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Abstract—A multiple-input multiple-output (MIMO) radar 

systemsuse modulated waveforms and directive antennas to transmit 

electromagnetic energy into a specific volume in space to search for 

targets. This paper deals with thedesign of transmit beamspace matrix 

and DOA estimation for multiple-input multiple-output (MIMO) 

radar with colocated antennas.The design of transmit beamspace 

matrix is based on minimizing the difference between a desired 

transmit beampattern and the actual one while enforcing the 

constraint of uniform power distribution across the transmit array 

elements.Rotational invariance property is established at the transmit 

array by imposing a specific structure on the beamspace 

matrix.Semidefinite programming and spatial-division based design 

(SDD) are also designed separately. In MIMO radar systems, DOA 

estimation is an essential process to determine the direction of 

incoming signals and thus to direct the beam of the antenna array 

towards the estimated direction. This estimation deals with non-

adaptive spectral estimation and adaptive spectral estimation 

techniques. The design of the transmit beamspace matrix and spectral 

estimation techniques are studied through simulation.  

 

Keywords - adaptive and non-adaptive spectral estimation, 

Direction-of-arrival estimation,MIMO radar, Rotational Invariance 

property, , transmit and receive beamforming. 

 

I. INTRODUCTION 

A multiple-input multiple-output (MIMO) radar uses multiple 

transmit and receive antennas. The multiple antennas are used 

to transmit several linearly independent waveforms and 

receive the reflected signals. Normally, MIMO radar can 

achieve flexible spatial transmit beampattern design, high-

resolution spatial spectral estimates and significantly improve 

the parameter identifiability. In MIMO radar, direction of 

arrival parameter estimation problem is the most fundamental 

one [1]. Many DOA estimation techniques have been devel-

oped for the classical array processing single-input multiple-

output (SIMO) setup [1], [2]. Many new opportunities have 

been developed in MIMO radar only [3],[4]. Many works have 

recently been reported in the literature showing the benefits of 

applying the MIMO radar concept using widely separated 

antennas[5],[8]  as well as using colocated transmit and 

receive antennas respectively [9], [16].The closely spaced 

antennas can be optimized [5] to obtain several transmit 

beampattern designs with superior performance [6].As 

compared to the performance of SIMO radar [17], [18], 

MIMO radar having high signal to noise ratios and 

performance level of DOA estimation is also very high. The 

SNR gain for the traditional MIMO radar however, decreases 

as compared to the phased-array radar where the transmit 

array radiates a single waveform coherently from all antenna 

elements [12], [13]. Several transmit beamforming techniques 

[11],[12] have been developed to achieve transmit coherent 

gain in MIMO radar under the assumption that the general 

angular locations of the targets are known a priori to be 

located within a certain spatial sector .  

The major motivation for designing transmit beam-pattern is 

to achieve the high SNR value with increased aperture for 

improved DOA estimation [15], [23]. The performance of a 

MIMO radar system with a number of orthogonal waveforms 

less than the number of transmit antennas and with transmit 

beamspace design capability is better than the performance of 

a MIMO radar system with full waveform diversity and no 

transmit beam-forming gain. If the transmit beamspace can be 

properly designed, the RIP cannot break it. Normally, the RIP 

can be enforced at the transmitter side. However, the methods 

developed in [15] show that the transmit power distribution 

across the antenna array elements is not uniform, and the 

achieved phase rotations come with variations in the 

magnitude of different transmit beams that degrades the 

performance of DOA estimation at the receiver[20].The spatial 

spectral estimators and adaptive spatial spectral estimators are 

compared [15] for target detection and parameter estimation. 

The spatial spectral estimators include DOA using correlation, 

Maximum likelihood estimation and Least square estimation. 

