
International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.182-189

182

High Performance Error Detection and Correction for
Memory Applications using Majority Logic

Decoder and Detector

1 Dhanasekaran S.G

PG Scholar/Department of ECE

Karpagam University, Coimbatore, India

2 Mahendra Babu G.R

Assistant Professor/Department of ECE

Karpagam University, Coimbatore, India

Abstract—The Error-Detection and Correction method for

Difference-Set Cyclic Codes with Majority Logic Decoder and

Detector is to be present in this project. Majority logic decodable

codes are suitable for memory applications due to their capability

to correct a large number of errors. They require a large

decoding time that impacts memory performance. The fault-

detection method significantly reduces memory access time when

there is no error in the read data. This technique using the

majority logic decoder itself to detect errors, it makes the area

overhead minimum and keeps the extra power consumption low.
Index terms - Low-density Parity Check (LDPC), Error

Correction Codes (ECCs), Difference Set-Cyclic Codes, Block

codes, Majority logic, Memory.

I. INTRODUCTION

The impact of technology scaling small in dimensions,

high combination densities, and low operating voltages which

has come to a level that reliable of memories is put to

difficulty, not only in excessive radiation environment like

spacecraft and avionics electronics, but also at normal

terrestrial environments. Especially, SRAM memory failure

rates are increasing drastically, so posing a foremost reliable

concern for many applications. Some commonly used

mitigation techniques are:

• Triple modular redundancy (TMR)

• Error correction codes (ECCs).

TMR is a special case of the von Neumann method

consisting of three versions of the designs in corresponding,

with a majority voter select the exact output. As the technique

suggest the complexity is overhead would be three times plus

the complexity of the majority voter and thus increasing the

power consumption [1].

For memories, it turned out that ECC codes are best way

to mitigate memory soft errors. For terrestrial radiation

environments where there is a lowsoft error rate (SER), codes

like single error correction and double error detection (SEC–

DED) are a good result, due to their small encoding and

decoding complexity. However, as a consequence of

augmenting integration densities, there is an increase in the

number of soft errors and which produce the require for high

error correction capabilities. The usual multierror correction

codes, such as codes are Reed–Solomon (RS) or Bose–

Chaudhuri– Hocquenghem (BCH) are not suitable in favor of

this task. The reason is that they utilize more sophisticated

decoding algorithms, like complex algebraic (e.g., floating

point operations or logarithms) decoders that can decode in

unchanging time, and simple for graph decoders, to use for

iterative algorithms. Among the ECC codes that meet the

requirements of higher error correction capability and low

decode complexity, the cyclic block codes have been

recognized as good candidate, suitable to their property of

majority logic (ML) decodable [2]. A subgroup of the low-

density parity checks (LDPC) codes, which belongs to the

family of the ML decodable codes. In this paper, we will focus

on one specific type of LDPC codes, namely the difference-set

cyclic codes (DSCCs), which is widely used in the Japanese

teletext system or FM multiplex broadcasting systems.

The main reason for using ML decoding is that it is very

simple to implement and thus it is very practical and has low

difficulty [1]. The disadvantage of ML decoding is for a

coded word of -bits, it takes cycles in the decoding

progression, posing a large impact on system output. One way

of coping with this problem is to implement parallel encoders

and the decoders. This result would especially increases the

complexity and the power consumption. The most of the

memory read access will without errors, and the decoder is

majority of the time functioning without reason. This will have

motivate the uses of a error detector module that checks if the

codeword contains an error and then triggers the correction

mechanism accordingly. In this case, only the faulty code

word needs correction, and as a result the average reading

memory accessing is speed up, by the expense of increased in

hardware cost and the power utilization.

A related proposal have been obtainable in for the case of

flash memories. The simplest way to implement a fault

detector for an ECC is by calculates syndrome, however this

in general implying adds another very complex functional unit

[2]. This paper explores the idea of using the ML decoder

circuitry as a fault detector so that read operations are

accelerated with almost no additional hardware expenses. The

results show that the properties of DSCC-LDPC enable

efficient fault detection.

