
International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.1, No.5, September 2012 DOI:10.15693/ijaist/2012.v1i5.41-45

41

A New Comparison of Mobility Models in MANET using TCP Protocols

S.Allwin Devaraj

Assistant Professor

Department of ECE

Francis Xavier Engineering College, Tirunelveli

Abstract – In Mobile Ad-hoc Network (MANET), mobile nodes

act as routers themselves, keeping route information to reach

other mobile nodes, and helps to forward data packets from

one mobile to another. The performance of the different

mobility models such as Random Walk (RW), Random

Waypoint (RWP), Manhattan Mobility (MM), Reference Point

Group Mobility (RPGM) are analyzed in TCP (Transmission

Control Protocol) Environment using NS2 software under

Linux platform. Depending on the type of TCP implementation

the behavior was different, due to the activation/missing of the

following congestion control algorithms:"Slow-Start",

"Congestion Avoidance", "Fast Recovery" and "Fast

Retransmit". The performance of TCP flows in an ad-hoc

network is analyzed using four different mobility models with

AODV as the routing protocol and TCP as the transport

protocol.

Keywords – MANET, Mobility Models, Slow Start, Congestion

Avoidance, Additive Increase Multiplicative Decrease (AIMD),

TCP New Reno

I. INTRODUCTION

The Transmission Control Protocol is originally first

designed for low speed and point to point wired networks

and it is a connection oriented protocol. New complexities

and issues were introduced to TCP, as soon as the internet is

evolved, and gigabit Ethernet and wireless mobile

connectivity became the latest trend[]. So TCP shows very

poor performance in MANETs etc...

A Mobile Ad Hoc Network (MANET) is considered an

autonomous collection of wireless mobile nodes that are

capable of communicating with each other without the use

of a network infrastructure or any centralized administration

[1], [4]. Due to the host mobility, the network topology may

change rapidly and unpredictably over time. The network is

decentralized no administrator is required to manage

network. It is self organizing and enables communication in

situations where there is no time to set up the necessary

infrastructure or situations where the need for a

communication network is temporally required. MANETs

have a wide range of applications form military to search

and rescue operations during disaster [2]. The interest of the

scientific and industrial community in the area of

telecommunications has recently shifted to more challenging

scenarios in which a group of mobile units equipped with

radio transceivers communicate without any fixed

infrastructure [1].

A. Transmission Control Protocol

Transmission Control Protocol is the Internet‟s most

widely used transport control protocol. TCP‟s strength lies

in the adaptive nature of its congestion avoidance and

control algorithm and its retransmission mechanism, first

proposed by V. Jacobson [6], [11] as a part of TCP Tahoe. It

was further refined in Reno and New Reno versions of TCP.

The major control mechanisms of TCP are its congestion

avoidance and congestion control mechanism. They are

discussed in detail below:

1) AIMD Mechanism of TCP

TCP maintain a new state variable for each connection,

called congestion window, which is used by the source to

limit how much data it is allowed to have in transmit at a

given time. The congestion window is congestion controls

counterpart to flow control advertised window. TCP is

modified such that the maximum number of bytes of

unacknowledged data allowed is now the minimum of the

congestion window and the advertised window. TCP‟s

effective window is revised as,

Max window = MIN (congestion window, advertised
window)
Effective window = max window- (last byte sent- last byte
Acknowledged)

That is, max window replaces advertised window in the

calculation of effective window. Thus, a TCP source is

allowed to send no faster than the slowest component the

network or the destination host can accommodate. The

problem, of course, is how TCP comes to learn an

appropriate value for congestion window. Unlike the

advertised window, which is sent by the receiving side of

the congestion, there is no one to send a suitable congestion

window to the sending side of TCP. The answer is that the

TCP source sets the congestion window based on the level

of congestion perceives to exit in the network. This involves

decreasing the congestion window when the level of

congestion goes down and the mechanism is commonly

called additive increase/multiplicative decrease. The source

determines if the network is congested and that it should

decrease the congestion window based on the observation

that the packets are not delivered and a timeout results, is

that a packet was dropped due to congestion. It is rare that a

packet is dropped because of an error during transmission.

Therefore, TCP interprets timeouts as a sign of
congestion and reduces the rate at which it is transmitting.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.1, No.5, September 2012 DOI:10.15693/ijaist/2012.v1i5.41-45

42

Specifically, each time a timeout occurs, the source sets
congestion window for each timeout corresponds to the
“multiplicative decrease” part of AIMD.

