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Abstract- Fault is one of the most challenging problems of VLSI 

testing. In any system, Single piece of  data is lost or 

misintrupted, the meaning of large blocks of related data can  

completely change. And single event upsets   ( SEUs)  changes 

the state of the digital circuits are becoming a major concern 

for memory applications. It’s  enable reliable Majority logic 

decodable codes are suitable for memory applications due to 

their capability to correct a large number of errors. However, 

they require a large decoding time that impacts memory 

performance. This paper presents an error-detection and 

correction technique with reconfigurable codes .The proposed 

fault-detection method significantly reduces memory access 

time when there is no error in the data read. The technique 

uses the Filtering Engine and Exact – matching flow engine 

itself to detect failures, which makes the area overhead 

minimal and keeps the extra power consumption low. 

 Index Terms – ECC codes, SEUs, majority logic, 

LDPC, memory. 

I. INTRODUCTION 
History of computing sounds like a magic trick-

squeezing more and more power into less and less space-it 

is! What made it possible was the invention of the digital 

Integrated circuits in 1958. Growing technology 

improvement, hundred’s ,thousands, millions, or even 

billions of electronic components are combined and create 

multiple job onto tiny chips of silicon no bigger than a 

fingernail. In over five decades of aggressive scaling, 

CMOS transistor technology has rapidly progressed towards 

nanotechnology- scale feature sizes. However, this 

continuous shrinking of device dimensions has also strongly 

affected the circuit performance [2]. Especially, SRAM 

memory failure rates are increasing significantly, therefore 

posing a major reliability concern for many applications. 

Initially, the data words are encoded and then stored into the 

memory. When the memory is read, the codeword is sent to 

the output for further processing. At that receiving end an 

error will be occur on that data.  An error is a mismatch 

between the expected circuit outputs and the actual circuit 

outputs. Embedded memories are more challenging to test 

and diagnose. Some commonly used mitigation techniques 

are:  

• Triple modular redundancy (TMR); 

• Error correction codes (ECCs). 

 

TMR is a special case of the von Neumann method [3] 

consisting of three versions of the design in parallel, with a 

majority voter selecting the correct output. As the method 

suggests, the complexity overhead would be three times plus 

the complexity of the majority voter and thus increasing the 

power consumption. For memories, it turned out that ECC 

codes are the best way to mitigate memory soft errors [1]. 

For terrestrial radiation environments where there is a low 

soft error rate (SER), codes like single error correction and 

double error detection (SEC–DED), are a good solution, due 

to their low encoding and decoding complexity. However, 

as a consequence of augmenting integration densities, there 

is an increase in the number of soft errors, which produces 

the need for higher error correction capabilities [2], [4]. The 

usual multierror correction codes, such as Reed–Solomon 

(RS) or Bose–Chaudhuri– Hocquenghem (BCH) are not 

suitable for this task. The reason for this is that they use 

more sophisticated decoding algorithms, like complex 

algebraic (e.g., floating point operations or logarithms) 

decoders that can decode in fixed time, and simple graph 

decoders, that use iterative algorithms (e.g., belief 

propagation). Both are very complex and increase 

computational costs [5]. Among the ECC codes that meet 

the requirements of higher error correction capability and 

low decoding complexity, cyclic block codes have been 

identified as good candidates, due to their property of being 

majority logic (ML) decodable [6], [7]. A subgroup of the 

low-density parity check (LDPC) codes, which belongs to 

the family of the ML decodable codes, has been researched 

in [8]–[10]. 

This paper explores the idea of using the ML 

decoder circuitry as a fault detector so that read operations 

are accelerated with almost no additional hardware cost. The 

results show that the properties of RC-LDPC enable 

efficient fault detection.  

The remainder of this paper is organized as 

follows. Section II gives an overview of existing ML 

detector/decoder; Section III presents the proposed method; 

Section IV Filtering engine; Section V discusses about the 

exact-match flow and VI the results obtained for the 

different versions in respect to effectiveness, performance, 

and area and power consumption. Finally, Section VII 

discusses conclusions and gives an outlook onto future 

work. 
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II.EXISTING MAJORITY LOGIC 

DETECTOR/DECODER (MLDD) 

A.PLAIN ML DECODER 

   MLD was first mentioned in [7] for the Reed–

Muller codes. Then, it was extended and generalized in [8] 

for all types of systematic linear block codes that can be 

totally orthogonalized on each codeword bit. The main 

reason for using ML decoding is that it is very simple to 

implement and thus it is very practical and has low 

complexity. 

