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Abstract – In Mobile Ad-hoc Network (MANET), mobile nodes 

act as routers themselves, keeping route information to reach 

other mobile nodes, and helps to forward data packets from 

one mobile to another. The performance of the different 

mobility models such as Random Walk (RW), Random 

Waypoint (RWP), Manhattan Mobility (MM), Reference Point 

Group Mobility (RPGM) are analyzed in TCP (Transmission 

Control Protocol) Environment using NS2 software under 

Linux platform. Depending on the type of TCP implementation 

the behavior was different, due to the activation/missing of the 

following congestion control algorithms:"Slow-Start", 

"Congestion Avoidance", "Fast Recovery" and "Fast 

Retransmit". The performance of TCP flows in an ad-hoc 

network is analyzed using four different mobility models with 

AODV as the routing protocol and TCP as the transport 

protocol. 
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I. INTRODUCTION 

 
The Transmission Control Protocol is originally first 

designed for low speed and point to point wired networks 

and it is a connection oriented protocol. New complexities 

and issues were introduced to TCP, as soon as the internet is 

evolved, and gigabit Ethernet and wireless mobile 

connectivity became the latest trend[]. So TCP shows very 

poor performance in MANETs etc... 
 

A Mobile Ad Hoc Network (MANET) is considered an 

autonomous collection of wireless mobile nodes that are 

capable of communicating with each other without the use 

of a network infrastructure or any centralized administration 

[1], [4]. Due to the host mobility, the network topology may 

change rapidly and unpredictably over time. The network is 

decentralized no administrator is required to manage 

network. It is self organizing and enables communication in 

situations where there is no time to set up the necessary 

infrastructure or situations where the need for a 

communication network is temporally required. MANETs 

have a wide range of applications form military to search 

and rescue operations during disaster [2]. The interest of the 

scientific and industrial community in the area of 

telecommunications has recently shifted to more challenging 

scenarios in which a group of mobile units equipped with 

radio transceivers communicate without any fixed 

infrastructure [1]. 

  
A. Transmission Control Protocol 
 

Transmission Control Protocol is the Internet‟s most 

widely used transport control protocol. TCP‟s strength lies 

in the adaptive nature of its congestion avoidance and 

control algorithm and its retransmission mechanism, first 

proposed by V. Jacobson [6], [11] as a part of TCP Tahoe. It 

was further refined in Reno and New Reno versions of TCP. 

The major control mechanisms of TCP are its congestion 

avoidance and congestion control mechanism. They are 

discussed in detail below: 

 
1) AIMD Mechanism of TCP 
 

TCP maintain a new state variable for each connection, 

called congestion window, which is used by the source to 

limit how much data it is allowed to have in transmit at a 

given time. The congestion window is congestion controls 

counterpart to flow control advertised window. TCP is 

modified such that the maximum number of bytes of 

unacknowledged data allowed is now the minimum of the 

congestion window and the advertised window. TCP‟s 

effective window is revised as, 
 
Max window = MIN (congestion window, advertised 
window)  
Effective window = max window- (last byte sent- last byte 
Acknowledged) 
 
That is, max window replaces advertised window in the 

calculation of effective window. Thus, a TCP source is 

allowed to send no faster than the slowest component the 

network or the destination host can accommodate. The 

problem, of course, is how TCP comes to learn an 

appropriate value for congestion window. Unlike the 

advertised window, which is sent by the receiving side of 

the congestion, there is no one to send a suitable congestion 

window to the sending side of TCP. The answer is that the 

TCP source sets the congestion window based on the level 

of congestion perceives to exit in the network. This involves 

decreasing the congestion window when the level of 

congestion goes down and the mechanism is commonly 

called additive increase/multiplicative decrease. The source 

determines if the network is congested and that it should 

decrease the congestion window based on the observation 

that the packets are not delivered and a timeout results, is 

that a packet was dropped due to congestion. It is rare that a 

packet is dropped because of an error during transmission. 
 