The adaptive spatial spectral estimators include MUSIC 

algorithm, Capon and APES [22]. A MIMO radar technique is 

suggested to improve the radar resolution. The idea is to 

transmit M orthogonal coded waveforms and to receive the 

reflected N signals by antennas [23]. At each receiving 

antenna output, the signal is matched-filtered using each of the 

transmitted waveforms to obtain MN channels [24]. Normally, 

DOA estimation is an essential process to determine the 

direction of incoming signals and thus to direct the beam of 

the antenna array towards the estimated direction [25]. In 

DOA estimation using correlation technique, it is assumed that 

the transmitted signals (M) are corrupted by noise [26]. The 

maximum likelihood estimator can provide excellent 
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estimation accuracy of both target locations and target 

amplitudes in the single user [27]. In least squares estimation 

method is to estimate the complex amplitudes in 𝐵𝜃  for each 

𝜃 of interest from the observed data matrix x. This method 

suffers from high side lobes and low resolution [28]. In 

MUSIC is the abbreviated form of Multiple Signal 

Classification. It is dependent on the correlation matrix of the 

data. The capon estimator is one of the estimation techniques 

in adaptive spatial spectrum estimator [29]. The first step is a 

generalized capon beamforming step. The second step is LS 

estimator, which involves a matched filter to the known 

waveform s(𝜃). It is used to achieve interference and jamming 

suppression[30]. The abbreviated form of APES is Amplitude 

and Phase Estimation. This method is used to achieve better 

amplitude estimation accuracy.In [31], the transmit beamspace 

design for DOA estimation in MIMO radar with colocated 

antennas. This method is to design the transmit beamspace 

matrix based on minimizing the difference between a desired 

transmit beampattern and the actual one. The desired transmit 

beampattern can be of arbitrary shape and is allowed to consist 

of one or more spatial sectors. The RIP (Rotational Invariance 

Property) is established at the transmit antenna array by 

imposing a specific structure on the transmit beamspace 

matrix. Semidefinite programming (SDP) relaxation is used to 

achieve convex optimization problem that can be solved 

efficiently [32],[33]. It ensures that the magnitude response of 

the two transmit beams associated with one pair of transmit 

beams is exactly the same at all spatial directions, a property 

that improves the DOA estimation performance. Spatial-

division based design (SDD) which involves dividing the 

spatial domain into several subsectors and assigning a subset 

of the transmit beamspace pairs to each subsector [34].  

 

II. SIGNAL MODEL 

 Consider a MIMO radar system equipped with a 

transmit array of M colocated antennas and a receive array of  

N colocated antennas. The transmit and receive array are 

assumed to be closely located so that a target located in the 

far-field can be seen by both of them at the same spatial angle. 

The M transmit antennas are used to transmit M orthogonal 

waveforms. The complex envelope of the signal transmitted 

by the signal transmitted by the mth transmit antenna is 

modeled as 

 

𝑠𝑚  𝑡 =   
𝐸

𝑀
∅𝑚  𝑡 ,           𝑚 = 1, … . 𝑀         (1) 

 

wheretis the fast time index, i.e., the time index within one 

radar pulse, E is the total transmitted energy within one radar 

pulse, and ∅𝑚  𝑡  is the mth baseband waveform. Assume that 

the waveforms emitted by different transmit antennas are 

orthogonal. Also, the waveforms are normalized to have unit-

energy, i.e.,  𝜑𝑚 (𝑡) 2 dt = 1, m = 1, . . . ,M, where T is the 

pulsewidth. Assuming that L targets are present, the N × 1 

received complex vector of the receive arrayobservations can 

be written as 

x(t,𝜏) =   𝑟1 𝑡, 𝜏 𝑏 𝜃𝑙 + 𝑧(𝑡, 𝜏)𝐿
𝑙=1           (2) 

where𝜏is the slow time index, i.e., the pulse number, b(𝜃) is 

the steering vector of the receive array, z(t,𝜏) is N × 1 zero-

mean white Gaussian noise term, 

𝑟1 𝑡, 𝜏 =   
𝐸

𝑀
𝛼1(𝜏)𝑎𝑇(𝜃𝑙)𝜑(𝑡)           (3) 

 

is the radar  return due to the lth target. In (3), 𝛼1 𝜏 , 𝜃𝑙and 

a(𝜃𝑙) are the reflection coefficient with variance 𝜎𝛼
2, spatial 

angle, and steering vector of the transmit array associated with 

the lth target respectively.Exploiting the orthogonality 

property of the transmitted waveforms, the N × 1 component 

of the received data (2) due to the mth waveform can be 

extracted using matched-filtering which is given as follows 

 

