
International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.152-155

152

Improved Error Correction Capability in Flash

Memory using Input / Output Pins

1
A M Kiran and

2
J Shafiq Mansoor

1
PG scholar,

2
 Assistant Professor, ECE department, Karpagam University, Coimbatore-641021

Abstract-- Error control coding (ECC) is essential for

correcting soft errors in Flash memories. In this paper we

propose use of product code based schemes to support

higher error correction capability. We also introduce

input/output pin by which programming cycle reduces which

inturn reduces the bit error rate. While these schemes have

slightly larger latency and require additional parity bit

storage, they provide an easy mechanism to increase the

lifetime of the Flash memory devices.

Index Terms—Error correction codes (ECCs), flash

memories,multi-level cell, product codes.

1. OVERVIEW
 Flash memory has become the dominant technology

for non-volatile memories [1]. It is used in memory

cards, USB flash drives, and solid-state drives in application

platforms such as personal digital assistants, laptop

computers, digital audio players, digital cameras and

mobile phones. We focus on NAND Flash memories

since they have lower erase times, less chip area per cell

which allows greater storage density, and lower cost per bit

than NOR Flash memories [2]. Specifically, we focus on

multi-level cell (MLC) Flash memories which store two

or more bits per cell by supporting four or more voltage

states. These have even greater storage density and are the

dominant Flash memory technology. There are some inherent

limitations of NAND Flash memo- ries. These include

write/read disturbs, data retention errors, bad block

accumulation, limited number of writes [3]–[5], and stress-

induced leakage current [6]. In recent years, due to cell size

scaling, these issues have become critical . In particular, re-

liability of MLC memory significantly degrades due to

reduced gap between adjacent threshold levels. To enhance

the reliability of NAND Flash memories and sup- port longer

lifetimes, combinations of hardware and software techniques

are used. These include wear leveling, bad block

management and garbage collection. Wear leveling

distributes the data to different physical locations so that all

memory blocks are used approximately the same number of

times [7]. Bad block management marks blocks once they

show unrecoverable errors.

While these Flash management techniques increase the

life time of Flash memories, they are not good at

correcting soft errors. Error correction code (ECC)

techniques, which can detect and correct errors by

storing and processing extra parity bits, have now become

an integral part of Flash memory design[9]. Single error

detection/correction codes, such as Hamming codes, used

to be sufficient to enhance the reliability of single-level cell

(SLC) Flash memory systems [10]. In recent years, long

linear block codes with high error correc- tion capability

are used because the single error correction capability of

Hamming code is no longer sufficient. The Bose-

Chaudhuri-Hocquenghem (BCH) code and its subclass

Reed-Solomon (RS) code are the best-known linear

block codes for memories. Pipelined or bit-parallel BCH

code has been used in [11]–[13]. Schemes based on

concatenation of BCH codes and trellis coding modulation

(TCM) have recently been proposed in [14]. While they

reduce the error correction burden of a single BCH code,

they require five (instead of four) threshold states per cell.

ECC based on RS codes have been used in several

commercial MLC Flash memories [15]–[17]. They use

plain RS codes and can correct up to 24 errors in

512B, at the cost of larger hardware and coding latency.

Clearly, higher error correction capability can be

achieved by using stronger BCH or RS codes. However, it is

expensive both in terms of area and latency. In this

paper we propose use of product codes which use smaller

constituent codes along rows and columns and achieve high

error correction capability due to cross parity checking. Such

codes have lower hardware overhead and have been

successfully used in embedded SRAM caches [18] and

interconnection networks [19]. An important factor in

deciding on the ECC scheme is error characterization in

terms of both type as well as distribution of errors. In

current Flash memories, the error distribution is

considered to be random. However with increased

technology scaling, when the number of program/erase

cycles is quite high, the probability of multiple bit upset

(MBU) errors is likely to increase. This is because of the

increased variation in threshold voltage which causes an

increase in the probability of the long tailed threshold

voltage distribution crossing over to the adjacent voltage

states. To take these effects into consideration, we study the

performance of the ECC schemes for two error models: fully

random error model and hybrid error model with 90%

random errors and 10% MBU errors. For these two error

models, we present product code schemes that have better

BER performance, lower area and smaller latency than

single BCH and RS codes with comparable error

correction capability.

2. INTRODUCTION
Flash memory devices can be found almost

everywhere today. They are lighter, faster and more shock

resistant than traditional magnetic hard drives. As this

technology scales and the storage density increases, data

errors become more prevalent, making error correction

coding critical for maintaining data integrity. The storage

density of a Flash memory device is dependent on the

number of discrete voltage levels the floating gate cell is

capable of representing. In early generations, every memory

cell could represent two voltage levels and thus store a

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.152-155

153

single bit (SLC). The demand for increased storage capacity

has created the need to store more than a single bit per cell

by simply representing more than two voltage levels. In this

work, we follow the commonly adopted nomenclature and

assume that multiple level cell (MLC) chips store multiple

bits per cell, and that in particular triple level cell (TLC)

chips store three bits per cell.

