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Abstract—The Error-Detection and Correction method for 

Difference-Set Cyclic Codes with Majority Logic Decoder and 

Detector is to be present in this project. Majority logic decodable 

codes are suitable for memory applications due to their capability 

to correct a large number of errors. They require a large 

decoding time that impacts memory performance. The fault-

detection method significantly reduces memory access time when 

there is no error in the read data. This technique using the 

majority logic decoder itself to detect errors, it makes the area 

overhead minimum and keeps the extra power consumption low. 
Index terms - Low-density Parity Check (LDPC), Error 

Correction Codes (ECCs), Difference Set-Cyclic Codes, Block 

codes, Majority logic, Memory. 

I. INTRODUCTION 

The impact of technology scaling small in dimensions, 

high combination densities, and low operating voltages which 

has come to a level that reliable of memories is put to 

difficulty, not only in excessive radiation environment like 

spacecraft and avionics electronics, but also at normal 

terrestrial environments. Especially, SRAM memory failure 

rates are increasing drastically, so posing a foremost reliable 

concern for many applications. Some commonly used 

mitigation techniques are: 

• Triple modular redundancy (TMR) 

• Error correction codes (ECCs). 

TMR is a special case of the von Neumann method 

consisting of three versions of the designs in corresponding, 

with a majority voter select the exact output. As the technique 

suggest the complexity is overhead would be three times plus 

the complexity of the majority voter and thus increasing the 

power consumption [1].  

For memories, it turned out that ECC codes are best way 

to mitigate memory soft errors. For terrestrial radiation 

environments where there is a lowsoft error rate (SER), codes 

like single error correction and double error detection (SEC–

DED) are a good result, due to their small encoding and 

decoding complexity. However, as a consequence of 

augmenting integration densities,   there is an increase in the 

number of soft errors and which produce the require for high 

error correction capabilities. The usual multierror correction 

codes, such as codes are Reed–Solomon (RS) or Bose–

Chaudhuri– Hocquenghem (BCH) are not suitable in favor of 

this task. The reason is that they utilize more sophisticated 

decoding algorithms, like complex algebraic (e.g., floating 

point operations or logarithms) decoders that can decode in 

unchanging time, and simple for graph decoders, to use for 

iterative algorithms. Among the ECC codes that meet the 

requirements of higher error correction capability and low 

decode complexity, the cyclic block codes have been 

recognized as good candidate, suitable to their property of  

majority logic (ML) decodable [2]. A subgroup of the low-

density parity checks (LDPC) codes, which belongs to the 

family of the ML decodable codes. In this paper, we will focus 

on one specific type of LDPC codes, namely the difference-set 

cyclic codes (DSCCs), which is widely used in the Japanese 

teletext system or FM multiplex broadcasting systems. 

The main reason for using ML decoding is that it is very 

simple to implement and thus it is very practical and has low 

difficulty [1]. The disadvantage of ML decoding is  for a 

coded word of -bits, it takes cycles in the decoding 

progression, posing a large impact on system output. One way 

of coping with this problem is to implement parallel encoders 

and the decoders. This result would especially increases the 

complexity and the power consumption. The most of the 

memory read access will without errors, and the decoder is 

majority of the time functioning without reason. This will have 

motivate the uses of a error detector module that checks if the 

codeword contains an error and then triggers the correction 

mechanism accordingly. In this case, only the faulty code 

word needs correction, and as a result the average reading 

memory accessing is speed up, by the expense of increased in 

hardware cost and the power utilization.  

A related proposal have been obtainable in for the case of 

flash memories. The simplest way to implement a fault 

detector for an ECC is by calculates syndrome, however this 

in general implying adds another very complex functional unit 

[2]. This paper explores the idea of using the ML decoder 

circuitry as a fault detector so that read operations are 

accelerated with almost no additional hardware expenses. The 

results show that the properties of DSCC-LDPC enable 

efficient fault detection. 

II. EXISTENT MAJORITY LOGIC DECODING (MLD) SOLUTION 

 MLD is based on a number of parity check equations 

which are orthogonal to each other, so that, at each iteration, 

each codeword bit only participates in one parity checks 
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equation, apart from the very first bit which contribute to 

every equations. For this motive, the majority results of these 

parity check equations decide the correctness of the current bit 

under decoding [1] .  

  
 Fig. 1. Block Diagram of the MLD System 

 

MLD was first mentioned for the Reed–Muller codes. 