Although congestion window is defined in terms of

bytes, it is easiest to understand multiplicative decrease if

we think in terms of whole packets. For example, suppose

the congestion window is currently set to 16 packets. If a

loss is detected, congestion window is set to 8. Normally, a

loss is detected when a timeout occurs. Additional losses

cause congestion window to be reduced to 4, then 2, and

finally to 1 packet. A congestion control strategy that only

decrease the window size is obviously too conservative. We

also need to be able to increase the congestion window to

take advantage of newly available capacity in the network.

This is the “additive increase” part of AIMD, and it works as

follows. Every time the source successfully sends a

congestion window worth of packets that is, each packet

sent out during the last RTT has been Acknowledged- it

adds the equivalent of one packet to congestion window.

TCP does not wait for an entire window‟s worth of ACKs to

add one packet‟s worth to the congestion window, but

instead increments congestion window by a little for each

ACK that arrives. The order of packet transmission is

x+2x+3x+4x+… where x=1

2) SLOW START mechanism of TCP

TCP‟s reaction to a missing acknowledgement is quit

drastic, but necessary to get rid of congestion fast enough.

The behavior of TCP shows after the detection of congestion

is called slow start. The sender always calculates a

congestion window for a receiver. Start size of the

congestion window is one segment (TCP packet). Now the

sender sends one packet and waits for acknowledgement. If

this acknowledgement arrives, the sender increases the

congestion window one by one, now sending two packets

(congestion window= 2). After arrival of the two

corresponding acknowledgements, the sender again adds 2

to the congestion window; one for each of the

acknowledgements .Now the congestion window equals 4.

This scheme doubles the congestion window every time the

acknowledgements come back, which takes one round trip

time (RTT). This is called the exponential growth of the

congestion window in slow start mechanism. It is too

dangerous to double the congestion window each time

because the step might become too large. Therefore, the

exponential growth stops at the congestion threshold .As

soon as the congestion window reaches the congestion

threshold, further increase of the transmission rate is only

linear by adding 1 to the congestion window each time the

acknowledgements come back. The order of packet

transmission is x
0
+x

1
+x

2
+x

3
+x

4
… where x=2,3,4….

B. TCP Reno

This Reno retains the basic principle of Tahoe, such as

slow starts and the coarse grain re-transmit timer. However
it adds some intelligence over it so that lost packets are

detected earlier and the pipeline is not emptied every time a

packet is lost [12],[14].

Reno requires that we receive immediate

acknowledgement whenever a segment is received. The

logic behind this is that whenever we receive a duplicate

acknowledgment, then his duplicate acknowledgment could

have been received if the next segment in sequence

expected, has been delayed in the network and the segments

reached there out of order or else that the packet is lost. If

we receive a number of duplicate acknowledgements then

that means that sufficient time has passed and even if the

segment had taken a longer path, it should have gotten to the

receiver by now. There is a very high probability that it was

lost. So Reno suggest an algorithm called ‘Fast Re-

Transmit’. Whenever we receive 3 duplicate ACK‟s we

take it as a sign that the segment was lost, so we re-transmit

the segment without waiting for timeout. Thus we manage to

re-transmit the segment with the pipe almost full.

Another modification that RENO makes is in that after

a packet loss, it does not reduce the congestion window to 1.

Since this empties the pipe. It enters into a algorithm which
we call Fast-Re-Transmit. The basic algorithm is presented

as under:

1) Each time we receive 3 duplicate ACK‟s we take that to
mean that the segment was lost and we re-transmit the

segment immediately and enter Fast- Recovery.

2) Set Ssthresh to half the current window size and also set
CWD to the same value.

3) For each duplicate ACK receive increase CWD by one. If

the increase CWD is greater than the amount of data in the

pipe then transmit a new segment else wait. If there are „w‟

segments in the window and one is lost, then we will receive

(w-1) duplicate ACK‟s. Since CWD is reduced to W/2,

therefore half a window of data is acknowledged before we

can send a new segment. Once we retransmit a segment, we

would have to wait for atlease one RTT before we would

receive a fresh acknowledgement. Whenever we receive a

fresh ACK we reduce the CWND to SSthresh. If we had

previously received (w-1) duplicate ACK‟s then at this point

we should have exactly w/2 segments in the pipe which is

equal to what we set the CWND to be at the end of fast

recovery. Thus we don‟t empty the pipe, we just reduce the

flow.