 

Fig.1.Memory system schematic with MLD 

 

A generic schematic of a memory system is 

depicted in Fig.1. for the usage of an ML decoder. Initially, 

the data words are encoded and then stored in the memory. 

When the memory is read, the codeword is then fed through 

the ML decoder before sent to the output for further 

processing. In this decoding process, the data word is 

corrected from all bit-flips that it might have suffered while 

being stored in the memory. 

 

 The drawback of ML decoding is that, for a coded 

word of N-bits, it takes cycles in the decoding process, 

posing a big impact on system performance. This algorithm 

needs as many cycles as the number of bits in the input 

signal, which is also the number of taps, in the decoder. This 

is a big impact on the performance of the system, depending 

on the size of the code. For example, for a codeword of 73 

bits, the decoding would take 73 cycles, which would be 

excessive for most applications. 

 

B.ML DETECTOR/DECODER 

 

This section presents a modified version of the ML 

decoder that improves the designs presented before. Starting 

from the original design of the ML decoder introduced in, 

the proposed ML detector/decoder (MLDD) has been 

implemented using the difference-set cyclic codes (DSCCs). 

This code is part of the LDPC codes, and, based on their 

attributes, they have the following properties: 

• Ability to correct large number of errors; 

• Sparse encoding, decoding and checking circuits 

synthesizable   into simple hardware; 

• Modular encoder and decoder blocks that allow an 

efficient hardware implementation; 

• Systematic code structure for clean partition of 

information and code bits in the memory. 

          

   An important thing about the DSCC is that its 

systematical distribution allows the ML decoder to perform 

error detection in a simple way, using parity check sums. 

However, when multiple errors accumulate in a single word, 

this mechanism may misbehave, as explained in the 

following. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.2. Single check equation of a N=73 ML decoder  A) One bit-

flips B) Two bit-flips      C) Three bit-flips 

 

In the simplest error situation, when there is a bit-

flip in a code word, the corresponding parity check sum will 

be “1,” as shown in Fig. 2(A). This figure shows a bit-flip 

affecting bit 42 of a code word with length N=73 and the 

related check sum that produces a “1.” However, in the case 

of Fig.2 (B), the codeword is affected by two bit-flips in bit 

42 and bit 25, which participate in the same parity check 

equation. So, the check sum is zero as the parity does not 

change. Finally, in Fig.2(C), there are three bit-flips which 

again are detected by the check sum (with a “1”). As a 

conclusion of these examples, any number of odd bit flips 

can be directly detected, producing a “1” in the 

corresponding BJ. The problem is in those cases with an 

even numbers of bit-flips, where the parity check equation 

would not detect the error. In this situation, the use of a 

simple error detector based on parity check sums does not 

seem feasible, since it cannot handle “false negatives” 

(wrong data that is not detected). However, the alternative 

would be to derive all data to the decoding process (i.e., to 

decode every single word that is read in order to check its 

correctness), as explained in previous sections, with a large 

performance overhead. 
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Since performance is important for most 

applications, we have chosen an intermediate solution, 

which provides a good reliability with a small delay penalty 

for scenarios where up to five bit-flips may be expected. 

This proposal is one of the main contributions of this 

project. 

 

As described before, the ML decoder is a simple 

and powerful decoder, capable of correcting multiple 

random bit-flips depending on the number of parity check 

equations. It consists of five parts: a cyclic shift register;   an 

XOR matrix; a majority gate;   an XOR gate, Control unit 

and tristate buffer as illustrated in Fig. 3. 