Therefore, TCP interprets timeouts as a sign of 
congestion and reduces the rate at which it is transmitting. 
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Specifically, each time a timeout occurs, the source sets 
congestion window for each timeout corresponds to the 
“multiplicative decrease” part of AIMD. 
 

Although congestion window is defined in terms of 

bytes, it is easiest to understand multiplicative decrease if 

we think in terms of whole packets. For example, suppose 

the congestion window is currently set to 16 packets. If a 

loss is detected, congestion window is set to 8. Normally, a 

loss is detected when a timeout occurs. Additional losses 

cause congestion window to be reduced to 4, then 2, and 

finally to 1 packet. A congestion control strategy that only 

decrease the window size is obviously too conservative. We 

also need to be able to increase the congestion window to 

take advantage of newly available capacity in the network. 

This is the “additive increase” part of AIMD, and it works as 

follows. Every time the source successfully sends a 

congestion window worth of packets that is, each packet 

sent out during the last RTT has been Acknowledged- it 

adds the equivalent of one packet to congestion window. 

TCP does not wait for an entire window‟s worth of ACKs to 

add one packet‟s worth to the congestion window, but 

instead increments congestion window by a little for each 

ACK that arrives. The order of packet transmission is 

x+2x+3x+4x+… where x=1 

 

2) SLOW START mechanism of TCP 
 

TCP‟s reaction to a missing acknowledgement is quit 

drastic, but necessary to get rid of congestion fast enough. 

The behavior of TCP shows after the detection of congestion 

is called slow start. The sender always calculates a 

congestion window for a receiver. Start size of the 

congestion window is one segment (TCP packet). Now the 

sender sends one packet and waits for acknowledgement. If 

this acknowledgement arrives, the sender increases the 

congestion window one by one, now sending two packets 

(congestion window= 2). After arrival of the two 

corresponding acknowledgements, the sender again adds 2 

to the congestion window; one for each of the 

acknowledgements .Now the congestion window equals 4. 

This scheme doubles the congestion window every time the 

acknowledgements come back, which takes one round trip 

time (RTT). This is called the exponential growth of the 

congestion window in slow start mechanism. It is too 

dangerous to double the congestion window each time 

because the step might become too large. Therefore, the 

exponential growth stops at the congestion threshold .As 

soon as the congestion window reaches the congestion 

threshold, further increase of the transmission rate is only 

linear by adding 1 to the congestion window each time the 

acknowledgements come back. The order of packet 

transmission is x
0
+x

1
+x

2
+x

3
+x

4
… where x=2,3,4…. 

 
 

 

B. TCP Reno 
 

This Reno retains the basic principle of Tahoe, such as 

slow starts and the coarse grain re-transmit timer. However 
it adds some intelligence over it so that lost packets are 

detected earlier and the pipeline is not emptied every time a 

packet is lost [12],[14]. 
 

Reno requires that we receive immediate 

acknowledgement whenever a segment is received. The 

logic behind this is that whenever we receive a duplicate 

acknowledgment, then his duplicate acknowledgment could 

have been received if the next segment in sequence 

expected, has been delayed in the network and the segments 

reached there out of order or else that the packet is lost. If 

we receive a number of duplicate acknowledgements then 

that means that sufficient time has passed and even if the 

segment had taken a longer path, it should have gotten to the 

receiver by now. There is a very high probability that it was 

lost. So Reno suggest an algorithm called ‘Fast Re-

Transmit’. Whenever we receive 3 duplicate ACK‟s we 

take it as a sign that the segment was lost, so we re-transmit 

the segment without waiting for timeout. Thus we manage to 

re-transmit the segment with the pipe almost full. 
 

Another modification that RENO makes is in that after 

a packet loss, it does not reduce the congestion window to 1. 