II. EXISTENT MAJORITY LOGIC DECODING (MLD) SOLUTION

 MLD is based on a number of parity check equations

which are orthogonal to each other, so that, at each iteration,

each codeword bit only participates in one parity checks

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.182-189

183

equation, apart from the very first bit which contribute to

every equations. For this motive, the majority results of these

parity check equations decide the correctness of the current bit

under decoding [1] .

 Fig. 1. Block Diagram of the MLD System

MLD was first mentioned for the Reed–Muller codes.

Then, it was extended for all types of systematic linear block

codes that can be totally orthogonalized on each codeword bit.

A generic schematic of a memory system is depicted into

Fig.1, as using of an ML decoder. primarily, the data words

are encoded and then stored within the memory. After the

memory is reads, the code words are fed through the ML

decoder before sent to the output for additional processing.

During this decoding processing the data words are corrected

from all bit-flips that it might have suffered while being stored

in the memory.

There are two ways for implementing these type of

decoder. The first one is mentioned as the Type-I ML decoder,

it determines upon XOR combinations of the syndrome, which

bits need to be corrected. The second one is the Type-II ML

decoder that calculates directly out of the codeword bits the

information of correctness of the current bit under decoding.

Both are quite similar but when it comes to execution Type-II

use lesser area, while it is not calculate the syndrome as an

intermediate step. Therefore, this paper focuses only on this

one.

A. Plain ML decoder

 The ML decoder is a simple and powerful decoder,

capable of correcting multiple random bit-flips depending on

the number of parity checking equations [1]. It is consisting of

four parts: 1) cyclic shift register; 2) XOR matrix; 3) majority

gate; and 4) XOR for correcting the codeword bit under

decoding. The input signal is initially stored into the cyclic

shift register and shifted through the entire taps. The

transitional values in each taps are then used to calculate the

results of the check sum equations from the XOR matrix. In

the cycle, the result has reached the final tap, producing the

output signal. As stated before, input might correspond to

wrong data corrupted by a soft errors. To handling in this

situations the decoder will act as follows. Then after the initial

step, where the code word is loaded into a cyclic shift register

and the decoding started through calculates the parity check

equations hard wired in the XOR matrix.

The resulting sums are then forwarded to the majority

gate for evaluating its correctness [9]. If the number of 1’s

received in is greater than the number of 0’s, which would

mean that the current bit under decode value is wrong and the

signal to correct which would have been triggered. If not, the

bits under decoding will be correct and no extra operations

will needs on it. Then the next step the contents of the register

is rotated and the above procedure is repeated until all

codeword bits have processed. As a final point, the parity

checks sum must be zero if the codeword has been correctly

decoded. The whole algorithm is depicted in Fig.2. The

previous algorithm needs as many cycles as the number of bits

in the input signal, which is also the number of taps, in the

decoder. This is a big impact on the performance of system,

and depending on the size of the codeword. The example of a

code words of 15 bits, then the decoding would takes 15

cycles, as would be extreme for most applications.

B. Plain MLD with Syndrome Fault Detector (SFD)

In order to improve the decoder performance, alternative

designs may be used [1]. One possibility is to add a fault

detector by calculating syndrome, therefore as only faults code

word is decoded. Since most of the code words will be error-

free, M no further correction will be required, and thus the

result will not be affected. Although the implementation of an

SFD reduces the average latency of the decoding process, it

also adds complexity to the design.

The SFD is an XOR matrix that calculates the syndrome

based on the parity checking matrix. Every parity bits result in

to syndrome equation. Thus, the complexities of the syndrome

calculator increases with the size of the codes. The error code

words are detected while at least one of the syndrome bits is

“1.” This triggers the MLD to starts the decoding process as

explained before. On the otherwise, if the code words are

error-free, then it was forward directly into the output, thus

saving the correction cycles. In this way, the performance is

improved in exchange of an additional module in the memory

system: a matrix of XOR gates to resolve the parity checking

matrix and the each check bits result into the syndrome

equations. This is finally result into a quite complexity module

with a huge amount of extra hardware and the power

consumption in the system.

C. ML Decoder/Detector

This section presents a ML decoder that improves the

designs existing earlier. Initially from the original design from

the ML decoder, the proposed ML detector/decoder (MLDD)

has been implemented using the difference-set cyclic codes

(DSCCs).The Fig.2 shows the memory system schematics of

an MLDD [1].