 

 
Fig.3. Schematic of MLDD 

 

The figure shows the basic ML decoder with an N-

tap shift register, an XOR array to calculate the orthogonal 

parity checksums and a majority gate for deciding if the 

current bit under decoding needs to be inverted. Those 

components are the same as the ones for the plain ML 

decoder shown in Fig. 3. The additional block to perform 

the error detection is illustrated in Fig.3.as: 

1) The control unit which triggers a finish flag when no 

errors are detected after the third cycle and  
2) The output tristate buffers are always in high 

impedance unless the control unit sends the finish signal so 

that the current values of the shift register are forwarded to 

the output y. 

 

The control unit manages the detection process. It 

uses a counter that counts up to three, which distinguishes 

the first three iterations of the ML decoding. In these first 

three iterations, the control unit evaluates the by combining 

them with the OR1 function. This value is fed into a three-

stage shift register, which holds the results of the last three 

cycles. In the third cycle, the OR2 gate evaluates the content 

of the detection register. When the result is “0,” the FSM 

sends out the finish signal indicating that the processed 

word is error-free. In the other case, if the result is “1,” the 

ML decoding process runs until the end. 

 

This clearly provides a performance improvement 

respect to the traditional method. Most of the words would 

only take three cycles (five, if we consider the other two for 

input/output) and only those with errors (which should be a 

minority) would need to perform the whole decoding 

process. The schematic for this memory system is very 

similar to Fig.1, adding the control logic in the MLDD 

module. 

 

Given a word read from a memory protected with 

DSCC codes, and affected by up to five bit-flips, all errors 

can be detected in only three decoding cycles. This is a huge 

improvement over the simpler case, where N decoding 

cycles are needed to guarantee that errors are detected. The 

proof of this hypothesis is very complex from the 

mathematical point of view. Therefore, two alternatives 

have been used in order to prove it, which are given here. 

 • Through simulation, in which exhaustive experiments 

have been conducted, to effectively verify that the 

hypothesis applies. It’s explained in this section. 

• Through a simplified mathematical proof for the particular 

case of two bit-flips affecting a single word. It’s explained 

at Different-set Cyclic Codes. For simplicity, and since it is 

convenient to first describe the chosen design, let us assume 

that the hypothesis is true and that only three cycles are 

needed to detect all errors affecting up to five bits. This is 

proved in MLDD algorithm. 

 

III.PROPOSED METHOD 

Error detection and correction is one of the most 

challenging problems of VLSI testing. In this paper, fault 

free data’s are achieved using a novel architecture on 

reconfigurable platform. This architecture produces a fault 

free output on time of the process. So there is no delay in 

this novel architecture. It’s used to detect and correct all 

types of possible faults. After detection of error, all the 

faults are stored in the fault database with respect to their 

location. Existing method having lot of computational 

complexity. In novel architecture reduces the complexity. 

Architecture contains two major blocks; Filtering Engine 

and Matching Engine. 

 

The filtering engine is a front-end module 

responsible for filtering out secure data efficiently and 

indicating to candidate positions that patterns possibly exist 

at the first stage. The exact-matching engine is a back-end 

module responsible for verifying the alarms caused by the 

filtering engine. Only a few unsaved data need to be 

checked precisely by the exact-matching engine in the 

second stage. 

 

Both engines have individual memories for storing 

significant information. For cost reasons, only a small 

amount of significant information regarding the patterns can 

be stored in the filtering engine’s on-chip memory. In this 
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case, we used a 32-kB on-chip memory for the fault 

database, which contained more than 30 000 fault codes and 

localized most of the computing inside the chip. 

 

Conversely, the exact-matching engine not only 

stores the entire pattern in external memory but also 

provides information to speed up the matching process. Our 

exact-matching engine is space-efficient and requires only 

four times the memory space of the original size pattern set. 

The size of a pattern set is the sum of the pattern length for 

each pattern in the given pattern set; in other words, it is the 

minimum size of the memory required to store the pattern 

set for the exact-matching engine. In this case, 8 MB of off-

chip memory was required for the fault database (2 MB). 

 

The proposed exact-matching engine also supports 

data prefetching and caching techniques to hide the access 

latency of the off-chip memory by allocating its data 

structure well. The other modules include a text buffer and a 

text pump that prefetches text in streaming method to 

overlap the matching progress and text reading. A load/store 

interface was used to support bandwidth sharing. The 

architecture of reconfigurable testing shown in fig.4. 

