is the identity matrix. The 

vector Q(n) is assumed independent of both Y(n) and n0(n). 

B. Performance Measure 

Adaptive filter assumes that the weights at time n are 
statistically independent of the input vector at time n.  

      The MSD is given by  

MSD (n) = E [(W (n) - H (n)) (W (n) - H (n))
T
]  

                = Tr [KLL(n)] 

          Where W (n) is the weight vector of the adaptive filter                        

           t time n. Tr means trace. 

           KLL(n) = E [(W (n) - H (n)) (W (n) - H (n))
T
] 

           Weight error vector L(n) = [(W (n) - H (n)] ; 

 

III. MODELING OF CYCLOSTATIONARY INPUT SIGNAL 

A wide sense cyclostationary random process g(t) is 
defined as 

                     E [g(t1+T)] = E [g(t1)] 

             E [g(t1+1)g(t2+T)] = E [g(t1)g(t2)]  

For all t1 and t2 and T is time period. 

Here the generating signal Y (n) is a zero-mean white 
Gaussian vector with time varying variance. 

             Ry(n) = E [Y (n) Y
T
 (n)] 

                       = diag  [σy
2
(n), σy

2
(n+1,…., σy

2
(n-N+1)] 

A. Modulation 

Modulation is done using Quadrature Amplitude 
Modulation (QAM) while doing orthogonal frequency division 
multiplexing (OFDM) for transmitting the signal. 

     a. Preamble Generation 

The fixed pattern used for time, frequency, and channel 
synchronization is in wireless communication system is 
known as Preamble. Two preamble sequences are generated as 
follows. Consider 256 point OFDM symbol. 

              PALL (-100 : 100)  =  ±1 ± j1 ; k ≠ 0 

                                               = 0   ; k=0  

Short Preamble S1 = P4*64(k) = 2*PALL(k) ; kmod4=0 

   = 0  ; kmod4 ≠ 0     

Long Preamble S1 = P2*64(k) =  2*PALL(k) ; kmod2=0 

    = 0  ; kmod2 ≠ 0 

After 256 point IFFT is done for frequency domain, then 
time vectors of S1 and S2 are generated. 

b. Addition of Complex Prefix (Cp) 

Add the cyclic prefix after doing the IFFT just once to the 

composite signal.   After the signal has arrived at the receiver 

remove the complex prefix to get back the perfect signal so it 

can be FFT’d to get back the symbols on carrier. Addition of 

cyclic prefix alleviates the link fading and inters symbol 

interference, increases the bandwidth. 
 

 

 

Time domain Preamble with Cp for s1 and s2  are  

             

          s1k =  4 exp ((jπ5k
2
)/(Ns1) ; k = 0,1,2,…… Ns1-1 

          

         s2k =  2 exp((jπk
2
)/(Ns2) ; k = 0,1,2,…… Ns2-1 

 

This creates the cyclostationary input signal. 

 

 Consider Signal to Noise Ratio (SNR)  = 20db 

Two simple models for  σy
2
(n) are considered here as follows. 

 

1. Sinusoidal power variations:  

                σy
2
(n) = β(1+ sin(w0n)); For β > 0; w0 > 0; 

 

2. Pulsed power variations:  

            σy
2
(n)  =  P1 for iT < n ≤ iT+αT 

                       = P2 for iT+αT < n ≤ (i+1)T 

 

128 

 

128 

 

... 

 

 

Cp 

 

... 

 

64 

 

64 

 

Cp 



International Journal of Advanced Information Science and Technology (IJAIST)    ISSN: 2319:2682 

 Vol.4, No.8, August 2015                                                        DOI:10.15693/ijaist/2015.v4i8.151-157                  

 

153 

 

For 0 < α < 1 ; i = 1,2,…. 

 

The time variations can be classified as slow, moderate, 

or fast as compared to the length of the filter. Hence the 

variations for sinusoidal power variations are slow if  

w0n << 2π, are moderate if  w0n ≈ 2π, are fast if w0n  >> 

2π . for pulsed power variations are slow if  n << T, are 

moderate if  n ≈ T, are fast if  n >> T. 

 B. Noise Generation and Adding to the Signal 

 Generate Gaussian Noise with zero mean and unit 

variance: 

 Noise = randn (1, length (signal));  

 Scaled Signal = standard deviation of (Noise)/standard 

deviation of (signal)*(sqrt(10^(SNR/10)))*signal; 

Signal with Noise = Scaled signal + Noise 

 
Remove the Cp for the estimation of noise. Remove Cp at 

both long and short Preamble. Correlate the noisy signal to get 
the originally formatted signal. Now apply FFT to get back the 
symbols on carrier. This generates the cyclostationary input 
signal and input signal with certain SNR.  

IV. LMS ALGORITHM 

LMS Algorithm as follows. 

1. Consider the length of the filter = L; 

2. Step size  = µ; 

3. Input vector = XL,1(n); 

4. Weight vector = WL,1 (n); 

5. For each instant of time n = 1,2,….. 

Compute output C(n) = u(n)w
T
(n); 

Estimate error e(n) = d(n) – c(n); 
Tap-weight adaption = W(n+1) = W(n) +2µu(n)e(n); 

                          V. NLMS ALGORITHM 

The adjustments applied to the tap-weight vector at 
iteration n+1 is normalized with respect to the squared 
Euclidian norm of the tap input vector u(n) at iteration n. 
NLMS algorithm is as follows. 