C. TCP New Reno

New RENO is a slight modification over TCP-RENO

[6],[7],[9]. It is able to detect multiple packet losses and thus
is much more efficient that RENO in the event of multiple

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.1, No.5, September 2012 DOI:10.15693/ijaist/2012.v1i5.41-45

43

packet losses. Like RENO, New- RENO also enters into

fast-retransmit when it receives multiple duplicate packets,

however it differs from RENO in that it doesn„t exit fast-

recovery until all the data which was out standing at the time

it entered fast recovery is acknowledged. The fast-recovery

phase proceeds as in Reno, however when a fresh ACK is

received then there are two cases:

 If it ACK„s all the segments which were
outstanding when we entered fast recovery then it
exits fast recovery and sets CWD to threshold value
and continues congestion avoidance like Tahoe.


 If the ACK is a partial ACK then it deduces that the

next segment in line was lost and it re-transmits
that segment and sets the number of duplicate
ACKS received to zero. It exits Fast recovery when
all the data in the window is acknowledged.



II. MOBILITY MODELS

A. Introduction

The results of some experiments are explained here and
these are used to measure the proposed metrics assuming

several typical mobility models: Random Walk (RW),

Random WayPoint (RWP), Manhattan Mobility (MM), and

Reference Point Group Mobility (RPGM).These typical

mobility models and their experimental results are explained

in below.

B. Random Walk

This is one of the simplest mobility models and is often

used in simulation experiments for MANET. In this model,

at every unit of experimental time, each mobile node

randomly determines a movement direction from all

directions, and randomly determines a movement speed

from 0 to V m/s. It is known that in the long term, this

model offers very low mobility similar to vibrating in the

same position, because mobile nodes randomly change

movement direction.

C. Random WayPoint

This is one of the most popular mobility models for

MANET researchers. In this model, each node remains

stationary for a pause time S sec. Then, it selects a random

destination in the entire area and moves to the destination at

a speed determined randomly between 0 and V m/s. After

reaching the destination, it again pauses, and then, repeats

this behaviour. It is known that in this model, mobile nodes

tend to gather at the centres of the area, and the movement

speed tends to converge to zero (very low).

D. Manhattan Mobility

This model emulates the node movement on streets
where nodes only travel on the pathways in the map. On

each street, the mobile nodes move along the lanes in both

directions. At each intersection, the mobile nodes choose

their directions and speed (0 to V m/s) randomly. The MM

model showed several interesting features due to its

restricted mobility and this model forms many small

partitions but rarely forms large ones when the node density

is not very high compare to the RW model.

E. Reference Point Group Mobility Model

This model is used to model group mobility. Each

group has a logical “center” called a reference point and

group members (nodes). Each reference point moves

according to the RWP model with V m/s (maximum speed)

and S sec (pause time). In each group, nodes are uniformly

distributed within a certain radius R from the reference

point. To achieve this, each node moves according to the

RW model with V m/s (maximum speed) within that range.

Specifically, a node‟s movement vector is composed by

adding the movement vector based on the RW model for the

node to that based on the RWP model for the reference

point.

III. PERFORMANCE ANALYSIS AND RESULTS

A. Simulation Model and Parameters

The simulation platform is ns-2 [15] which is a discrete
event simulator. In our simulation, mobile 100 mobile nodes

move in a 2500 meter x 2500 meter rectangular region for

100 seconds simulation time. We assume each node moves
independently with the same average speed. All nodes have

the same transmission range of 250 meters.

B. Performance Metrics

We evaluate mainly the performance according to the
following metrics.

Packet Delivery Ratio:

Packet Delivery Ratio (PDR) is calculated by dividing

the number of packets received by the destination through
the number of packets originated by the source.

Delay:

The term the average delay is a data packet experiences

to cross from source to destination. This delay includes all

possible delays caused by buffering during route discovery

delay, queuing at the interface queues and retransmission

delays at the MAC, propagation and transfer times.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.1, No.5, September 2012 DOI:10.15693/ijaist/2012.v1i5.41-45

44

C. Simulation Results

1. Random Walk Mobility Model

Figure 1 Packet Delivery Ratio

Figure 2 Delay

Figure 1 shows the results of packet delivery ratio for

RW mobility model. From the simulation results, it is seen
that TCP New Reno achieves more delivery ratio than TCP.

Figure 4 Delay (RWP)

Figure 3 shows the results of packet delivery ratio for

RWP mobility model. From the simulation results, it is seen

that TCP New Reno achieves more delivery ratio than TCP.

Figure 4 shows the results of delay for RWP mobility
model. From the simulation results, it is seen that TCP New
Reno achieves less delay than TCP in RWP mobility model.