 

 

 

Fig.4. Reconfigurable Testing Architecture 

 

This proposed architecture has six steps shown in 

Fig. 5 for finding patterns. Initially, a pattern pointer is 

assigned to point to the start of the given word at the 

filtering stage. Suppose the pattern matching processor 

examines the word from left to right. The filtering engine 

fetches a piece of word from the word buffer according to 

the pattern pointer and checks it by a shift-signature table. If 

the position indicated by the pattern pointer is not a 

candidate position, then the filtering engine skips this piece 

of word and shifts the pattern pointer rights multiple 

characters to continue to check the next position. The shift-

signature table created by the data structure used the Bloom 

filter algorithm, and it provides layer filtering. If layer is 

missing their filter, the processor enters the exact-matching 

phase. The next section has details about the shift-signature 

table.  

 

After filtering engine filters the word, the exact-

matching engine precisely verifies this word by retrieving 

a trie structure [11]. This structure divides a pattern into 

multiple sub-patterns and systematically verifies it. The 

exact-matching engine generally has four steps for each 

check. First, the exact-matching engine gets a slice of the 

word and hashes it to generate the trie address. Then, the 

exact-matching engine fetches the trie node from memory. 

This step causes a long latency due to the access time of the 

off-chip memory. 

  

 
Fig.5. Two-Phase execution 

 

Finally, the exact-matching engine compares the 

trie node with this slice. When this node is matched, the 

exact-matching engine repeatedly executes the above steps 

until it matches or misses a pattern. The pattern matching 
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then backs out to the filtering engine to search for the next 

candidate. The details of table generation and matching flow 

are explained in the following sections. 

 

IV. FILTERING ENGINE (FE) 
 

Designs that feature filters indicate that the action 

behind these filters is costly and necessary. In this work, the 

overall performance strongly depends on the filtering 

engine. Providing a high filter rate with limited space is the 

most important issue. We introduce a classical filtering 

algorithm for pattern matching in the following sections. We 

then show how to merge their structures in the same space 

to improve the filter rate.  

 

A. Bloom Filter Algorithm 

 

A Bloom filter is a space-efficient data structure 

used to test whether an element exists in a given set. This 

algorithm is composed of different hash functions and a 

long vector of bits. Initially, all bits are set to 0 at the 

preprocessing stage. To add an element, the Bloom filter 

hashes the element by these hash functions and gets 

positions of its vector. The Bloom filter then sets the bits at 

these positions to 1. The value of a vector that only contains 

an element is called the signature of an element. To check 

the membership of a particular element, the Bloom filter 

hashes this element by the same hash functions at run time, 

and it also generates positions of the vector. If all of these 

bits are set to 1, this query is claimed to be positive, 

otherwise it is claimed to be negative. The output of the 

Bloom filter can be a false positive but never a false 

negative. Therefore, some pattern matching algorithms 

based on the Bloom filter must operate with an extra exact-

matching algorithm. However, the Bloom filter still features 

the following advantages: 1) it is a space-efficient data 

structure; 2) the computing time of the Bloom filter is scaled 

linearly with the number of patterns; and 3) the Bloom filter 

is independent of its pattern length. 

 

 
 

Fig.6. Bloom Filter matching process 

 

Fig. 6 describes a typical flow of pattern matching 

by Bloom filters. This algorithm fetches the prefix of a 

pattern from the word and hashes it to generate a signature. 

Then, this algorithm checks whether the signature exists in 

the bit vector. If the answer is yes, it shifts the search 

window to the right by one character for each comparison 

and repeats the above step to filter out safe data until it finds 

a candidate position and launches exact-matching. 

 

B. Shift-Signature Algorithm 

 

 The proposed algorithm re-encodes the shift table 

to merge the signature table into a new table named the 

shift-signature table. The shift-signature table has the same 

size as the original shift table, as its width and length are the 

same as the original shift table. There are two fields, S-flag 

and carry, in the shift signature table. The carry field has 

two types of data: a shift value and a signature. These two 

data types are used by two different algorithms. Thus, the S-

flag is used to indicate the data type of a carry. The filtering 

engine can then filter the word using a different algorithm 

while providing a higher filter rate. The method used to 

merge these two tables is described as follows.  