1. Consider the regularization constant a. 
2. Tap-weight adaption = W1(n+1) =  

W1(n) + 2(µ)(u(n)e(n))/(a+u
T
(n)u(n)); 

Mean Square Error (MSE) = E { [ e(n) 2] }; 

 
 

VI. MSD ANALYSIS 

A. LMS 

Mean: E[L(n)] =  I −  µRy (𝑖) 𝑛−1
𝑖−0 L(0) ; 

Msd: Tr[KLL(n+1)] = Tr [KLL(n)] -                  

2µTr[KLL(n)Ry(n)] + µ
2
Tr[KLL(n)Ry(n)] Tr[Ry(n)]+ 2 

Tr[Ry(n)KLL(n)Ry(n)] + µ
2
σ0

2
 Tr[Ry(n)] +Nσq

2
(n) ; 

 

For sinusoidal model: 

Slow speed variations: 

Tr[KLL(n+1)] ≈ {1-2µ𝜎 𝑦
2(𝑛) + µ

2[𝜎 𝑦
2(𝑛)]

2
(n+1)}Tr [KLL(n)] + 

µ
2
σ0

2
N

 𝜎 𝑦
2(𝑛) +Nσq

2
(n); 

For fast variations: 

Tr[KLL(n+1)] ≈ [1-2µβ+ µ
2
β

2
(N+2)] Tr [KLL(n)] +  µ

2
σ0

2
 

Tr[Ry(n)]+ Nσq
2
(n); 

Similar result for the pulsed case by replacing β = [αP1 + (1-

α)P2] ; 

For moderate variations: 

Tr[KLL(n+1)] ≈ [1-2µ𝜎 𝑦
2 𝑛 + (N+2) µ

2
 σy

4
(n)] Tr[KLL(n)] + 

µ
2
σ0

2
N σy

2
(n)+ Nσq

2
(n); 

 

B. NLMS 

Mean: 
E[L1(n)] = 

 {𝐼 −
µ

𝑇𝑟 𝑅𝑦  𝑖  
𝑇𝑟(𝑅𝑦 𝑖 )}𝑛−1

𝑖=𝑜 E[L1(0)]; 

Msd: 

 
 

For sinusoidal model: 

              Slow variations: 

              Tr[KLL(n+1)] = [1- 2µ/N + µ
2
/N]Tr[KLL(n)] 

                                 +µ
2
[(E[n0

2
(n)])/( [𝜎 𝑦

2(𝑛)](n+2))]+Nσq
2
(n) 

For moderate and fast variations no simple approximations are 

available. For pulsed case it is required to replace 𝜎 𝑦
2 𝑛  by β. 

 

VII. COMPARISON OF ALGORITHMS 

MSD obtained is less for NLMS algorithm when compared to 

LMS algorithms. 

Sufficient condition for LMS stability is 

For slow variations 

                        0 <  µ < 2/(N+2) 𝜎 𝑦
2 𝑛  ; 

Sufficient condition for NLMS stability is  

For fast variations 

                        0 <   µ <  2/(N+2)β ; 

NLMS stability criteria is 

                        0 <  µ  < 2 ;  

 

For periodic input power variations, the MSD converges to a 

periodic sequence with the same period as the input power 

variations. 
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For slow input power variations, the transient NLMS MSD 

behavior does not depend on rate of variation of input power, 

while the LMS MSD behavior does. 

For a fixed plant with slow input power variations, the steady 

state LMS MSD has negligible time-variations, while the 

NLMS MSD has significant time-variations. 

VIII. RESULTS 

Fig 1: Modeled cyclostationary signal and its filtered outputs 

Fig 2: LMS output for sinusoidal input power fast variations 

 Fig 3: LMS output for sinusoidal input power slow variations 

 
Fig 4: LMS output for sinusoidal input power moderate variations 

Fig 5: LMS output for sinusoidal input power fast variation with time varying 
channel 
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Fig 6: LMS output for sinusoidal input power slow variation with time 
varying channel 

Fig 7: LMS output for sinusoidal input power moderate variation with time 
varying channel 

Fig 8: NLMS output for sinusoidal input power fast variations 

 Fig 9: NLMS output for sinusoidal input power slow variations 

Fig 10: NLMS output for sinusoidal input power moderate variations 

Fig 11: NLMS output for sinusoidal input power fast variation with time 
varying channel 
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 Fig 12: NLMS output for sinusoidal input power slow variation with time 
varying channel 

Fig 13: NLMS output for sinusoidal input power moderate variation with time 
varying channel 

Fig 14: Steady state ASE performance of different filters 

Fig 15: MSE performance of different filters 

IX. CONCLUSIONS 

Generation of cyclostationary input signal is a great 

challenge. This paper studies the adaptive filter performance 

with cyclostationary input signal. The cyclostationarity is 

modeled by a time-varying input power. The unknown system 

is taken by random walk model. NLMS filtering gives the less 

MSD, MSE, steady state ASE than the LMS algorithms. The 

approximate theory allowed the MSD behavior to be studied 

in simple manner. It was found that MSD converges to a 

periodic sequence with the same period as that of the periodic 

input power variations. Eventually NLMS results in greater 

stability and convergence. The results of this paper suggest 

that NLMS algorithm can be used effectively with 

cyclostationary inputs. 
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