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.182-189

184

Fig. 2. Memory system Schematics of an MLDD.

This code is part of LDPC codes based on its attributes,

and they contain the following properties:

• To correct the large numbers of error;

• Sparse encoding, decoding and checking circuits

synthesizable into simple hardware;

• Modular encoding and decoding blocks that allows

an efficient hardware implementation;

•Logical code structures for clean partitioning of

information and code bits in the memory.

An important thing about the DSCC is that its

systematical distribution allows the ML decoder to perform

error detection in a simple way, using parity check sums [9].

The problem is in those cases with an even numbers of the bit-

flips, wherever the parity checking equations will not detect

the error. In this situation, the use of a simple error detector

based on parity check sums does not seem feasible, since it

cannot handle “false negatives”. But, the alternative should be

derive all data to the decoding process, with a large

performance overhead. Since performance is important for

most of applications and we would have selecting the

intermediate solutions, which would provided a high reliability

with a small delay penalty for scenarios where up to five bit-

flips may be expected. The ML Decoding Process is control

by the control unit shown in Fig.3.

Fig. 3. Schematics of control unit

This proposal is one of the main contributions of this

article, and it will be based on the following assumption:

Given a word read from a memory protected with the DSCC

codes, and they affected by capable of five bit-flips, the entire

errors can be detects only in three decoding cycles. This is a

huge improvement over the simpler case,

Fig. 4. Flow Diagram for ML Algorithm

where decoding cycles are needed to guarantee that errors are

detected. The flow diagram of ML algorithm is shown in

Fig.4. The proof of this hypothesis is very complex from the

mathematical approach. As a result two alternatives have used

inorder to proves it, which are specified here.

• During simulation in which comprehensive

experiments have been conducted, to effectively verify that the

hypothesis applies.

•A simplified mathematical proofs of the particular case

of two bit-flips affecting a single word.

For simplicity, and since it is convenient to first describe

the preferred designs, lets us assumes that the assumption is

true and that only three cycles are needed to detect all errors

affecting up to five bits. In general, the decoding algorithm is

still the same as the one in the plain ML decoding version. The

variation is that instead of the decoding all codeword bits by

processing the ML decoding during cycles, the proposed

method stops intermediate. If in the first three cycles of the

decoding process, the evaluation of the XOR matrix for all is

“0,” the codeword is determined to be error-free and

forwarded directly to the output. If they contain in any of the

three cycles at least a “1,” the proposed method would

continue the whole decoding process in order to eliminate the

errors.

The basic ML decoder with an tapped shift registers is an

XOR array to be calculates the orthogonal parity check sums

and a majority gate for deciding if the current bit under

decoding needs to be inverted. i) the control unit which

triggers a finish flag when no errors are detected after the third

cycle and ii) the output tristate buffer. The output of tristate

buffer is always in high impedance unless the control unit

sends the finish signal so that the current values of the shift

register are forwarded to the output.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.182-189

185

 The control unit manages the detecting the process. They

used a counters that would be counting upto three bit-flips,

which compares the first three iterations of the ML decoding.

In these first three iterations, the control unit evaluates the by

combining them with the OR’1’ functions. Its values are fed

into the three stage shift registers, it holds the outcome of the

final three cycles. During the third cycle the OR’2’ gate

evaluate the content of the detection in registers. once the

result is “0,” the FSM sends out the finish signal indicating

that the processed word is error-free. In the other case, if the

result is “1,” the ML decoding process runs until the end

Point. This is clearly provides a performance of improvement

respected to the conventional method. It is very easy to

implement the design using VHDL code for MLDD

improvement.

III. PROPOSED PARALLEL MAJORITY LOGIC DECODER AND

DETECTOR (MLDD) SOLUTIONS

A. Parallel MLDD

The decoding process of the MLD can also be

implemented in a parallel manner. The Fig. 5. shows the block

diagram of parallel MLDD using sorting networks. Like this,

the decoding is speeded-up showing a similar speed to the

serial ML decoder. Its schematic diagram implementation is

illustrated in Fig.6. Herein, all codeword bits are decoded at

the same time by having for each codeword bit a parity check

equation, a MG and a correction unit. Here encoder is

encoding the output to the shift registers, and the shift register

shifted the each parity bits, then shifted values send to the

Fig. 5. Block Diagram of Parallel MLDD using Sorting Networks

Parity check equations using XOR function for 15 parity

checks, and it gives to the majority gate for reducing the gates

using sorting network, then if any error is detected goes to

XOR operations, so error is now corrected using Parity check

sums.