Then, it was extended for all types of systematic linear block 

codes that can be totally orthogonalized on each codeword bit. 

A generic schematic of a memory system is depicted into 

Fig.1, as using of an ML decoder. primarily, the data words 

are encoded and then stored within the memory. After the 

memory is reads, the code words are fed through the ML 

decoder before sent to the output for additional processing. 

During this decoding processing the data words are corrected 

from all bit-flips that it might have suffered while being stored 

in the memory.  

There are two ways for implementing these type of 

decoder. The first one is mentioned as the Type-I ML decoder, 

it determines upon XOR combinations of the syndrome, which 

bits need to be corrected. The second one is the Type-II ML 

decoder that calculates directly out of the codeword bits the 

information of correctness of the current bit under decoding. 

Both are quite similar but when it comes to execution Type-II 

use lesser area, while it is not calculate the syndrome as an 

intermediate step. Therefore, this paper focuses only on this 

one.  

 

A. Plain ML decoder  

 The ML decoder is a simple and powerful decoder, 

capable of correcting multiple random bit-flips depending on 

the number of parity checking equations [1]. It is consisting of 

four parts: 1) cyclic shift register; 2) XOR matrix; 3) majority 

gate; and 4) XOR for correcting the codeword bit under 

decoding. The input signal is initially stored into the cyclic 

shift register and shifted through the entire taps. The 

transitional values in each taps are then used to calculate the 

results of the check sum equations from the XOR matrix. In 

the cycle, the result has reached the final tap, producing the 

output signal. As stated before, input might correspond to 

wrong data corrupted by a soft errors. To handling in this 

situations the decoder will act as follows. Then after the initial 

step, where the code word is loaded into a cyclic shift register 

and the decoding started through calculates the parity check 

equations hard wired in the XOR matrix.   

The resulting sums are then forwarded to the majority 

gate for evaluating its correctness [9]. If the number of 1’s 

received in is greater than the number of 0’s, which would 

mean that the current bit under decode value is wrong and the 

signal to correct which would have been triggered. If not, the 

bits under decoding will be correct and no extra operations 

will needs on it. Then the next step the contents of the register 

is rotated and the above procedure is repeated until all 

codeword bits have processed. As a final point, the parity 

checks sum must be zero if the codeword has been correctly 

decoded. The whole algorithm is depicted in Fig.2. The 

previous algorithm needs as many cycles as the number of bits 

in the input signal, which is also the number of taps, in the 

decoder. This is a big impact on the performance of system, 

and depending on the size of the codeword. The example of a 

code words of 15 bits, then the decoding would takes 15 

cycles, as would be extreme for most applications. 

 

B. Plain MLD with Syndrome Fault Detector (SFD) 

In order to improve the decoder performance, alternative 

designs may be used [1]. One possibility is to add a fault 

detector by calculating syndrome, therefore as only faults code 

word is decoded. Since most of the code words will be error-

free, M no further correction will be required, and thus the 

result will not be affected. Although the implementation of an 

SFD reduces the average latency of the decoding process, it 

also adds complexity to the design.  

The SFD is an XOR matrix that calculates the syndrome 

based on the parity checking matrix. Every parity bits result in 

to syndrome equation. Thus, the complexities of the syndrome 

calculator increases with the size of the codes. The error code 

words are detected while at least one of the syndrome bits is 

“1.” This triggers the MLD to starts the decoding process as 

explained before. On the otherwise, if the code words are 

error-free, then it was forward directly into the output, thus 

saving the correction cycles. In this way, the performance is 

improved in exchange of an additional module in the memory 

system: a matrix of XOR gates to resolve the parity checking 

matrix and the each check bits result into the syndrome 

equations. This is finally result into a quite complexity module 

with a huge amount of extra hardware and the power 

consumption in the system. 

 

C. ML Decoder/Detector 

This section presents a ML decoder that improves the 

designs existing earlier. Initially from the original design from 

the ML decoder, the proposed ML detector/decoder (MLDD) 

has been implemented using the difference-set cyclic codes 

(DSCCs).The Fig.2 shows the memory system schematics of 

an MLDD [1]. 
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Fig. 2. Memory system Schematics of an MLDD. 

 

This code is part of LDPC codes based on its attributes, 

and they contain  the following properties: 

• To correct the large numbers of error; 

• Sparse encoding, decoding and checking circuits 

synthesizable into simple hardware; 

• Modular encoding and decoding blocks that allows 

an efficient hardware implementation; 

•Logical code structures for clean partitioning of 

information and code bits in the memory. 