 

First, the algorithm generates two tables, a shift 

table and signature table, at the preprocessing stage. The 

generation of the shift table is the same as in the normal 

filter algorithm. The shift table is used as the primary filter. 

The signature table could be considered a set of the bit 

vector of the Bloom filter, and it is used for the second-level 

filtering. The signature table’s generation is similar to the 

Bloom filter but is not identical; it hashes the tail characters 

of patterns to generate their signatures instead of the prefix. 

Generated signatures are mapped onto the signature table 

and indexed by bad-characters, which have shift values of 

zero in the shift table. In other words, a pattern is assigned 

a zero shift value in the shift table by its last characters, 

and it uses the same index to locate its signature in the 

signature table. After the shift table and signature table are 

generated, the algorithm re-encodes the shift value into two 

fields: an S-flag and a carry in the shift-signature table. The 

S-flag is a 1-bit field used to indicate the data type of the 

carry. Two data types, shift value or signature, are defined 

for a carry. The size and width of the shift-signature table 

are the same as those of the original shift table. To merge 

these two tables, the algorithm maps each entry in the shift 

table and signature table onto the shift-signature table. For 

the non-zero shift values, the S-flags are set, and their 

original shift values are cut out at 1-bit to fit their carries. 

Conversely, for the zero shift values, their S-flags are clear, 

and their carries are used to store their signatures. In this 

method, all of the entries in the shift-signature table 

contribute to the filtering rate at run time. Because of the 

address collision of bad-characters, most entries contain less 

than half of the maximum shift distance for a large pattern 

set. Therefore, although this method sacrifices the maximum 
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shift distance, the filter rate is not reduced but rather 

improved. 
 

V.EXACT-MATCH ENGINE (EME) 
 

The EME must verify the false positives when the 

filtering engine alerts. It also precisely identifies patterns for 

upper-layer applications. Most exact-match algorithms use 

the two kinds of trie structures shown in Fig. 7, loose and 

compact tries, to establish their pattern databases. Both trie 

structures have their merits. The AC algorithm uses loose 

tries, which check each input character in a constant amount 

of time because of their fan-out states for all possible input 

characters. Thus, the input data do not affect the AC-based 

algorithm’s performance, but their memory requirements 

increase exponentially with pattern size. Unlike loose tries, 

compact tries construct pattern databases with two pointers, 

sibling and child, to reduce their memory requirements. 

However, this method has potential performance problems 

because it may redundantly search link lists formed by 

sibling pointers. Despite this limitation, compact tries are 

still highly practical because, in practice, attack texts are not 

easy to generate. Attacks can be avoided by removing 

patterns that cause attacks before constructing the pattern 

database. For this reason, we use compact tries as our exact-

matching engine’s algorithm, and we propose several 

solutions to mitigate the effect of algorithmic attacks. Fig.8. 

shows exact-matching flow. 

 

 
Fig.7. a) Compact trie b) FSM of AC algorithm 

 

 
Fig.8. Exact-matching Flow 

 

VI.RESULTS 
 
A.AREA 

 

As mentioned several times, this is compensated 

with a clear savings in area. To study this, the three designs 

have been implemented in VHDL and synthesized, for 

different values of N, using a XC65LX75 device. The 

obtained results are depicted, in number of equivalent gates, 

in Table 1. 

 

 
 

Table.1. synthesis results for three designs with different code lengths 

 

 
 

Table.2. synthesis results for RFTS with different code lengths 

 

The conclusions on the area results are given as follows. 

• The MLD design requires large area compared with the 

other two designs. However, as seen before, the 

performance results are not very good. 

•The MLDD version has a very similar performance to SFD; 

however it requires a much lower area overhead, ranging 

from 29.1% to 31.2%. 

• The Reconfigurable Fault Tolerant System (RFTS) version 

has a very similar performance to MLDD; however it 

requires a much lower area, ranging from 44.16% to51.28% 

of overhead reduced.  
 