Recently, the subject of error-correction coding for

Flash memory has received significant attention. In [18],

trellis coded modulation techniques were applied to Flash

memory. In [13], the use of LDPC codes was investigated,

and in [19] it was found that using soft information from

multiple reads in the LDPC decoder lowered the error rate.

In [9], algebraic error-correction codes were used for

rewriting as well as for correcting errors. In [2], [5], [6],

[12], codes that correct limited magnitude asymmetric errors

were constructed. In [23], this model was extended to

correct graded error patterns. In [17], constructions were

given for single error-correcting codes that can correct

limited magnitude errors in 2 directions. In [25], a different

error model was considered where the likelihood of an error

occurring was directly related to the value of the cell being

programmed. The problem was to construct codes that

maximized the size of a codebook given some fixed

tolerable error probability.

In [11] a novel method of encoding information

was introduced that reduced the occurrence of errors during

programming. The error model in this work is motivated by

data collected from a TLC Flash device. As observed in

[24], if the information from each Flash cell is interpreted as

a triple-bit word, then the errors (referred to as graded bit-

errors) largely but not exclusively cause only a single bit in

each word to change. From this observation, we suggest the

use of a class of codes derived from tensor product codes

[22] in the context of Flash memory. We refer to this class

of codes as graded bit-error-correcting codes. The

contribution of this work is to generalize the result of [24]

to produce code constructions that correct errors that mostly

have only a small number of bits in error for each cell-error.

In fact, some of the proposed codes indeed end up having

the same algebraic structure as generalized tensor product

codes (cf. [10]). The novelty of this work is to show that for

certain parameters of the constituent codes, such

constructions can correct graded bit-errors.

Tensor product codes were first introduced in [22]

and were generalized to produce efficient binary codes in

[10]. In [20], these constructions were revisited and an

efficient method of encoding was provided. More recently,

tensor product codes were used in the context of magnetic

recording [3], [4]. In a concatenated coding scheme, the use

of a tensor product parity code as the inner code was shown

to offer the performance advantages of a short length parity

code but without the associated rate penalty. In [1], tensor

product codes were used in conjunction with soft iterative

decoding methods to manage the size of the syndrome

table. In this work, a new type of generalized tensor product

codes, the graded bit-error-correcting codes, is developed.

These codes are demonstrated to correct the errors that

occur within a TLC Flash device. In particular, generalized

tensor product codes are shown to delay the onset of errors

longer than conventional coding schemes. Delaying the

onset of errors is significant since the device can potentially

be used for a longer period of time.

3. ERROR MODELS

3.1 Error sources

There are many sources of errors in MLC Flash

memories. Single event upset can be caused by charged

particles due to sun activity or other ionization mechanisms

[14]. Multi-bit upsets can occur due to a high-energy

particle hitting at a low incident angle and striking many

cells in a row. Furthermore, in MLC, the voltage window

for threshold of each data state is smaller. Since all the

programmed levels must be allocated in a predetermined

sized voltage window, there is reduced spacing between

adjacent programmed levels, making the MLC memories

less reliable. Also, read/write operations in MLC memory

can cause threshold voltage fluctuations, which

inadvertently result in errors in consecutive bits [2]-[4].

Another important source of error is due to gradual

charge leakage from the floating gate resulting in voltage

shift in memory cells, ultimately resulting in a flip in the

data stored in these cells. Blocks that have been erased

many times have a shorter data retention life than blocks

with lower erase/program cycles [2]-[4].

The number of errors due to program/erase wear

out increases from 1* at 9000 cycles to 8* after 15000

cycles for MLC Flash [2].

With increased number of program/erase cycles,

the number of MBU errors also increase as demonstrated

through these simulations. First, using the results in [3][17],

we model the distribution with a continuous Rayleigh

distribution. The variance of the distribution is assumed to

be a function of number of program/erase cycles and

increases when the number of program/erase cycles

increases. Thus for even Gray coded data, larger variance

would result in MBU errors.

(a) (b)

Figure 1. (a) Raw BER and (b) MBU probability as a

function of number of erase/program cycles.

In order to determine the variance as a function of the

number of program/erase cycles, we match the error rate of

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.152-155

154

our model with experimental results for MLC Flash memory

in [2]. Then, we use curve fitting to extrapolate the results

for higher number of erase/program cycles. Figure 1(a)

shows the BER curve versus number of erase/program

cycles. Note that when the number of erase/program cycles

increases from 23K to 27K, the raw BER increases from

2.2* to 4.0* . Figure 1(b) shows the MBU probability as a

function of the number of program/erase cycles. This is

approximately 2.3% at 40K erase/program cycles. Since the

required endurance life time of NAND Flash memories is

expected at least cycles [2], it is reasonable to expect that

the burst error probability in MLC Flash will cross 10%

towards the end of its rated lifetime.

3.2 Error models

We consider two error models: fully random error model

and a model based on a mixture of random and MBU (or

burst) errors. For burst errors, we assume that the probability

of MBU decreases exponentially as the MBU size increases.