An important thing about the DSCC is that its 

systematical distribution allows the ML decoder to perform 

error detection in a simple way, using parity check sums [9]. 

The problem is in those cases with an even numbers of the bit-

flips, wherever the parity checking equations will not detect 

the error. In this situation, the use of a simple error detector 

based on parity check sums does not seem feasible, since it 

cannot handle “false negatives”. But, the alternative should be 

derive all data to the decoding process, with a large 

performance overhead. Since performance is important for 

most of applications and we would have selecting the 

intermediate solutions, which would provided a high reliability 

with a small delay penalty for scenarios where up to five bit-

flips may be expected. The ML Decoding Process is control 

by the control unit shown in Fig.3. 

 

 
 

Fig. 3. Schematics of control unit 

 

This proposal is one of the main contributions of this 

article, and it will be based on the following assumption: 

Given a word read from a memory protected with the DSCC 

codes, and they affected by capable of five bit-flips, the entire 

errors can be detects only in three decoding cycles. This is a 

huge improvement over the simpler case, 

 

Fig. 4. Flow Diagram for ML Algorithm 

where decoding cycles are needed to guarantee that errors are 

detected. The flow diagram of ML algorithm is shown in 

Fig.4. The proof of this hypothesis is very complex from the 

mathematical approach. As a result two alternatives have used 

inorder to proves it, which are specified here. 

• During simulation in which comprehensive 

experiments have been conducted, to effectively verify that the 

hypothesis applies. 

•A simplified mathematical proofs of the particular case 

of two bit-flips affecting a single word. 

For simplicity, and since it is convenient to first describe 

the preferred designs, lets us assumes that the assumption is 

true and that only three cycles are needed to detect all errors 

affecting up to five bits. In general, the decoding algorithm is 

still the same as the one in the plain ML decoding version. The 

variation is that instead of the decoding all codeword bits by 

processing the ML decoding during cycles, the proposed 

method stops intermediate. If in the first three cycles of the 

decoding process, the evaluation of the XOR matrix for all is 

“0,” the codeword is determined to be error-free and 

forwarded directly to the output. If they contain in any of the 

three cycles at least a “1,” the proposed method would 

continue the whole decoding process in order to eliminate the 

errors.  

The basic ML decoder with an tapped shift registers is an 

XOR array to be calculates the orthogonal parity check sums 

and a majority gate for deciding if the current bit under 

decoding needs to be inverted. i) the control unit which 

triggers a finish flag when no errors are detected after the third 

cycle and ii) the output  tristate buffer. The output of tristate 

buffer is always in high impedance unless the control unit 

sends the finish signal so that the current values of the shift 

register are forwarded to the output.  
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 The control unit manages the detecting the process. They 

used a counters that would be counting upto three bit-flips, 

which compares the first three iterations of the ML decoding. 

In these first three iterations, the control unit evaluates the by 

combining them with the OR’1’ functions. Its values are fed 

into the three stage shift registers, it holds the outcome of the 

final three cycles. During the third cycle the OR’2’ gate 

evaluate the content of the detection in registers. once the 

result is “0,” the FSM sends out the finish signal indicating 

that the processed word is error-free. In the other case, if the 

result is “1,” the ML decoding process runs until the end 

Point. This is clearly provides a performance of improvement 

respected to the conventional method. It is very easy to 

implement the design using VHDL code for MLDD 

improvement. 

 

III. PROPOSED PARALLEL MAJORITY LOGIC DECODER AND 

DETECTOR (MLDD)  SOLUTIONS 

 

A. Parallel MLDD 

The decoding process of the MLD can also be 

implemented in a parallel manner. The Fig. 5. shows the block 

diagram of parallel MLDD using sorting networks. Like this, 

the decoding is speeded-up showing a similar speed to the 

serial ML  decoder. Its schematic diagram implementation is 

illustrated in Fig.6. Herein, all codeword bits are decoded at 

the same time by having for each codeword bit a parity check 

equation, a MG and a correction unit. Here encoder is 

encoding  the output to the shift registers, and the shift register 

shifted the each parity bits, then shifted values send to the 

 

 
 

Fig. 5. Block Diagram of Parallel MLDD using Sorting Networks 

 

Parity check equations using XOR function for 15 parity 

checks, and it gives to the majority gate for reducing the gates 

using sorting network, then if any error is detected goes to 

XOR operations, so error is now corrected using Parity check 

sums. 

