
International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
 Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.80-87

80

VLSI Design of Fault Tolerant System with

Reconfigurable Codes

Vedhanayagi.P Mr.V.Karthik Dr.R.Ganesan

 PG Scholar /VLSI Assistant Professor/Department of ECE Professor and Head of VLSI

Sethu Institute of Technology Sethu Institute of Technology Sethu Institute of Technology

 Virudhunagar, India Virudhunagar, India Virudhunagar, India

\

Abstract- Fault is one of the most challenging problems of VLSI

testing. In any system, Single piece of data is lost or

misintrupted, the meaning of large blocks of related data can

completely change. And single event upsets (SEUs) changes

the state of the digital circuits are becoming a major concern

for memory applications. It’s enable reliable Majority logic

decodable codes are suitable for memory applications due to

their capability to correct a large number of errors. However,

they require a large decoding time that impacts memory

performance. This paper presents an error-detection and

correction technique with reconfigurable codes .The proposed

fault-detection method significantly reduces memory access

time when there is no error in the data read. The technique

uses the Filtering Engine and Exact – matching flow engine

itself to detect failures, which makes the area overhead

minimal and keeps the extra power consumption low.

 Index Terms – ECC codes, SEUs, majority logic,

LDPC, memory.

I. INTRODUCTION
History of computing sounds like a magic trick-

squeezing more and more power into less and less space-it

is! What made it possible was the invention of the digital

Integrated circuits in 1958. Growing technology

improvement, hundred’s ,thousands, millions, or even

billions of electronic components are combined and create

multiple job onto tiny chips of silicon no bigger than a

fingernail. In over five decades of aggressive scaling,

CMOS transistor technology has rapidly progressed towards

nanotechnology- scale feature sizes. However, this

continuous shrinking of device dimensions has also strongly

affected the circuit performance [2]. Especially, SRAM

memory failure rates are increasing significantly, therefore

posing a major reliability concern for many applications.

Initially, the data words are encoded and then stored into the

memory. When the memory is read, the codeword is sent to

the output for further processing. At that receiving end an

error will be occur on that data. An error is a mismatch

between the expected circuit outputs and the actual circuit

outputs. Embedded memories are more challenging to test

and diagnose. Some commonly used mitigation techniques

are:

• Triple modular redundancy (TMR);

• Error correction codes (ECCs).

TMR is a special case of the von Neumann method [3]

consisting of three versions of the design in parallel, with a

majority voter selecting the correct output. As the method

suggests, the complexity overhead would be three times plus

the complexity of the majority voter and thus increasing the

power consumption. For memories, it turned out that ECC

codes are the best way to mitigate memory soft errors [1].

For terrestrial radiation environments where there is a low

soft error rate (SER), codes like single error correction and

double error detection (SEC–DED), are a good solution, due

to their low encoding and decoding complexity. However,

as a consequence of augmenting integration densities, there

is an increase in the number of soft errors, which produces

the need for higher error correction capabilities [2], [4]. The

usual multierror correction codes, such as Reed–Solomon

(RS) or Bose–Chaudhuri– Hocquenghem (BCH) are not

suitable for this task. The reason for this is that they use

more sophisticated decoding algorithms, like complex

algebraic (e.g., floating point operations or logarithms)

decoders that can decode in fixed time, and simple graph

decoders, that use iterative algorithms (e.g., belief

propagation). Both are very complex and increase

computational costs [5]. Among the ECC codes that meet

the requirements of higher error correction capability and

low decoding complexity, cyclic block codes have been

identified as good candidates, due to their property of being

majority logic (ML) decodable [6], [7]. A subgroup of the

low-density parity check (LDPC) codes, which belongs to

the family of the ML decodable codes, has been researched

in [8]–[10].

This paper explores the idea of using the ML

decoder circuitry as a fault detector so that read operations

are accelerated with almost no additional hardware cost. The

results show that the properties of RC-LDPC enable

efficient fault detection.