𝑥𝑚  𝜏 =   𝑥(𝑡, 𝜏)𝜑𝑚
∗  𝑡 𝑑𝑡,     m=1,…..M         (4) 

 

where (·)
*
is the conjugation operator. Stacking the individual 

vector components (4) in one column vector, the MN × 1 

virtual data vector is obtained as, [3] 

 

𝑌𝑀𝐼𝑀𝑂  ≜  𝑥1
𝑇 𝜏 …𝑥𝑀

𝑇 (𝜏) 𝑇                                                   (5) 

= 
𝐸

𝑀
 𝛼1 𝜏 𝑎 𝜃𝑙 ∗ 𝑏 𝜃𝑙 + 𝑧 𝐿

𝑙=1  𝜏  

= 
𝐸

𝑀
 𝛼1 𝜏 𝑢𝑀𝐼𝑀𝑂  𝜃𝑙 + 𝑧 𝐿

𝑙=1  𝜏                         (6) 

The MN×MN covariance matrix 

𝑅𝑀𝐼𝑀𝑂 = 𝐸 𝑦𝑀𝐼𝑀𝑂 (𝜏)𝑦𝑀𝐼𝑀𝑂
𝐻 (𝜏) is hard to obtain in practice. 

Therefore, the following sample covariance matrix 

 

𝑅𝑀𝐼𝑀𝑂 =
1

𝑄
 𝑦𝑀𝐼𝑀𝑂 (𝜏)𝑦𝑀𝐼𝑀𝑂

𝐻 (𝜏)𝑄
𝜏=1          (7) 

is used, where Q is the number of snapshots. 

 

III. TRANSMIT BEAMSPACE BASED MIMO RADAR 

SIGNAL MODEL 

 

Let C ≜ [𝑐1 … . . 𝑐𝐾]be the transmit beamspace matrix of 

dimension M × K (K ≤M), where ckis the M×1 unit-norm 

weight vector used to form the kth beam. The beamspace 

matrix can be properly designed to maintain constant 

beampattern within the sector of interest and to minimize the 

energy transmitted in the out-of-sector areas. The kth column 

of C is used to form a transmit beam for radiating the 

kthwaveform∅𝑘 𝑡 . The signal radiated towards a hypothetical 

target located at a direction 𝜃 via the kth beam can be modeled 

as 

𝑠𝑘 𝑡, 𝜃 =   
𝐸

𝐾
 (𝑐𝑘

𝐻𝑎(𝜃))𝜑𝑘 𝑡             (8) 

where 
𝐸

𝐾
 is a normalization factor used to satisfy the 

constraint that the total transmit energy is fixed to E. The 

signal radiated via all beams towards the direction 𝜃can be 

modeled as 

s(t, 𝜃)=  
𝐸

𝐾
 𝑐𝐻𝑎 𝜃  

𝑇
𝜑𝑘(𝑡)           (9) 
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Then, the transmit beamspace can be viewed as a 

transformation that results in changing the M × 1 transmit 

array manifold a(𝜃) into the K × 1 manifold 𝑐𝐻𝑎 𝜃 .It is W 

worth noting that the waveforms transmitted antennas are then 

 

𝛹 𝑡 = 𝐶∗𝜑𝑘 𝑡             (10) 

At the receive array, the N × 1 complex vector of array 

observations can be expressed as 

𝑥𝑏𝑒𝑎𝑚  𝑡, 𝜏 =  
𝐸

𝐾
 𝛼1 𝜏  𝐶

𝐻𝑎 𝜃𝑙 𝜑𝐾 𝑡  ∗ 𝑏 𝜃𝑙 + 𝑧(𝑡, 𝜏)𝐿
𝑙=1  (11) 

By matched-filtering 𝑥𝑏𝑒𝑎𝑚  𝑡, 𝜏 to each of the waveforms 𝜑𝑘 (k 

= 1, . . . ,K), the received signalcomponent associated with 

each of the transmitted waveforms can be obtained as 

 

