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Abstract-- Error control coding (ECC) is essential for 

correcting soft  errors  in  Flash  memories.  In  this  paper  we  

propose  use  of product  code  based  schemes  to  support  

higher  error  correction capability. We also introduce 

input/output pin by which programming cycle reduces which 

inturn reduces the bit error rate. While these schemes have 

slightly larger latency and  require  additional  parity  bit  

storage,  they  provide  an  easy mechanism to increase the 

lifetime of the Flash memory devices.  

 

Index Terms—Error correction codes (ECCs), flash 

memories,multi-level cell, product codes. 

 

1. OVERVIEW 
 Flash memory has become the dominant technology 

for non-volatile  memories  [1].  It  is  used  in  memory  

cards, USB flash drives, and solid-state drives in application 

platforms such  as  personal  digital  assistants,  laptop  

computers,  digital audio  players,  digital  cameras  and  

mobile  phones.  We  focus on  NAND  Flash  memories  

since  they  have  lower  erase  times, less chip area per cell 

which allows greater storage density, and lower cost per bit 

than NOR  Flash memories [2]. Specifically, we  focus  on  

multi-level  cell  (MLC)  Flash  memories  which store  two  

or  more  bits  per  cell  by  supporting  four  or  more voltage 

states. These have even greater storage density and are the 

dominant Flash memory technology. There are some inherent 

limitations of NAND  Flash memo- ries.  These  include  

write/read  disturbs,  data  retention  errors, bad block 

accumulation, limited number of writes [3]–[5], and stress-

induced leakage current [6]. In recent years, due to cell size 

scaling, these issues have become critical . In particular, re- 

liability of MLC memory significantly degrades due to 

reduced gap between adjacent threshold levels. To enhance 

the reliability of NAND Flash memories and sup- port longer 

lifetimes, combinations of hardware and software techniques  

are  used.  These include wear  leveling,  bad  block 

management and garbage collection. Wear leveling 

distributes the data to different physical locations so that all 

memory blocks are used approximately the same number of 

times [7]. Bad block management marks blocks once they 

show unrecoverable errors. 

While  these  Flash  management  techniques  increase  the 

life  time  of  Flash  memories,  they  are  not  good  at  

correcting soft  errors.  Error  correction  code  (ECC)  

techniques,  which can  detect  and  correct  errors  by  

storing  and  processing  extra parity bits, have now become 

an integral part of Flash memory design[9]. Single  error  

detection/correction  codes,  such  as Hamming codes, used 

to be sufficient to enhance the reliability of  single-level  cell  

(SLC)  Flash  memory  systems  [10].  In recent  years,  long  

linear  block  codes  with  high  error  correc- tion  capability  

are  used  because  the  single  error  correction capability  of  

Hamming  code  is  no  longer sufficient. The Bose-

Chaudhuri-Hocquenghem  (BCH)  code  and  its  subclass 

Reed-Solomon  (RS)  code  are  the  best-known  linear  

block codes  for  memories.  Pipelined  or  bit-parallel  BCH  

code  has been  used  in  [11]–[13].  Schemes  based  on  

concatenation  of BCH codes and trellis coding modulation 

(TCM) have recently been proposed in [14]. While they 

reduce the error correction burden of a single BCH code, 

they require five (instead of four) threshold  states  per  cell.  

ECC  based  on  RS  codes  have  been used  in  several  

commercial  MLC  Flash  memories  [15]–[17]. They  use  

plain  RS  codes  and  can  correct  up  to  24  errors  in 

512B, at the cost of larger hardware and coding latency. 

Clearly, higher  error  correction  capability  can  be  

achieved by using stronger BCH or RS codes. However, it is 

expensive both  in  terms  of  area  and  latency.  In  this  

paper  we  propose use of product codes which use smaller 

constituent codes along rows and columns and achieve high 

error correction capability due to cross parity checking. Such 

codes have lower hardware overhead and have been 

successfully used in embedded SRAM caches [18] and 

interconnection networks [19]. An important factor in 

deciding on the ECC scheme is error characterization  in  

terms  of  both  type  as  well  as  distribution of  errors. In 

current  Flash memories, the  error  distribution  is 

considered to be random. However with increased 

technology scaling, when the number of program/erase 

cycles is quite high, the probability of multiple bit upset 

(MBU) errors is likely to increase. This is because of the 

increased variation in threshold voltage which causes an 

increase in the probability of the long tailed  threshold  

voltage  distribution  crossing  over  to  the  adjacent voltage 

states. To take these effects into consideration, we study the 

performance of the ECC  schemes for two error models: fully 

random error model and hybrid error model with 90% 

random errors and 10% MBU errors. For these two error 

models, we present product code schemes that have better 

BER performance, lower area and smaller latency  than  

single  BCH  and  RS  codes  with  comparable  error 

correction capability. 