3. Manhattan Mobility Model

Figure 5 Packet Delivery Ratio (MM)
Figure 2 shows the results of delay for RW mobility

model. From the simulation results, it is seen that TCP New
Reno achieves less delay than TCP.
2. Random Way Point Mobility Model

Figure 6 Delay (MM)

Figure 3 Packet Delivery Ratio (RWP)

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.1, No.5, September 2012 DOI:10.15693/ijaist/2012.v1i5.41-45

45

Figure 5 shows the results of packet delivery ratio for
MM mobility model. From the simulation results, it is seen
that TCP New Reno achieves more delivery ratio than TCP.

Figure 6 shows the results of delay for MM mobility
model. From the simulation results, it is seen that TCP New

Reno achieves less delay than TCP in TCP environment.

4. Reference Group Point Mobility Model

Figure 7 Packet Delivery Ratio (RPGM)

Figure 8 Delay (RPGM)

Figure 7 shows the results of packet delivery ratio for

RPGM mobility model. From the simulation results, it is

seen that TCP New Reno achieves more delivery ratio than
TCP.

Figure 8 shows the results of delay for RPGM mobility
model. From the simulation results, it is seen that TCP New
Reno achieves less delay than TCP.

IV. CONCLUSION

It is seen from the simulation analysis TCP shows very

poor performance over the networks. The reason for the

performance degradation is that the congestion control

mechanism in TCP cannot distinguish between the packet

loss caused by wireless link error and that caused by

network congestion, thus, reacting to the loss by reducing its

congestion window (cwnd). The results of experiments are

reported that measured the proposed metrics assuming four

typical mobility models: RW, RWP, MM and RPGM. In this

contribution, the performance of TCP and New Reno has
been analyzed. Simulation analysis shows that the TCP New
Reno was the dominant protocol on packet delivery ratio

and delay with TCP.

REFERENCES

[1] Hahner. J, Dudkowski. D, Marron. P and Rothermel. K,

“Quantifying Network Partitioning in Mobile Ad Hoc
Networks”, Proc. Int’l Conf. Mobile Data Management,

pp. 174-181, 2007.

[2] Jardosh. K, Belding Royer. E, Almeroth. K and Suri. S ,

“Towards Realistic Mobility Models for Mobile Ad Hoc
Networks”, Proc. Mobicom, pp. 217-219, 2003.

[3] Kwak. B, Song. N and Miller. L, “A Mobility Measure for

Mobile Ad-Hoc Networks”, IEEE Comm. Letters, vol. 7,
No. 8, pp. 379-381, 2003.

[4] Hara, T, “Quantifying Impact of Mobility on Data

Availability in Mobile Ad Hoc Networks”, IEEE
Transaction on mobile computing, vol.9, No.2, pp 241-258,
2010.

[5] Ng. J and Zhang. Y, “A Mobility Model with Group

Partitioning for Wireless Ad Hoc Networks”, Proc. Int’l
Conf.Information Technology and Applications,vol.2, No.5,

pp. 289-294, 2005.

[6] S.Floyd,T.Henderson“The New-Reno Modification to

TCP‟s Fast Recovery Algorithm” RFC 2582, Apr 1999.

[7] S.U Lar, X.Liao and S.Guo,“Modeling TCP NewReno

Slow Start and Congestion- Avoidance using Simulation
Approach” IJCSNS International Journal of Computer
Science and Network Security, VOL.11 No.1, January
2011.

[8] Yuvaraju B N, N Chiplunkar, “Scenario Based

Performance Analysis of Variants of TCP Using NS2 –
Simulator” International Journal of Computer Applications
(0975 – 8887) Volume 4, No.9, August 2010.

[9] M Tekala and R Szabo, “Modeling Scalable TCP

friendliness to NewReno TCP” IJCSNS International
Journal of Computer Science and Network Security, VOL.7
No.3, March 2007.

[10] http://www.isi.edu/nsnam/ns NS–2, Network Simulator,

March 2005.

[11] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion

Control”, RFC 2581, IETF, April 1999.

[12] Jeonghoon Mo, Richard J. La, Venkat Anantharam, and

Jean Warland, “Analysis and comparison of TCP Reno and
Vegas,” in Proceedings of IEEE INFOCOM‟99, March
1999.

[13] Jitendra Padhye, VictorFiroiu, “Modeling TCP Reno

Performance A simple model & its Empirical Validation”
IEEE/ACM Transactions Volume (8)-02 April 2000.

[14] Habibullah Jamal and Kiran Sultan, “Performance Analysis

of TCP Congestion Control Algorithms”, International
Journal of Computers and Communications, Volume (02) -
01, 2008.