 

B. Majority Gate (MG) 

The MG is responsible for evaluating the parity 

checksums and deciding upon the correctness of the current 

BUD. Traditionally, the implementation complexity of the 

MG could grow exponentially with the number of inputs 

added. To tackle this complexity issue, presented a MG based 

on sorting networks.  

A modified version to handle eight parity checksums of 

MG based on sorting networks has been implemented as 

depicted in Fig. 7. These Majority Gate is used to number of 

parity check sums and it is gives the output to the shift 

registers. 

 

 

  
Fig. 6. Schematic Diagram of Parallel MLDD Circuit 

 



International Journal of Advanced Information Science and Technology (IJAIST)        ISSN: 2319:268 

Vol.2, No.4, April 2013                                                             DOI:10.15693/ijaist/2013.v2i4.182-189 

 

 

 

186 

 

 
 

Fig.7. (i) Basic Comparator Structure, (ii) Comparator using Sorting 

Network, (iii) 8 bit Majority Gate using Sorting Network. 

 

C. Synthesis Results  

This subsection is divided into two parts. The first one 

discusses and compares the resource occupation and the 

implementation efficiency of all three decoder structures. The 

second part gives an evaluation of the performance matrics 

obtained from the timing synthesis.  

 

D. Resource usage 

The synthesis report of the resource occupation of the 

three decoders has been documented in next Chapter. The 

table also includes the relative values comparing the MLDD 

and Parallel MLDD next to the absolute values of the resource 

usage. At first it has to be mentioned that the MLD decoders 

had to be modified for fault injection with FLIPPER resulting 

in an overhead of Flip-Flops (FF) / Latches. This overhead 

will have little impact onto the overall slice usage. The reason 

for this is because both MLDs have sufficient combinational 

logic complexity. The ASIC results for both OS-MLDs have 

been retrieved without the extra FFs required for the FLIPPER 

platform. The remaining overhead is explained by the 

employed DSCC which is an original 15 word length is 

shortened.  

However, internally it calculates with 15 bits and besides, 

the serial MLD requires FFs for its finite state machine (FSM). 

This is also the reason why the parallel version requires fewer 

FFs than the serial one. When comparing again the 

combinational logic of the Serial MLD to the parallel MLD 

the Speedup time is increased, the delay time is decreased. So 

the implementation of the combinational logic in Parallel 

MLD is much more efficient.. The locator needs to check if 

the syndrome matches a value that corresponds to a single 

error.  

 

 

 

 

E. Timing performance 

The maximum clock frequency reported from the timing 

synthesis for the three implemented decoders are summarized 

in next section and including also the throughput of each 

design. The serial MLD requires 15 cycles for decoding one 

codeword and hence its throughput is proportionally low. On 

the other hand, the parallel MLD have the same throughput of 

one third. The timing synthesis report reveals that the serial 

MLD have high maximum clock frequency results.  

Based on the parallel implementation of combinational 

logic of the MLD, the parallel version has a maximum clock 

frequency which is more than four times higher compared to 

the serial version. For the cases of high-throughput 

requirements or where the resource occupation is a soft design 

constraint, the parallel MLD is a good option since it is has a 

throughput of 14 times better than the serial version and can 

be implemented with much higher clock frequency. 

 

IV. RESULTS  AND  DISCUSSION 

In this project we have developed a software to detect the 

Majority Logic Fault error in Memory applications. An 

important final comment is that the area overhead of the 

MLDD actually decreases with with respect to the plain MLD 

version. For large values of  both areas are practically the 

same value. The reason of this is that the error detector in the 

MLDD has been designed to be independent of the size code. 

The opposite situation occuring with these SFD technique that 

uses syndrome calculation to perform error detection: its 

complexity grows quickly when the code size increases. One 

of the problems to make the MLDD module independent of 

has been the mapping of the intermediate delay line values to 

the output signals.  

The reason is that this module behaves in two different 

ways depending if the processed word is error or correct. Then 

if it is correct its outputs are driven after third cycle and  that 

the word has been shifting three positions in the line registers. 

Then if it is not correct value  the word has to be fully 

decoded, what implies being shifted positions. Then some kind 

of multiplexing logic would be needed to reorder the bits 

before mapping them to the output. 

 However, the area of this logic would grow with linearly. 