 

2.  INTRODUCTION 
Flash memory devices can be found almost 

everywhere today. They are lighter, faster and more shock 

resistant than traditional magnetic hard drives. As this 

technology scales and the storage density increases, data 

errors become more prevalent, making error correction 

coding critical for maintaining data integrity. The storage 

density of a Flash memory device is dependent on the 

number of discrete voltage levels the floating gate cell is 

capable of representing. In early generations, every memory 

cell could represent two voltage levels and thus store a 
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single bit (SLC). The demand for increased storage capacity 

has created the need to store more than a single bit per cell 

by simply representing more than two voltage levels. In this 

work, we follow the commonly adopted nomenclature and 

assume that multiple level cell (MLC) chips store multiple 

bits per cell, and that in particular triple level cell (TLC) 

chips store three bits per cell. 

Recently, the subject of error-correction coding for 

Flash memory has received significant attention. In [18], 

trellis coded modulation techniques were applied to Flash 

memory. In [13], the use of LDPC codes was investigated, 

and in [19] it was found that using soft information from 

multiple reads in the LDPC decoder lowered the error rate. 

In [9], algebraic error-correction codes were used for 

rewriting as well as for correcting errors. In [2], [5], [6], 

[12], codes that correct limited magnitude asymmetric errors 

were constructed. In [23], this model was extended to 

correct graded error patterns. In [17], constructions were 

given for single error-correcting codes that can correct 

limited magnitude errors in 2 directions. In [25], a different 

error model was considered where the likelihood of an error 

occurring was directly related to the value of the cell being 

programmed. The problem was to construct codes that 

maximized the size of a codebook given some fixed 

tolerable error probability.  

In [11] a novel method of encoding information 

was introduced that reduced the occurrence of errors during 

programming. The error model in this work is motivated by 

data collected from a TLC Flash device. As observed in 

[24], if the information from each Flash cell is interpreted as 

a triple-bit word, then the errors (referred to as graded bit-

errors) largely but not exclusively cause only a single bit in 

each word to change. From this observation, we suggest the 

use of a class of codes derived from tensor product codes 

[22] in the context of Flash memory. We refer to this class 

of codes as graded bit-error-correcting codes. The 

contribution of this work is to generalize the result of [24] 

to produce code constructions that correct errors that mostly 

have only a small number of bits in error for each cell-error. 

In fact, some of the proposed codes indeed end up having 

the same algebraic structure as generalized tensor product 

codes (cf. [10]). The novelty of this work is to show that for 

certain parameters of the constituent codes, such 

constructions can correct graded bit-errors. 

Tensor product codes were first introduced in [22] 

and were generalized to produce efficient binary codes in 

[10]. In [20], these constructions were revisited and an 

efficient method of encoding was provided. More recently, 

tensor product codes were used in the context of magnetic 

recording [3], [4]. In a concatenated coding scheme, the use 

of a tensor product parity code as the inner code was shown 

to offer the performance advantages of a short length parity 

code but without the associated rate penalty. In [1], tensor 

product codes were used in conjunction with soft iterative 

decoding methods to manage the size of the syndrome 

table. In this work, a new type of generalized tensor product 

codes, the graded bit-error-correcting codes, is developed. 

These codes are demonstrated to correct the errors that 

occur within a TLC Flash device. In particular, generalized 

tensor product codes are shown to delay the onset of errors 

longer than conventional coding schemes. Delaying the 

onset of errors is significant since the device can potentially 

be used for a longer period of time. 

 

 

3. ERROR MODELS 

 
3.1 Error sources 

There are many sources of errors in MLC Flash 

memories. Single event upset can be caused by charged 

particles due to sun activity or other ionization mechanisms 

[14]. Multi-bit upsets can occur due to a high-energy 

particle hitting at a low incident angle and striking many 

cells in a row. Furthermore, in MLC, the voltage window 

for threshold of each data state is smaller. Since all the 

programmed levels must be allocated in a predetermined 

sized voltage window, there is reduced spacing between 

adjacent programmed levels, making the MLC memories 

less reliable. Also, read/write operations in MLC memory 

can cause threshold voltage fluctuations, which 

inadvertently result in errors in consecutive bits [2]-[4]. 

Another important source of error is due to gradual 

charge leakage from the floating gate resulting in voltage 

shift in memory cells, ultimately resulting in a flip in the 

data stored in these cells. Blocks that have been erased 

many times have a shorter data retention life than blocks 

with lower erase/program cycles [2]-[4]. 

The number of errors due to program/erase wear 

out increases from 1* at 9000 cycles to 8* after 15000 

cycles for MLC Flash [2]. 

With increased number of program/erase cycles, 

the number of MBU errors also increase as demonstrated 

through these simulations. First, using the results in [3][17], 

we model the distribution with a continuous Rayleigh 

distribution. The variance of the distribution is assumed to 

be a function of number of program/erase cycles and 

increases when the number of program/erase cycles 

increases. Thus for even Gray coded data, larger variance 

would result in MBU errors. 

 

 
 

 

(a)                                      (b) 

 

Figure 1. (a) Raw BER and (b) MBU probability as a 

function of number of erase/program cycles. 