𝑦𝑘 𝜏 ≜  𝑥𝑏𝑒𝑎𝑚  𝑡, 𝜏 𝜑𝑘
∗ 𝑡 𝑑𝑡    

= 
𝐸

𝐾
 𝛼1 𝜏  𝑐𝑘

𝐻𝑎 𝜃𝑙  𝑏 𝜃𝑙 + 𝑧𝑘(𝜏)𝐿
𝑙=1                        (12) 

Where the K × 1 noise term is defined as 

𝑧𝑘 𝜏 =  𝑧 𝑡, 𝜏 𝜑𝑘
∗ 𝑡 𝑑𝑡           (13) 

Stacking the individual vector components (12) in one column 

vector, the followingKN × 1 virtual data vector is obtained as, 

𝑦𝑏𝑒𝑎𝑚  𝜏 ≜  𝑦1
𝑇 𝜏 …𝑦𝐾

𝑇(𝜏) 𝑇   

               = 
𝐸

𝑀
 𝛼1 𝜏 ((𝐶𝐻𝑎 𝜃𝑙 ) ∗ 𝑏 𝜃𝑙 + 𝑧 𝑘(𝜏)𝐿

𝑙=1      (14) 

where𝑧 𝑘(𝜏)is the KN × 1 noise term whose covariance is 

given by𝜎𝑧
2𝐼𝐾𝑁 . 

The transmit beamspace signal model given by (14) provides 

the basis for optimizing a general-shapetransmit beampattern 

over the transmit beamspace weight matrix C. By carefully 

designingC, the transmitted energy can be focused in a certain 

spatial sector, or divided between severaldisjoint sectors in 

space. As compared to traditional MIMO radar, the benefit of 

using transmitenergy focusing is the possibility to increase in 

the signal power at each virtual array element. 

This increase in signal power is attributed to two factors: 

(i) transmit beamforming gain, i.e., the signal power 

associated with the kth waveform reflectedfrom a target at 

direction 𝜃is magnified by factor  𝑐𝑘
𝐻𝑎(𝜃) 2 

(ii) the signal power associated with the kth waveform is 

magnified by factor E/K due to dividing the fixed total 

transmit power E over K≤M waveforms instead of M 

waveforms. 

 

IV. SPATIAL SPECTRAL ESTIMATOR 

   Three spatial spectral estimators for the proposed MIMO 

radar system are discussed. In spatial spectral estimator, to 

determine the theoretical limit on how well the directions of 

arrival can be estimated. The problem of spatial spectral 

estimator is to detect and locate radiating sources by using an 

array of passive sensors. The emitted energy is acoustic, 

electromagnetic and mechanical. The receiver sensors are 

hydrophones, antennas and seismometers. The basic approach 

of this estimator is to determine energy distribution over 

space. It is assumed that the number of incoming signals is 

known. The three techniques are described as correlation, 

maximum likelihood and LS estimator. 

 

A. DOA estimation using correlation 

In DOA estimation using correlation technique, is to 

determine the direction of arrival. The transmitted signals (M) 

are corrupted by noise. The equation can be written as 

X=  𝛼𝑚
𝑀
𝑚=1 S(𝜑𝑚 )+n          (15) 

The goal is to estimate𝜑𝑚 , m=1,……M. The easiest way to 

estimate the angles is through correlation. Therefore, the 

correlation method plots 𝑃𝑐𝑜𝑟𝑟 (𝜑) versus 𝜑 where 

𝑃𝑐𝑜𝑟𝑟 (𝜑) = 𝑆𝐻(𝜑)X                                                            (16) 

where𝑃𝑐𝑜𝑟𝑟 (𝜑) is a non-adaptive estimate of the incoming data. 

B. Maximum Likelihood Estimator 

The maximum likelihood estimator can provide excellent 

estimation accuracy of both target locations and target 

amplitudes in the single user. It is defined as the value of 𝜃 

that maximizes the likelihood function. The MLE for a vector 

parameter 𝜃 is the value maximizing the likelihood function 

which is now a function of the component of 𝜃. The MLE for 

a scalar parameter is defined to the value of 𝜃  that maximizes 

p(x; 𝜃) for x fixed, i.e., the value that maximizes the 

likelihood function. The maximization is performed over the 

allowable range of 𝜃. In many instances, to estimate function 

of 𝜃, the parameter characterizing the probability density 

function. The MLE of the transformed parameter is found by 

substituting the MLE of the original parameter into the 

transformation. This property of the MLE is termed as 

invariance property. The iteration may not converge. This will 

be particularly evident when the second derivative of the log 

likelihood function is small.  