Since this empties the pipe. It enters into a algorithm which 
we call Fast-Re-Transmit. The basic algorithm is presented 

as under: 
 
1) Each time we receive 3 duplicate ACK‟s we take that to 
mean that the segment was lost and we re-transmit the 

segment immediately and enter Fast- Recovery. 
 
2) Set Ssthresh to half the current window size and also set 
CWD to the same value. 
 
3) For each duplicate ACK receive increase CWD by one. If 

the increase CWD is greater than the amount of data in the 

pipe then transmit a new segment else wait. If there are „w‟ 

segments in the window and one is lost, then we will receive 

(w-1) duplicate ACK‟s. Since CWD is reduced to W/2, 

therefore half a window of data is acknowledged before we 

can send a new segment. Once we retransmit a segment, we 

would have to wait for atlease one RTT before we would 

receive a fresh acknowledgement. Whenever we receive a 

fresh ACK we reduce the CWND to SSthresh. If we had 

previously received (w-1) duplicate ACK‟s then at this point 

we should have exactly w/2 segments in the pipe which is 

equal to what we set the CWND to be at the end of fast 

recovery. Thus we don‟t empty the pipe, we just reduce the 

flow. 
 
C. TCP New Reno 

 
New RENO is a slight modification over TCP-RENO 

[6],[7],[9]. It is able to detect multiple packet losses and thus 
is much more efficient that RENO in the event of multiple 
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packet losses. Like RENO, New- RENO also enters into 

fast-retransmit when it receives multiple duplicate packets, 

however it differs from RENO in that it doesn„t exit fast-

recovery until all the data which was out standing at the time 

it entered fast recovery is acknowledged. The fast-recovery 

phase proceeds as in Reno, however when a fresh ACK is 

received then there are two cases: 
 

 If it ACK„s all the segments which were 
outstanding when we entered fast recovery then it 
exits fast recovery and sets CWD to threshold value 
and continues congestion avoidance like Tahoe.


 If the ACK is a partial ACK then it deduces that the 

next segment in line was lost and it re-transmits 
that segment and sets the number of duplicate 
ACKS received to zero. It exits Fast recovery when 
all the data in the window is acknowledged.



II. MOBILITY MODELS 

 

A. Introduction 
 

The results of some experiments are explained here and  
these are used to measure the proposed metrics assuming 

several typical mobility models: Random Walk (RW), 

Random WayPoint (RWP), Manhattan Mobility (MM), and 

Reference Point Group Mobility (RPGM).These typical 

mobility models and their experimental results are explained 

in below. 

 

B. Random Walk 
 

This is one of the simplest mobility models and is often 

used in simulation experiments for MANET. In this model, 

at every unit of experimental time, each mobile node 

randomly determines a movement direction from all 

directions, and randomly determines a movement speed 

from 0 to V m/s. It is known that in the long term, this 

model offers very low mobility similar to vibrating in the 

same position, because mobile nodes randomly change 

movement direction. 
 
C. Random WayPoint 
 

This is one of the most popular mobility models for 

MANET researchers. In this model, each node remains 

stationary for a pause time S sec. Then, it selects a random 

destination in the entire area and moves to the destination at 

a speed determined randomly between 0 and V m/s. After 

reaching the destination, it again pauses, and then, repeats 

this behaviour. It is known that in this model, mobile nodes 

tend to gather at the centres of the area, and the movement 

speed tends to converge to zero (very low). 
 
D. Manhattan Mobility 
 

This model emulates the node movement on streets 
where nodes only travel on the pathways in the map. On 

 
 

 

each street, the mobile nodes move along the lanes in both 

directions. At each intersection, the mobile nodes choose 

their directions and speed (0 to V m/s) randomly. The MM 

model showed several interesting features due to its 

restricted mobility and this model forms many small 

partitions but rarely forms large ones when the node density 

is not very high compare to the RW model. 
 