B. Majority Gate (MG)

The MG is responsible for evaluating the parity

checksums and deciding upon the correctness of the current

BUD. Traditionally, the implementation complexity of the

MG could grow exponentially with the number of inputs

added. To tackle this complexity issue, presented a MG based

on sorting networks.

A modified version to handle eight parity checksums of

MG based on sorting networks has been implemented as

depicted in Fig. 7. These Majority Gate is used to number of

parity check sums and it is gives the output to the shift

registers.

Fig. 6. Schematic Diagram of Parallel MLDD Circuit

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.182-189

186

Fig.7. (i) Basic Comparator Structure, (ii) Comparator using Sorting

Network, (iii) 8 bit Majority Gate using Sorting Network.

C. Synthesis Results

This subsection is divided into two parts. The first one

discusses and compares the resource occupation and the

implementation efficiency of all three decoder structures. The

second part gives an evaluation of the performance matrics

obtained from the timing synthesis.

D. Resource usage

The synthesis report of the resource occupation of the

three decoders has been documented in next Chapter. The

table also includes the relative values comparing the MLDD

and Parallel MLDD next to the absolute values of the resource

usage. At first it has to be mentioned that the MLD decoders

had to be modified for fault injection with FLIPPER resulting

in an overhead of Flip-Flops (FF) / Latches. This overhead

will have little impact onto the overall slice usage. The reason

for this is because both MLDs have sufficient combinational

logic complexity. The ASIC results for both OS-MLDs have

been retrieved without the extra FFs required for the FLIPPER

platform. The remaining overhead is explained by the

employed DSCC which is an original 15 word length is

shortened.

However, internally it calculates with 15 bits and besides,

the serial MLD requires FFs for its finite state machine (FSM).

This is also the reason why the parallel version requires fewer

FFs than the serial one. When comparing again the

combinational logic of the Serial MLD to the parallel MLD

the Speedup time is increased, the delay time is decreased. So

the implementation of the combinational logic in Parallel

MLD is much more efficient.. The locator needs to check if

the syndrome matches a value that corresponds to a single

error.

E. Timing performance

The maximum clock frequency reported from the timing

synthesis for the three implemented decoders are summarized

in next section and including also the throughput of each

design. The serial MLD requires 15 cycles for decoding one

codeword and hence its throughput is proportionally low. On

the other hand, the parallel MLD have the same throughput of

one third. The timing synthesis report reveals that the serial

MLD have high maximum clock frequency results.

Based on the parallel implementation of combinational

logic of the MLD, the parallel version has a maximum clock

frequency which is more than four times higher compared to

the serial version. For the cases of high-throughput

requirements or where the resource occupation is a soft design

constraint, the parallel MLD is a good option since it is has a

throughput of 14 times better than the serial version and can

be implemented with much higher clock frequency.

IV. RESULTS AND DISCUSSION

In this project we have developed a software to detect the

Majority Logic Fault error in Memory applications. An

important final comment is that the area overhead of the

MLDD actually decreases with with respect to the plain MLD

version. For large values of both areas are practically the

same value. The reason of this is that the error detector in the

MLDD has been designed to be independent of the size code.

The opposite situation occuring with these SFD technique that

uses syndrome calculation to perform error detection: its

complexity grows quickly when the code size increases. One

of the problems to make the MLDD module independent of

has been the mapping of the intermediate delay line values to

the output signals.

The reason is that this module behaves in two different

ways depending if the processed word is error or correct. Then

if it is correct its outputs are driven after third cycle and that

the word has been shifting three positions in the line registers.

Then if it is not correct value the word has to be fully

decoded, what implies being shifted positions. Then some kind

of multiplexing logic would be needed to reorder the bits

before mapping them to the output.

 However, the area of this logic would grow with linearly.