Even if the iteration converges, the point found may not the 

global maximum but possibly only a local maximum or even a 

local minimum. Hence, to avoid these possibilities it is best to 

use several starting points and at convergence choose the one 

that yields the maximum. Generally, if the initial point is close 

to the global maximum, the iteration will converge to it. The 

importance of a good initial guess cannot be overemphasized. 

Here, generalize the vector n to be an interference vector, and 

in general, E[nn
H
]=Rn. Since this have two unknown 

parameter, the magnitude and DOA, the maximum likelihood 

estimator (MLE) is given by 

𝜑 , 𝛼 = max𝛼 ,𝜑 [𝑓𝑋
𝛼 ,𝜑(𝑋) 

],        (17) 

is the pdf of the data vector X given the parameters 𝛼, 𝜑. 

Assuming that the interference vector is complex Gaussian, 

𝑓𝑋
𝛼 ,𝜑(𝑋) 

=1/(𝜋𝑁det(𝑅𝑛 )𝑒− 𝑥−𝛼𝑠 𝐻𝑅𝑛
−1(𝑥−𝛼𝑠)                     (18) 

i.e., the maximization in equation (17), is equivalent to 

𝜑 , 𝛼 = min𝛼 ,𝜑 [ 𝑥 − 𝛼𝑠 𝐻 𝑅𝑛
−1(𝑥 − 𝛼𝑠) 

        =min𝛼 ,𝜑 [𝑥𝐻 𝑅𝑛
−1𝑥 − 𝛼𝑥𝐻𝑅𝑛

−1𝑠 − 𝛼∗𝑠𝑅𝑛
−1𝑥 +

                                                       𝛼∗𝛼𝑠𝐻𝑅𝑛
−1𝑠]                    19) 

Starting first with 𝛼 and differentiate with respect to 𝛼∗, while 

𝛼 as an independent variable, 
𝜕

𝜕𝛼∗ =𝑠𝐻𝑅𝑛
−1(x-𝛼𝑠) 

𝛼  = 𝑠𝐻𝑅𝑛
−1𝑥/𝑠𝐻𝑅𝑛

−1                         (20) 
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Using this value of 𝛼, 𝜑  can be written as 

𝜑 = max𝜑 [𝑃𝑀𝐿𝐸(𝜑)]  

   = max𝜑 [
 𝑆𝐻𝑅𝑛

−1𝑥 
2

𝑆𝐻𝑅𝑛
−1𝑆

]                        (21) 

The function 𝑃𝑀𝐿𝐸(𝜑) is the maximum likelihood estimate of 

the spectrum of the incoming data. For each signal, a new 

interference covariance matrix is required. Even is this matrix 

were known, for each a matrix inverse and finally a search are 

required to find where 𝑃𝑀𝐿𝐸(𝜑) reaches its maximum. 

C. Least Squares Estimation 

In the least squares approach, an attempt is made to minimize 

the squared difference between the given data and the actual 

signal. When the dimensionality of the vector parameter is not 

known, an order recursive least square approach can be useful. 

It computes the least squares estimator recursively as the 

number of unknown parameters increases.  This method is to 

estimate the complex amplitudes in 𝐵𝜃  for each 𝜃 of interest 

from the observed data matrix x. a simple way to estimate the 

value of 𝐵𝜃 , 

𝐵 𝐿𝑆,𝜃= [𝐴
𝐻 𝜃 𝐴(𝜃)]−1A(𝜃)X𝑠𝐻(𝜃)[𝑠(𝜃)𝑠𝐻(𝜃)]−1            (22) 

where (.)
H
 denotes the conjugate transpose. The performance 

of the LSE will undoubtedly depend upon the properties of the 

corrupting noise as well as any modeling errors. This method 

suffers from high side lobes and low resolution. 