These conclusions can be extrapolated to 

power. The overhead reduced by RFTS, contrary to the 

MLDD case. 
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B. SPEED & MEMORY ACCESS TIME 

 The memory read access time of the plain MLD is 

directly dependent on the code size, i.e., a code with length 

73 needs 73 cycles, etc. Then, two extra cycles need to be 

added for I/O. On the other hand, the memory read access 

delay of the MLDD is only dependent on the word error rate 

(WER). If there are more errors, then more words need to be 

fully decoded. RFTS is not dependent on size and error. 

 

In Table 3, a comparison of the MLDD and RFTS 

techniques is provided for several values of N. Although this 

is only a best case scenario, because it is assumed that all 

words come without errors, it gives the idea of how much 

speed-up can be obtained in an ideal situation. In a real 

situation, a fraction of the words would have bit-flips. This 

fraction is represented by the WER. Since MLDD needs five 

cycles to handle correct words N+5 and for erroneous 

words, the average performance would be 

 

MLDD – performance = (1-WER).5+ WER.(N+5).  

 

Using this expression, the performance of the three 

techniques has been studied for different values of the WER. 

 

The first comment on these results is that the MLD 

technique has the worst performance, whose value is 

independent of the WER (i.e., it needs the same number of 

cycles to handle correct and erroneous data). And MLDD is 

very similar in this aspect, since both values are very close. 
 

 
 

Table.3. Speed-up for different code lengths 

 

 This small performance difference is 

compensated for with the area savings that MLDD 

provides. This difference is even smaller for large 

values of N and WER. Both the technique only detects 

and corrects fixed type of faults only. But our proposed 

technique (RFTS) is detected and corrects all type of 

faults. So it’s independent of word size and fault types. 
 

 

 

 

C. SIMULATION RESULT 
 

 
 

 

 

VII. CONCLUSION 

In this paper, Fault –detection mechanism, RFTS, 

has been presented based on filtering engine and Exact-

match engine. Exhaustive simulation test results show that 

the proposed technique is able to detect any pattern of faults 

at on-time process. This improves the performance of the 

design with respect to the traditional MLD and MLDD 

approach. 

 

On the other hand, the RFTS error detector module 

has been designed in a way that is independent of the code 

size. This makes its area overhead quite reduced compared 

with other traditional approaches such as Majority logic 

decoder(MLD) and Majority logic 

detector/decoder(MLDD).we have proposed a 

reconfigurable architecture error control framework to 

address the performance, energy and reliability issues  in a 

variable fault and dense environment. With the assistance of 

the reconfigurable framework, configuration of the error 

control codec used in the VLSI environment can consider 

both the fault conditions and delay time. As a result, delay, 

area, energy and reliability are simultaneously managed. In 
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future, this approach is motivated to solve the traffic and 

better to manage the fault injected in Network on Chip 

(NOC) links. 

 

  REFERENCES 

[1] Shih-Fu Liu, Pedro Reviriego, “Efficient Majority Logic 

Fault Detection With  Difference-Set codes for Memory 

Applications”, IEEE Trans.VLSI., VOL.20, NO.1,   

JANUARY 2012. 

 

[2]   M. A. Bajura et al., “Models and algorithmic limits for 

an ECC-based approach to hardening sub-100-nm SRAMs,” 

IEEE Trans. Nucl. Sci.,vol. 54, no. 4, pp. 935–945, Aug. 

2007. 

 

[3] J. von Neumann, “Probabilistic  synthesis of reliable 

organisms from  Unreliable components,” Automata           

Studies, pp. 43–98, 1956. 

 

 [4] R. Naseer and J. Draper, “DEC ECC design to improve 

memory  reliability in sub-100  nm                 technologies,” 

in Proc. IEEE ICECS,2008, pp.586–589 

 

[5] S. Lin and D. J. Costello, Error Control Coding, 2nd ed. 

Englewood Cliffs, NJ: Prentice-Hall, 2004. 

[6] I. S. Reed, “A class of multiple-error-correcting codes 

and the decoding scheme,” IRE Trans. Inf. Theory, vol. IT-

4, pp. 38–49, 1954. 