The remainder of this paper is organized as

follows. Section II gives an overview of existing ML

detector/decoder; Section III presents the proposed method;

Section IV Filtering engine; Section V discusses about the

exact-match flow and VI the results obtained for the

different versions in respect to effectiveness, performance,

and area and power consumption. Finally, Section VII

discusses conclusions and gives an outlook onto future

work.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
 Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.80-87

81

II.EXISTING MAJORITY LOGIC

DETECTOR/DECODER (MLDD)

A.PLAIN ML DECODER

 MLD was first mentioned in [7] for the Reed–

Muller codes. Then, it was extended and generalized in [8]

for all types of systematic linear block codes that can be

totally orthogonalized on each codeword bit. The main

reason for using ML decoding is that it is very simple to

implement and thus it is very practical and has low

complexity.

Fig.1.Memory system schematic with MLD

A generic schematic of a memory system is

depicted in Fig.1. for the usage of an ML decoder. Initially,

the data words are encoded and then stored in the memory.

When the memory is read, the codeword is then fed through

the ML decoder before sent to the output for further

processing. In this decoding process, the data word is

corrected from all bit-flips that it might have suffered while

being stored in the memory.

 The drawback of ML decoding is that, for a coded

word of N-bits, it takes cycles in the decoding process,

posing a big impact on system performance. This algorithm

needs as many cycles as the number of bits in the input

signal, which is also the number of taps, in the decoder. This

is a big impact on the performance of the system, depending

on the size of the code. For example, for a codeword of 73

bits, the decoding would take 73 cycles, which would be

excessive for most applications.

B.ML DETECTOR/DECODER

This section presents a modified version of the ML

decoder that improves the designs presented before. Starting

from the original design of the ML decoder introduced in,

the proposed ML detector/decoder (MLDD) has been

implemented using the difference-set cyclic codes (DSCCs).

This code is part of the LDPC codes, and, based on their

attributes, they have the following properties:

• Ability to correct large number of errors;

• Sparse encoding, decoding and checking circuits

synthesizable into simple hardware;

• Modular encoder and decoder blocks that allow an

efficient hardware implementation;

• Systematic code structure for clean partition of

information and code bits in the memory.

 An important thing about the DSCC is that its

systematical distribution allows the ML decoder to perform

error detection in a simple way, using parity check sums.

However, when multiple errors accumulate in a single word,

this mechanism may misbehave, as explained in the

following.

Fig.2. Single check equation of a N=73 ML decoder A) One bit-

flips B) Two bit-flips C) Three bit-flips

In the simplest error situation, when there is a bit-

flip in a code word, the corresponding parity check sum will

be “1,” as shown in Fig. 2(A). This figure shows a bit-flip

affecting bit 42 of a code word with length N=73 and the

related check sum that produces a “1.” However, in the case

of Fig.2 (B), the codeword is affected by two bit-flips in bit

42 and bit 25, which participate in the same parity check

equation. So, the check sum is zero as the parity does not

change. Finally, in Fig.2(C), there are three bit-flips which

again are detected by the check sum (with a “1”). As a

conclusion of these examples, any number of odd bit flips

can be directly detected, producing a “1” in the

corresponding BJ. The problem is in those cases with an

even numbers of bit-flips, where the parity check equation

would not detect the error. In this situation, the use of a

simple error detector based on parity check sums does not

seem feasible, since it cannot handle “false negatives”

(wrong data that is not detected). However, the alternative

would be to derive all data to the decoding process (i.e., to

decode every single word that is read in order to check its

correctness), as explained in previous sections, with a large

performance overhead.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
 Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.80-87

82

Since performance is important for most

applications, we have chosen an intermediate solution,

which provides a good reliability with a small delay penalty

for scenarios where up to five bit-flips may be expected.

This proposal is one of the main contributions of this

project.

As described before, the ML decoder is a simple

and powerful decoder, capable of correcting multiple

random bit-flips depending on the number of parity check

equations. It consists of five parts: a cyclic shift register; an

XOR matrix; a majority gate; an XOR gate, Control unit

and tristate buffer as illustrated in Fig. 3.