 

In order to determine the variance as a function of the 

number of program/erase cycles, we match the error rate of 
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our model with experimental results for MLC Flash memory 

in [2]. Then, we use curve fitting to extrapolate the results 

for higher number of erase/program cycles. Figure 1(a) 

shows the BER curve versus number of erase/program 

cycles. Note that when the number of erase/program cycles 

increases from 23K to 27K, the raw BER increases from 

2.2* to 4.0* . Figure 1(b) shows the MBU probability as a 

function of the number of program/erase cycles. This is 

approximately 2.3% at 40K erase/program cycles. Since the 

required endurance life time of NAND Flash memories is 

expected at least cycles [2], it is reasonable to expect that 

the burst error probability in MLC Flash will cross 10% 

towards the end of its rated lifetime. 

 

3.2  Error models 

We consider two error models: fully random error model 

and a model based on a mixture of random and MBU (or 

burst) errors. For burst errors, we assume that the probability 

of MBU decreases exponentially as the MBU size increases.  

 

3.3  Performance metrics 

We compare the different ECC schemes with respect to the 

following performance metrics: 

Redundancy rate: In an (n, k) linear block code, redundancy 

rate is (n-k)/n. Hardware area: Area of encoder and decoder 

in ECC block.Encoding/decoding latency: Time for 

encoding/decoding data in one page. Bit error rate (BER): 

Number of received bits that have been altered due to errors, 

divided by the total number of bits. 

  

 

 
Figure 2. MBU probability as a function of MBU size 

 

 

4. PRODUCT CODE ECC SCHEMES FOR 

FLASH MEMORY 

 
A. Product Code Scheme:  

Basics Product code is a technique to form a long 

length code with higher ECC capabilities using small length 

constituent codes. Compared to plain long length codes, it 

has high performance from cross parity check [25], and low 

circuitry overhead since the constituent codewords are of 

low error correction capability. 

 If code c1 has Hamming distance d1 and code c2 

has Hamming distance d2, the minimum weight of the 

product code is  exactly d1d2. Thus increasing the 

minimum weight of each code enhances the number of 

error patterns which can be corrected in the code array. 

Product code using single-error-correction codes in each 

dimension has been used in [18] and [19]. In [18], 8-bit 

even-parity code in both dimensions with bit interleaving 

has been used for SRAM caches of size 256 256 bits. In 

[19], 8-bit even-parity code has been used in 

interconnection networks. Both cases demonstrated the use 

of product codes for enhanced error correction 

performance. 

 In order to provide for high error correction  

capability in Flash memories, we propose to use a strong 

code with multiple error correction capability along at least 

one of the dimensions. Since data is stored along rows in 

memory, we propose to use stronger ECC along rows so 

that both random and burst errors can be dealt with 

efficiently. Furthermore, we choose a long codeword along 

this dimension to provide good coding performance. 

 We studied the performance of product codes 

based on BCH and RS codes. When long BCH/RS codes 

are used along the rows for high coding performance, for 

fixed page size, the length of the codeword along the rows 

is much shorter. Use of cyclic or linear block codes with 

multiple error correction capability along columns is an 

overkill and results in unnecessary hardware and latency 

overhead. So we choose Hamming codes along the 

columns; they have low overhead and provide enough 

coding gain for the product code based scheme. 

 
 

B. Product Code Scheme: Encoding and 

decoding 
Fig. 7(a) shows the encoding flow of the product code 

scheme, and Fig. 7(b) gives an example of the physical 

address mapping of RS (255, 247) +Hamming (72, 64) 

product code when the page buffer size is 16 kB. Note that 

the physical mapping is different for different product codes. 

We assume that the Flash controller has the capability to 

reallocate the storage space to support the different product 

codes. For the RS (255, 247)+ Hamming (72, 64) product 

code, during encoding, the RS encoder reads 247 

information bytes at a time and generates 8 bytes or 64 bits 

corresponding to row parity. The row parity bits are stored 

in the pre-allocated region in the page buffer. Next, the 

Hamming encoder operates on the information and row 

parity bits, and generates the column and cross parity bits. 

The information bits are read with a stride of 247* 8, and the 

row parity bits are read with a stride of 8 * 8. After column 

encoding, the column&cross parity bits are stored in the 

corresponding section of the page buffer. In the allocation 

shown in Fig. 7(b), there is 64B unused space which can be 

used to store the beginning address of the different data 

regions for the Flash controller. 

 

C.  I/O pins: 
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Fig.3 Input /output pins in flash memory 

By using I/O pins we can reduce the program cycles. 

We can also disable the I/O pins using enable option 

leaving the output as high impedance state. 

 

Fig.4. Programming cycles. 

 Hamming code RS code 

 Encode

r 

Decoder Encode

r 

Decoder 

Area 4939 4573 16710 15539 

Pow

er 

225.32 226.32 224.47 225.86 

 

Output Waveform Of Our Work: 
 

 

 

5. CONCLUSION: 

 Thus the method is found to be useful and efficient 

in error correcting in the product codes, We show that for 8 

and 16 kB page sized memories, regular product schemes 

achieve one decade lower BER when raw BER ranges from 

to compared to plain RS codes or BCH code with similar 

code length. A comparison of the area, latency, additional 

storage also show that product schemes have lower 

hardware and latency than plain RS codes. The bit error rate 

is further reduced by introducing I/O pins by which we can 

reduce the programming cycles. 
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