After this, the output bits are coherent in all situations, not

needing multiplexing logic. We have developed a vhdl

codlings using CADENCE software(ncsim:09.20-p007) and

Xilinx software. Comparing the failure rates for the decoders,

the serial OS-MLD would seem to be the one showing the best

soft error resilience and the parallel MLD the worst one.

However, these failure rates do not include the resource usage

of these designs. However, these failure rates do not include

the resource usage of these designs.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.182-189

187

Fig. 8. Simulation Output MLDD without Error

The Fig. 8 shows the simulated output waveform of

MLDD without error.

Fig. 9. Simulation Output MLDD with Error orrection

The difference sets of code lengths are calculated as the

equation (1), Here given a size N, all combinations of four bit-

flips on a word will be calculating, in order to study all of the

possible case. Therefore the number of combinations is given

by,

where M is the number of bit-flips shown in Table I.

 TABLE I

DSCC LENGTHS

N Bits Data bits Parity Bits

15 7 8

The number of combinations can be seen in Table II for

different values of N with double and quadruple errors. Here

we used in seven data bits and the eight parity bits.

The number of combinations are listed in table II. As

expected, increasing the code length implies an exponential

growth of the number of combinations of the computational

time. All combinations in Table II have been simulates, then

the results can be seen in Tables III. Here the exising method

and the Proposed method is compared.

TABLE II
NUMBER OF COMBINATIONS FOR BIT-FLIPS WITH DIFFERENT

CODE LENGTHS

PARAMETERS
Existing

Method

Proposed

Method

M 4 4

N 15 15

No. of

Combinations
4896 13824

Table III shows the results for the case of four bit-flips.

These results confirm that with only one decoding cycles after

the detection method is covering more than 90% of the error

patterns for all. The second cycle of MLDD increases the

percentage of detection and after the third one, 100% of the

errors are detected. The performance of the proposed design

MLDD is much faster than the plain MLD version shown in

Table III.

TABLE III
SPEED-UP OF THE PROPOSED MLDD FOR ERROR FREE

CODEWORDS

PARAMETERS
Existing

Method

Proposed

Method

N 15 15

ML

Detection
5 5

Speed (ns) 7.189 2.872

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.182-189

188

To study this, the two designs have been implemented in

VHDL and synthesized, for different values of N, using the

Cadence and the Modelsim library. The obtained results are

depicted, in number of equivalent gates, listed in Table IV.

TABLE IV
SYNTHESIS RESULT OF THE DIFFERENT CODE LENGTHS

In a real situation, a fraction of the words would having

bit-flips. These fraction is representing from by the WER.

Since MLDD needs five cycles to handle correct words and

N+5 for erroneous words, the average performance would be ,

MLDD Performance = (1-WER).5+WER.(N=5) (2)

Using these expression and the performance of the three

techniques has been studied for different values of the WER

and it is used to calculate the area overhead for different code

lengths.

Fig. 10. Speed-Up of Proposed MLDD

This differences are even smaller for larger values of an

WER. The WER compares Speed-Up for Existing and

Proposed system shown in Fig. 10. It us used for the best

performance is given.

V. CONCLUSION

In this paper, a error detection mechanism, they Parallel

MLDD has been presented based on the ML decoding used to

the DSCCs. The exhaustive simulation test, the result shows

that the proposed technique is able to detect any pattern of up

to five bit-flips in the first three cycles of the decoded process.

This will improving the performances of the design with

respect to the traditional MLD approach. Otherwise, the

Parallel MLDD error detector module has been designed in a

way that is independent of the codeword size. This would

makes its area overhead is quite reduced compared with other

traditional approaches such as the syndrome calculation

(SFD). In addition, a theoretical proof of the proposed MLDD

scheme for the case of double errors has to be presented. The

expansion of the proofs to the case of four errors would

confirm the validity of the MLDD approach for a more general

cases and something that only has been done throughout

simulation in this paper. This is an interesting problem for

future researches. The applications of the proposed techniques

to memories that use scrubbing is also an interesting topic and

was in fact the original motivation that led to the Parallel

MLDD scheme.

 ACKNOWLEDGEMENT

The authors would like to thank some of their anonymous

friends for their helpful suggestions in the development of

these ideas.