 

V.ADAPTIVE SPATIAL SPECTRAL ESTIMATOR 

 The adaptive spatial spectral estimator has been classified into 

three types. They are MUSIC (Multiple signal classification) 

algorithm, Capon and APES (Amplitude and phase estimator). 

A. MUSIC algorithm 

MUSIC is the abbreviated form of Multiple Signal 

Classification. This method is applied with only minor 

modifications to the direction of arrival estimation problem. It 

is dependent on the correlation matrix of the data. Spectral 

forms of MUSIC can be used for arbitrary arrays. The data 

model is given by 

X=S𝛼 + 𝑛   (23) 

S=[S(𝜑1 , 𝑆(𝜑2), …… . , 𝑆(𝜑𝑚 )]       

(24)𝛼= 𝛼1 , 𝛼2, … . . 𝛼𝑚  𝑇                                                      (25) 

The matrix S is a M × 𝑁 matrix of the N steering vectors. 

Assuming that the different signals to be uncorrelated, the 

correlation matrix of X can be written as 

R = E[X𝑋𝐻]   (26) 

   = E[S𝛼𝛼𝐻𝑆𝐻] + E[n𝑛𝐻]   (27) 

   = SA𝑆𝐻+𝜎2I   (28) 

   = 𝑅𝑠+𝜎2I   (29) 

where𝑅𝑠= SA𝑆𝐻 the signal covariance matrix,𝑅𝑠 , is clearly a 

N× 𝑁 matrix with rank M. Let 𝑞𝑚 be such an eigen vector. 

Therefore,  

𝑅𝑠𝑞𝑚  = SA𝑆𝐻𝑞𝑚  = 0   (30) 

𝑞𝑚 SA𝑆𝐻𝑞𝑚  = 0   (31) 

𝑆𝐻𝑞𝑚 = 0   (32) 

Since the matrix A is clearly positive definite, Music plots the 

pseudo-spectrum. 

𝑃𝑀𝑈𝑆𝐼𝐶 (𝜑) = 
1

  𝑆𝐻 (𝜑)𝑞𝑚  
2𝑁−𝑀

𝑚 =1

 

               = 
1

𝑆𝐻 (𝜑)𝑄𝑛 𝑄𝑛
𝐻𝑠(𝜑)

 = 
1

 𝑄𝑛
𝐻𝑠(𝜑) 

2                             (33)  

B. Capon Estimator 

The capon method is a non-model based adaptive filter bank 

method, originally derived for processing of seismic signals. It 

can be applied both to time series analysis and array 

processing. The capon estimator is one of the estimation 

techniques in adaptive spatial spectrum estimator. The first 

step is a generalized capon beamforming step. The second step 

is LS estimator, which involves a matched filter to the known 

waveform s(𝜃). The shape of its frequency response properly 

changes during the spectral scan depending on the input 

signals. The generalized capon beam former can be formulated 

as 

min𝑊 𝑡𝑟(𝑊𝐻 𝑅𝑊)Subject to 𝑊𝐻A(𝜃) = I                          (34) 

where W∈ 𝐶𝑁×𝑁  is the weighting matrix used to achieve 

interference, and jamming suppression while keeping the 

desired signal undistorted, tr(.) denoted the trace of am matrix 

and 

𝑅 =  
1

𝐿
𝑋𝑋𝐻(35)  

𝑅 is the sample covariance matrix with L being the number of 

data samples. Solving the optimization problem, 𝑊 𝑐𝑎𝑝𝑜𝑛  can 

be denoted as 

𝑊 𝑐𝑎𝑝𝑜𝑛  = 𝑅 −1A(𝜃) 𝐴𝐻(𝜃)𝑅 −1𝐴(𝜃) 
−1

(36) 

The output of the capon beamformer can be written as 

 𝐴𝐻 𝜃 𝑅 −1𝐴 𝜃  
−1

𝐴𝐻 𝜃 𝑅 −1𝑋                                     

=𝐵𝜃𝑆 𝜃  𝐴𝐻 𝜃 𝑅 −1𝐴 𝜃  
−1

𝐴𝐻 𝜃 𝑅 −1                         (37) 

 