3.3 Performance metrics

We compare the different ECC schemes with respect to the

following performance metrics:

Redundancy rate: In an (n, k) linear block code, redundancy

rate is (n-k)/n. Hardware area: Area of encoder and decoder

in ECC block.Encoding/decoding latency: Time for

encoding/decoding data in one page. Bit error rate (BER):

Number of received bits that have been altered due to errors,

divided by the total number of bits.

Figure 2. MBU probability as a function of MBU size

4. PRODUCT CODE ECC SCHEMES FOR

FLASH MEMORY

A. Product Code Scheme:

Basics Product code is a technique to form a long

length code with higher ECC capabilities using small length

constituent codes. Compared to plain long length codes, it

has high performance from cross parity check [25], and low

circuitry overhead since the constituent codewords are of

low error correction capability.

 If code c1 has Hamming distance d1 and code c2

has Hamming distance d2, the minimum weight of the

product code is exactly d1d2. Thus increasing the

minimum weight of each code enhances the number of

error patterns which can be corrected in the code array.

Product code using single-error-correction codes in each

dimension has been used in [18] and [19]. In [18], 8-bit

even-parity code in both dimensions with bit interleaving

has been used for SRAM caches of size 256 256 bits. In

[19], 8-bit even-parity code has been used in

interconnection networks. Both cases demonstrated the use

of product codes for enhanced error correction

performance.

 In order to provide for high error correction

capability in Flash memories, we propose to use a strong

code with multiple error correction capability along at least

one of the dimensions. Since data is stored along rows in

memory, we propose to use stronger ECC along rows so

that both random and burst errors can be dealt with

efficiently. Furthermore, we choose a long codeword along

this dimension to provide good coding performance.

 We studied the performance of product codes

based on BCH and RS codes. When long BCH/RS codes

are used along the rows for high coding performance, for

fixed page size, the length of the codeword along the rows

is much shorter. Use of cyclic or linear block codes with

multiple error correction capability along columns is an

overkill and results in unnecessary hardware and latency

overhead. So we choose Hamming codes along the

columns; they have low overhead and provide enough

coding gain for the product code based scheme.

B. Product Code Scheme: Encoding and

decoding
Fig. 7(a) shows the encoding flow of the product code

scheme, and Fig. 7(b) gives an example of the physical

address mapping of RS (255, 247) +Hamming (72, 64)

product code when the page buffer size is 16 kB. Note that

the physical mapping is different for different product codes.

We assume that the Flash controller has the capability to

reallocate the storage space to support the different product

codes. For the RS (255, 247)+ Hamming (72, 64) product

code, during encoding, the RS encoder reads 247

information bytes at a time and generates 8 bytes or 64 bits

corresponding to row parity. The row parity bits are stored

in the pre-allocated region in the page buffer. Next, the

Hamming encoder operates on the information and row

parity bits, and generates the column and cross parity bits.

The information bits are read with a stride of 247* 8, and the

row parity bits are read with a stride of 8 * 8. After column

encoding, the column&cross parity bits are stored in the

corresponding section of the page buffer. In the allocation

shown in Fig. 7(b), there is 64B unused space which can be

used to store the beginning address of the different data

regions for the Flash controller.

C. I/O pins:

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.152-155

155

Fig.3 Input /output pins in flash memory

By using I/O pins we can reduce the program cycles.

We can also disable the I/O pins using enable option

leaving the output as high impedance state.

Fig.4. Programming cycles.

 Hamming code RS code

 Encode

r

Decoder Encode

r

Decoder

Area 4939 4573 16710 15539

Pow

er

225.32 226.32 224.47 225.86

Output Waveform Of Our Work:

5. CONCLUSION:

 Thus the method is found to be useful and efficient

in error correcting in the product codes, We show that for 8

and 16 kB page sized memories, regular product schemes

achieve one decade lower BER when raw BER ranges from

to compared to plain RS codes or BCH code with similar

code length. A comparison of the area, latency, additional

storage also show that product schemes have lower

hardware and latency than plain RS codes. The bit error rate

is further reduced by introducing I/O pins by which we can

reduce the programming cycles.

 REFERENCES

[1] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti,

“Introduction to flash memory,” Proc. IEEE, vol. 91, no. 4,
pp. 489–502, Apr. 2003.

[2] L. Pantisano and K. Cheung, “Stress-induced leakage current

(SILC) and oxide breakdown: Are they from the same oxide
traps?,” IEEE Trans. Device Mater. Reliab., vol. 1, no. 2, pp.
109–112, Jun. 2001.

[3] H. Choi, W. Liu, and W. Sung, “VLSI implementation of BCH

error correction for multilevel cell NAND flash memory,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 18,
no. 5, pp. 843–847, May 2010. 2011.

[4] S. Li and T. Zhang, “Improving multi-level NAND flash

memory storage reliability using concatenated BCH-TCM
coding,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 18, no. 10, pp. 1412–1420, Oct. 2010.

[5] C. Yang, Y. Emre, and C. Chaitali, “Flexible product code-

based ECC schemes for MLC NAND flash memories,” in
Proc. IEEE Workshop Signal Process. Syst. (SiPS), 2011.

[6] H. Lee, “High-speed VLSI architecture for parallel Reed-

Solomon decoder, IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 11, no. 2, pp. 288–295, Apr. 2003.