[7] J. L. Massey, Threshold Decoding. Cambridge, MA: 

MIT Press, 1963. 

[8] S. Ghosh and P. D. Lincoln, “Low-density parity check 

codes for error correction in  nanoscale memory,” SRI 

Comput. Sci. Lab. Tech. Rep.CSL-0703, 2007. 

[9] B. Vasic and S. K. Chilappagari, “An information 

theoretical framework for analysis      and design of 

nanoscale fault-tolerant memories based on low-density 

parity-check   codes,” IEEE Trans. Circuits Syst. I, Reg. 

Papers, vol. 54, no. 11, pp. 2438–2446,      Nov. 2007. 

[10] H. Naeimi and A. DeHon, “Fault secure encoder and 

decoder for NanoMemory   applications,” IEEE Trans. Very 

Large Scale Integr. (VLSI) Syst., vol. 17, no. 4, pp. 473–486, 

Apr. 2009. 

[11] E. Fredkin, “Trie memory,” Commun. ACM, vol. 3, pp. 

490–499, 1960. 

[12] R. S. Boyer and J. S. Moore, “A fast string searching 

algorithm,”Commun. ACM, vol. 20, pp. 762–772, 1977. 

[13] F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit rate 

packet patternmatching using TCAM,” in Proc. 12th IEEE 

Int. Conf. Netw. Protocols, 2004, pp. 174–183. 

[14] P. Piyachon and Y. Luo, “Efficient memory utilization 

on network processors for deep packet inspection,” 

presented at the ACM/IEEE Symp.Arch. for Netw. 

Commun. Syst., San Jose, CA, 2006. 

[15] C.-C. Wang, C.-J. Cheng, T.-F. Chen, and J.-S. Wang, 

“An adaptively dividable dual-port BiTCAM for virus-

detection processors in mobile devices,” IEEE J. Solid-State 

Circuits, vol. 44, no. 5, pp. 1571–1581, May 2009. 

[16] Z. K. Baker and V. K. Prasanna, “High-throughput 

linked-pattern matching for intrusion detection systems,” 

presented at the ACM Symp. Arch. for Netw. Commun. 

Syst., Princeton, NJ, 2005. 

[17] Chieh-jen cheng,Chao-ching wang, Wei-chun ku, Tie – 

Fu chen, Jinh-shyan wang “A Scalable High-perfomance 

Virus Detection Processor Against a large pattern set for 

Embedded Network Security,” IEEE Trans.VLSI 

Systems,vol.20,No.5 May 2012 
 

                  Authors Profile 

 

P.VEDHANAYAGI  received the 

B.E. degree in Electronics and 

Communication Engineering from the 

PSR Engineering College Sivakasi, 

Anna University, Chennai, India, in 

2008. Currently doing M.E. in VLSI      Design in 

Sethu Institute of Technology Kariapatti, Anna 

University Chennai, India. Her research interest 

includes VLSI Testing, Low Power VLSI, Networking 

and Wireless Communication. 

 

V. KARTHIK received the B.E. 

degree in electronics and 

communication engineering from 

National Engineering College, 

Kovilpatti, Anna University, 

Chennai, and received the 

M.Tech degree in VLSI Design 

from SATHYABAMA 

UNIVERSITY, India, in the year 

of 2009 and 2011 respectively. He is presently working 

as Assistant Professor, Department of Electronics and 

Communication Engineering at Sethu Institute of 

Technology India. He has published 9 research papers 

in the National & International Conferences. 
 

Dr.R.Ganesan received his B.E. 

Instrumentation & Control 

Engineering from Arulmigu 

Kalasalingam College of 

Engineering and ME 

(Instrumentation) from Madras 

Institute of Technology in the year 1991 and 1999 

respectively. He has completed his PhD from Anna 

University, Chennai, India in 2010. He is presently 

working as Professor and head in the department of 

M.E-VLSI Design at Sethu Institute of Technology, 

India. He has published more than 25 research papers 

in the National & International Journals/ Conferences.  

His research interests are VLSI design, Image 

Processing, Neural Networks and Genetic algorithms. 

 

 
 

 