E. Reference Point Group Mobility Model 
 

This model is used to model group mobility. Each 

group has a logical “center” called a reference point and 

group members (nodes). Each reference point moves 

according to the RWP model with V m/s (maximum speed) 

and S sec (pause time). In each group, nodes are uniformly 

distributed within a certain radius R from the reference 

point. To achieve this, each node moves according to the 

RW model with V m/s (maximum speed) within that range. 

Specifically, a node‟s movement vector is composed by 

adding the movement vector based on the RW model for the 

node to that based on the RWP model for the reference 

point. 
 

III. PERFORMANCE ANALYSIS AND RESULTS 

 
A. Simulation Model and Parameters 
 

The simulation platform is ns-2 [15] which is a discrete  
event simulator. In our simulation, mobile 100 mobile nodes 

move in a 2500 meter x 2500 meter rectangular region for 

100 seconds simulation time. We assume each node moves 
independently with the same average speed. All nodes have 

the same transmission range of 250 meters. 

 

B. Performance Metrics 
 

We evaluate mainly the performance according to the 
following metrics. 
 
Packet Delivery Ratio: 
 

Packet Delivery Ratio (PDR) is calculated by dividing 

the number of packets received by the destination through 
the number of packets originated by the source.  
 
 
 

 

Delay: 
 

The term the average delay is a data packet experiences 

to cross from source to destination. This delay includes all 

possible delays caused by buffering during route discovery 

delay, queuing at the interface queues and retransmission 

delays at the MAC, propagation and transfer times. 
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C. Simulation Results 
 
1. Random Walk Mobility Model  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1 Packet Delivery Ratio  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2 Delay 

 
Figure 1 shows the results of packet delivery ratio for 

RW mobility model. From the simulation results, it is seen 
that TCP New Reno achieves more delivery ratio than TCP. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4 Delay (RWP) 

 
Figure 3 shows the results of packet delivery ratio for 

RWP mobility model. From the simulation results, it is seen 

that TCP New Reno achieves more delivery ratio than TCP. 
 

Figure 4 shows the results of delay for RWP mobility 
model. From the simulation results, it is seen that TCP New 
Reno achieves less delay than TCP in RWP mobility model. 
 
3. Manhattan Mobility Model  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 Packet Delivery Ratio (MM)  
Figure 2 shows the results of delay for RW mobility 

model. From the simulation results, it is seen that TCP New 
Reno achieves less delay than TCP.   
2. Random Way Point Mobility Model  
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6 Delay (MM) 

 
Figure 3 Packet Delivery Ratio (RWP) 
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Figure 5 shows the results of packet delivery ratio for  
MM mobility model. From the simulation results, it is seen 
that TCP New Reno achieves more delivery ratio than TCP. 
 

Figure 6 shows the results of delay for MM mobility 
model. From the simulation results, it is seen that TCP New 

Reno achieves less delay than TCP in TCP environment. 
 
4. Reference Group Point Mobility Model  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7 Packet Delivery Ratio (RPGM)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8 Delay (RPGM)  

Figure 7 shows the results of packet delivery ratio for 

RPGM mobility model. From the simulation results, it is 

seen that TCP New Reno achieves more delivery ratio than 
TCP. 
 

Figure 8 shows the results of delay for RPGM mobility 
model. From the simulation results, it is seen that TCP New 
Reno achieves less delay than TCP. 
 

IV. CONCLUSION 

 

It is seen from the simulation analysis TCP shows very 

poor performance over the networks. The reason for the 

performance degradation is that the congestion control 

mechanism in TCP cannot distinguish between the packet 

loss caused by wireless link error and that caused by 

network congestion, thus, reacting to the loss by reducing its 

congestion window (cwnd). The results of experiments are 

reported that measured the proposed metrics assuming four 

typical mobility models: RW, RWP, MM and RPGM. In this 

 
 

 

contribution, the performance of TCP and New Reno has 
been analyzed. Simulation analysis shows that the TCP New 
Reno was the dominant protocol on packet delivery ratio 

and delay with TCP. 
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