By applying LS method, the capon estimate of 𝐵𝜃  follows 

𝐵 𝑐𝑎𝑝𝑜𝑛 ,𝜃= 

 𝐴𝐻 𝜃 𝑅 −1𝐴 𝜃  
−1

𝐴𝐻 𝜃 𝑅 −1X𝑆𝐻(𝜃) 𝑆(𝜃)𝑆𝐻(𝜃) −1       (38) 

C. APES Estimator 

The abbreviated form of APES is Amplitude and Phase 

Estimation. It is one of the spectral analyses with superior 

estimation accuracy. Because of this method, easy to achieve 

better amplitude estimation accuracy. The APES method can 

be formulated as 

min𝑊 ,𝐵 𝑊𝐻𝑋 − 𝐵𝜃𝑆(𝜃) 2Subject to  𝑊𝐻𝐴(𝜃) = I  

 (39) 

where W is the weighting matrix. It can be represented as 

W∈ 𝐶𝑀×1.Minimizing the cost function in (39) w.r.t to 𝐵𝜃  

yields 

𝐵 𝐴𝑃𝐸𝑆 ,𝜃  = 𝑊𝐻𝑋𝑆𝐻(𝜃) 𝑆(𝜃)𝑆𝐻(𝜃) −1      (40) 

Then, the optimization problem reduces to 

Min tr(𝑊𝐻𝑄 𝑊) subject to Re{𝑊𝐻A(𝜃)} = I       (41) 

𝑄 =  𝑅 −
1

𝐿
𝑋𝑆𝐻 𝜃  𝑆(𝜃)𝑆𝐻(𝜃) −1𝑆(𝜃)𝑋𝐻 (42) 

Solving the optimization problem in (42) gives the APES 

beamformer weight vector 

𝑊𝐴𝑃𝐸𝑆 ,𝜃= 𝑄 −1A(𝜃) 𝐴𝐻(𝜃)𝑄 𝐴(𝜃) 
−1

                         (43) 

Sub equation (43) in (40) 

𝐵 𝐴𝑃𝐸𝑆 ,𝜃=  

 𝐴𝐻(𝜃)𝑄 −1𝐴(𝜃) 
−1

× 𝐴𝐻(𝜃)𝑄 −1X)𝑆𝐻(𝜃)  𝑆(𝜃)𝑆𝐻(𝜃) −1 
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                                                                                             (44) 

The difference between capon and APES estimator is that the 

sample covariance matrix  𝑅 .  

 

VI.SYSTEM ANALYSIS 

   Consider a MIMO radar system with M transmitting 

antennas and N receiving antennas respectively. Two modules 

were considered. The first module is transmitting beamspace 

matrix and other is DOA estimation in MIMO radar. Assume 

that the transmitting and receiving antennas are grouped into 

multiple sub arrays. Normally, the transmitted waveforms are 

linearly orthogonal to each other and the total transmitted 

power is fixed to be 1. 

   A MIMO radar system with one sub array for transmitting 

and receiving is assumed. The sub array is defined as each sub 

array having n number of antennas. In transmit beamspace, the 

target is located at 𝜃 =  10° and DOA, the three targets are 

located with the corresponding elements in  𝐵𝜃1,𝐵𝜃2  𝑎𝑛𝑑   𝐵𝜃3  

respectively. The Frobenius norm of the spatial spectral 

estimator of 𝐵𝜃  𝑣𝑒𝑟𝑠𝑢𝑠 𝜃, obtained by using Capon, APES 

and LS are given by figure 2, 3 and 4. 

VII.SIMULATION RESULTS 

   In this section,assume a ULA of M=10 and N=10 

omnidirectional antennas used for transmitting and receiving 

end. The additive noise is modeled as a complex Gaussian 

zero-mean spatially and temporally random sequence. The two 

targets are located at directions−30°and𝜃1 =  −10°. 

 
Fig.1 Transmit beampattern 

 

The SDD has the typical conventional beampattern with main 

lobe centered at 𝜃𝑠 while the MIMO radar has flat transmitting 

gain. The best achievable transmit beampattern is 

characterized by the aperture of the individual sub arrays. The 

reduction in the subarray aperture results has wider main beam 

and a little higher side lobe levels. 