 REFERENCES

[1]. S. Liu, J. A. Maestro, and P. Reviriego, (2012) “Efficient
Majority Logic Fault Detection With Difference-Set Codes for
Memory Applications”, IEEE Trans. Very Large Scale
Integration Systems, Vol. 20, No.1.

[2]. Pedro Reviriego, Mark F. Flanagan, Shih-Fu Liu, and Juan
Antonio Maestro, Member,(2012),“Error-Detection Enhanced
Decoding of Difference Set Codes for Memory Applications”,
IEEE Trans. Device Mater. Reliability, Vol. 12, No. 2, pp. 397–
404.

[3]. P. Ankolekar, J. Bredow, R. Isaac, and S. Rosner, (2010)
“Multi-bit Error Correction Methods for Latency-contrained flash
memory systems”, IEEE Trans. Device Mater. Reliability, Vol.
10, No. 1, pp.33–39.

[4]. M. A. Bajura et al, (2007) “Models and Algorithmic Limits for an
ECC Based Approach to Hardening Sub-100-nm SRAMs”,
IEEE Trans. Nucl. Science, Vol. 54, No. 4.

[5]. M. Basoglu, M. Erez, L. Kaplan, I. Lee, M. Sullivan, D. H.
Yoon, and (2011), “Survey of Error and Fault Detection
Mechanisms”, The University of Texas at Austin 1 University
Station (C0803) Austin, Texas 78712-0240,TR-LPH-2011-002.

[6]. R. C. Baumann and Fellow, (2005) “Radiation-Induced Soft
Errors in Advanced Semiconductor Technologies”, IEEE Trans.
Device Mater. Reliability, Vol. 5, No. 3.

[7]. S. K. Chilappagari, and B. Vasic, (2007) “An Information
Theoretical Frame Work for Analysis and Design of Nanoscale
Fault-Tolerant Memories Based on Low-Density Parity- Check
Codes”, IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 54,
No.11, pp.2438-2446.

PARAMETERS
Existing

Method

Proposed

Method

N 15 15

MLDD 47 47

Area Overhead

(%)
27 12.5

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.182-189

189

[8]. J. Draper, and R. Naseer, (2008) “DEC ECC Design to
Improve Memory Reliability in Sub-100 nm Technologies”, in
Proc. IEEE ICECS, pp.586-589.

[9]. A. DeHon and H. Naeimi, (2009) “Fault Secure Encoder and
Decoder for NanoMemory Applications”, IEEE Trans. Very
Large Scale Integration Systems, Vol. 17, No. 4.

[10]. S. Ghosh and P. D. Lincoln, (2007) “Low Density Parity Check
Code for Error Correction in Nanoscale Memory”, SRI Comput.
Sci. Lab. Tech. Rep. CSL-0703.

[11]. J. von. Neumann, (1956) “Probabilistic Logics and

Synthesis of Reliable Organisms from Unreliable

Components”, Automata Studies, pp. 43-98.

[12]. C.W.Slayman, (2005) “Cache and memory error detection,

correction, and reduction techniques for terrestrial servers and

workstations”, IEEE Trans. Device Mater. Reliability, Vol. 5,

No. 3, pp. 397–404.

AUTHORS PROFILE

Dhanasekaran S.G received the B.E.

Electrical and Electronics Engineering in

Sri Muthukumaran Institute of

Technology, Chennai, Affiliated to Anna

University Chennai and M.E. VLSI

Design Final year pursuing in Electronics

and Communication Engineering from

Karpagam University, Coimbatore, India in 2010 and 2013,

respectively. He is currently researching in the field of Digital

Design and Low Power CMOS VLSI Design.

Mahendra Babu. G.R received the B.E.

degree in Electronics and Communication

Engineering from Trichy Engineering

College, Trichy and M.E. degree in

Embedded System Technology from Anna

University of Technology, Coimbatore in

2005 and 2010 respectively. He is currently

an Assistant Professor in the Department of Electronics and

Communication Engineering, Karpagam University,

Coimbatore, India. He has published many papers in national

and international conferences. His current research interest

includes engineering topics in VLSI and Embedded Systems

.