After this, the output bits are coherent in all situations, not 

needing multiplexing logic. We have developed a vhdl 

codlings using CADENCE software(ncsim:09.20-p007) and 

Xilinx software. Comparing the failure rates for the decoders, 

the serial OS-MLD would seem to be the one showing the best 

soft error resilience and the parallel MLD the worst one. 

However, these failure rates do not include the resource usage 

of these designs. However, these failure rates do not include 

the resource usage of these designs. 
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Fig. 8. Simulation Output MLDD without Error 

 

The Fig. 8 shows the simulated output waveform of 

MLDD without error. 

 

 

 
 

 

Fig. 9. Simulation Output MLDD with  Error orrection 
 

The difference sets of code lengths are calculated as the 

equation (1), Here  given a size N, all combinations of four bit-

flips on a word will be calculating, in order to study all of the 

possible case. Therefore the number of combinations is given 

by, 

 
where M is the number of bit-flips shown in Table I. 

            TABLE I 

DSCC LENGTHS 

N Bits Data bits Parity Bits 

15 7 8 

 

The number of combinations can be seen in Table II for 

different values of  N with double and quadruple errors. Here  

we used in seven data bits and the eight parity bits. 

The number of combinations are listed in table II.  As 

expected, increasing the code length implies an exponential 

growth of the number of combinations of the computational 

time. All combinations in Table II have been simulates, then  

the results can be seen in Tables III. Here the exising method  

and the Proposed method is compared. 

 

TABLE II 
NUMBER OF COMBINATIONS FOR BIT-FLIPS WITH DIFFERENT 

CODE LENGTHS 
 

PARAMETERS 
Existing 

Method 

Proposed 

Method 

M 4 4 

N 15 15 

No. of 

Combinations 
4896 13824 

 

Table III shows the results for the case of four bit-flips. 

These results confirm that with only one decoding cycles after  

the detection method is covering more than 90% of the error 

patterns for all. The second cycle of MLDD increases the 

percentage of detection and after the third one, 100% of the 

errors are detected. The performance of the proposed design 

MLDD is much faster than the plain MLD version shown in 

Table III. 

TABLE III 
SPEED-UP OF THE PROPOSED MLDD FOR ERROR FREE 

CODEWORDS 

 

PARAMETERS 
Existing 

Method 

Proposed 

Method 

N 15 15 

ML 

Detection 
5 5 

Speed (ns) 7.189 2.872 
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To study this, the two designs have been implemented in 

VHDL and synthesized, for different values of N, using  the 

Cadence and the Modelsim library. The obtained results are 

depicted, in number of equivalent gates, listed  in Table IV. 

 

TABLE IV 
SYNTHESIS RESULT OF THE DIFFERENT CODE LENGTHS 

 

 

In a real situation, a fraction of the words would having  

bit-flips. These fraction is representing from by the WER. 

Since MLDD needs five cycles to handle correct words and  

N+5  for erroneous words, the average performance would be , 

 

MLDD Performance = (1-WER).5+WER.(N=5)             (2) 

 

Using these expression and the performance of the three 

techniques has been studied for different values of the WER 

and it is used to calculate the area overhead for different code 

lengths. 

 

 
Fig. 10. Speed-Up of Proposed MLDD 

 

This differences are even smaller for larger values of an 

WER. The WER compares Speed-Up for Existing and 

Proposed system shown in Fig. 10. It us used for the best 

performance is given.  

 

V. CONCLUSION 

In this paper, a error detection mechanism, they Parallel 

MLDD has been presented based on the ML decoding used to 

the DSCCs. The exhaustive simulation test, the result shows 

that the proposed technique is able to detect any pattern of up 

to five bit-flips in the first three cycles of the decoded process. 

This will improving the performances of the design with 

respect to the traditional MLD approach. Otherwise, the 

Parallel MLDD error detector module has been designed in a 

way that is independent of the codeword size. This would 

makes its area overhead is quite reduced compared with other 

traditional approaches such as the syndrome calculation 

(SFD). In addition, a theoretical proof of the proposed MLDD 

scheme for the case of double errors has to be presented. The 

expansion of the proofs to the case of four errors would 

confirm the validity of the MLDD approach for a more general 

cases and something that only has been done throughout 

simulation in this paper. This is an interesting problem for 

future researches. The applications of the proposed techniques 

to memories that use scrubbing is also an interesting topic and 

was in fact the original motivation that led to the Parallel 

MLDD scheme. 
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