    In DOA, comparison of the CRBs for MIMO radars with 

different antenna configurations and then present the detection 

and localization performance of the proposed methods.The 

least square method suffers from high side lobes and poor 

resolution problems.Due to the presence of the strong 

jamming signal, the LS estimator fails to work properly. It is 

one of the methods of spatial spectral estimator. The Least 

square estimator has been used in two and eight antennas. The 

capon method gives very narrow peaks around the target 

locations. It possesses excellent interference and jamming 

suppression capabilities. However, the capon estimates 

of 𝐵𝜃1,𝐵𝜃2  𝑎𝑛𝑑   𝐵𝜃3 are biased downward. It is one of the 

techniques in adaptive spatial spectral estimator. The APES 

(amplitude and phase estimator) method gives more accurate 

estimates around the target locations. Compare to capon, 

APES contain low resolution. A false peak occur at 

𝜃=10°   due to the presence of the strong jammer. 

 

MIMO with 2 antennas: 𝜃1 =  −40°, 𝜃2= − 20°   𝑎𝑛𝑑    𝜃3 =
0° 

 
Fig.2 a) Spatial spectra using LS 

 
Fig.2 b) Spatial spectra using capon 

 
Fig.2 c) Spatial spectra using APES 

Example 1: MIMO with 2 antennas- Consider the targets are 

located at  𝜃1 =  −40°, 𝜃2= − 20°   𝑎𝑛𝑑    𝜃3 = 0°. Based on 

least squares estimator, Capon estimator and APES estimator 

are to identify the target resolution. The spatial spectral 

estimator using least squares having poor resolution problems. 

In Capon, give better resolution effect compared to previous. 

Finally, the APES estimator having more accurate result 

around the target locations. 

 

MIMO  with 8 antennas:𝜃1 =  −40°, 𝜃2= − 20°   𝑎𝑛𝑑    𝜃3 =
0° 

Fig.3 a) Spatial spectra using LS 
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Fig.3 b) Spatial spectra using Capon 

Fig.3 c) Spatial spectra using APES 

 

MIMO with 8 antennas:𝜃1 =  −40°, 𝜃2= − 30°   𝑎𝑛𝑑    𝜃3 =
−20° 

 
Fig.4 a) Spatial spectra using LS 

 
Fig.4 b) Spatial spectra using capon 

 
Fig.4 c) Spatial spectra using APES 

Example 2: MIMO with 8 antennas-This paper considers the 

targets are located at 𝜃1 =  −40°, 𝜃2= − 20°   𝑎𝑛𝑑    𝜃3 = 0°  . 

The resolution is poor for least squares estimation. The other 

results are also similar in nature. Consider the targets are 

located at  𝜃1 =  −40°, 𝜃2= − 30°   𝑎𝑛𝑑    𝜃3 = −20° . In this 

case, the identification of target to be difficult in nature.From 

figure 2,3, 4 show that the spectral estimation results for 2, 8 

and 8 antennas in the transmitter and receiver. Figure 2(a), 3 

(b) and 4 (c) show the results of Least Square estimator. 

Figure 2 (a), 3 (b) and 4 (c) show the results of Capon 

estimator. Figure 2 (a), 3 (b) and 4 (c) show the results of 

APES estimator. From figure 4, it is observed that when the 

targets are very close these spectral estimators are not able to 

find the direction of arrival. 

VIII.CONCLUSION 

The design of transmit beamspace matrix and DOA estimation 

has been studied. The essence of the proposed method is based 

on minimizing the difference between a desired transmit 

beampattern and the actual one. Rotational invariance property 

was established at the transmit array by imposing a specific 

structure on the beamspace matrix. Spatial spectral estimators 

are discussed for direction of arrival estimation in MIMO 

Radar. Non adaptive estimation techniques such as Correlation 

method, Maximum likelihood estimation and Least Squares 

estimation techniques are discussed. Adaptive techniques such 

as MUSIC, Capon and Apes are also considered.  The 

performance of transmit beampattern and Least Squares, 

Capon and Apes methods are studied through simulation using 

MATLAB. It is observed that the Capon method gives very 

narrow peaks around the target locations. The APES method 

gives more accurate estimates around the target locations but 

its resolution is worse than that of Capon. 
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