Fig.3. Schematic of MLDD

The figure shows the basic ML decoder with an N-

tap shift register, an XOR array to calculate the orthogonal

parity checksums and a majority gate for deciding if the

current bit under decoding needs to be inverted. Those

components are the same as the ones for the plain ML

decoder shown in Fig. 3. The additional block to perform

the error detection is illustrated in Fig.3.as:

1) The control unit which triggers a finish flag when no

errors are detected after the third cycle and
2) The output tristate buffers are always in high

impedance unless the control unit sends the finish signal so

that the current values of the shift register are forwarded to

the output y.

The control unit manages the detection process. It

uses a counter that counts up to three, which distinguishes

the first three iterations of the ML decoding. In these first

three iterations, the control unit evaluates the by combining

them with the OR1 function. This value is fed into a three-

stage shift register, which holds the results of the last three

cycles. In the third cycle, the OR2 gate evaluates the content

of the detection register. When the result is “0,” the FSM

sends out the finish signal indicating that the processed

word is error-free. In the other case, if the result is “1,” the

ML decoding process runs until the end.

This clearly provides a performance improvement

respect to the traditional method. Most of the words would

only take three cycles (five, if we consider the other two for

input/output) and only those with errors (which should be a

minority) would need to perform the whole decoding

process. The schematic for this memory system is very

similar to Fig.1, adding the control logic in the MLDD

module.

Given a word read from a memory protected with

DSCC codes, and affected by up to five bit-flips, all errors

can be detected in only three decoding cycles. This is a huge

improvement over the simpler case, where N decoding

cycles are needed to guarantee that errors are detected. The

proof of this hypothesis is very complex from the

mathematical point of view. Therefore, two alternatives

have been used in order to prove it, which are given here.

 • Through simulation, in which exhaustive experiments

have been conducted, to effectively verify that the

hypothesis applies. It’s explained in this section.

• Through a simplified mathematical proof for the particular

case of two bit-flips affecting a single word. It’s explained

at Different-set Cyclic Codes. For simplicity, and since it is

convenient to first describe the chosen design, let us assume

that the hypothesis is true and that only three cycles are

needed to detect all errors affecting up to five bits. This is

proved in MLDD algorithm.

III.PROPOSED METHOD

Error detection and correction is one of the most

challenging problems of VLSI testing. In this paper, fault

free data’s are achieved using a novel architecture on

reconfigurable platform. This architecture produces a fault

free output on time of the process. So there is no delay in

this novel architecture. It’s used to detect and correct all

types of possible faults. After detection of error, all the

faults are stored in the fault database with respect to their

location. Existing method having lot of computational

complexity. In novel architecture reduces the complexity.

Architecture contains two major blocks; Filtering Engine

and Matching Engine.

The filtering engine is a front-end module

responsible for filtering out secure data efficiently and

indicating to candidate positions that patterns possibly exist

at the first stage. The exact-matching engine is a back-end

module responsible for verifying the alarms caused by the

filtering engine. Only a few unsaved data need to be

checked precisely by the exact-matching engine in the

second stage.

Both engines have individual memories for storing

significant information. For cost reasons, only a small

amount of significant information regarding the patterns can

be stored in the filtering engine’s on-chip memory. In this

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
 Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.80-87

83

case, we used a 32-kB on-chip memory for the fault

database, which contained more than 30 000 fault codes and

localized most of the computing inside the chip.

Conversely, the exact-matching engine not only

stores the entire pattern in external memory but also

provides information to speed up the matching process. Our

exact-matching engine is space-efficient and requires only

four times the memory space of the original size pattern set.

The size of a pattern set is the sum of the pattern length for

each pattern in the given pattern set; in other words, it is the

minimum size of the memory required to store the pattern

set for the exact-matching engine. In this case, 8 MB of off-

chip memory was required for the fault database (2 MB).

The proposed exact-matching engine also supports

data prefetching and caching techniques to hide the access

latency of the off-chip memory by allocating its data

structure well. The other modules include a text buffer and a

text pump that prefetches text in streaming method to

overlap the matching progress and text reading. A load/store

interface was used to support bandwidth sharing. The

architecture of reconfigurable testing shown in fig.4.

Fig.4. Reconfigurable Testing Architecture

This proposed architecture has six steps shown in

Fig. 5 for finding patterns. Initially, a pattern pointer is

assigned to point to the start of the given word at the

filtering stage. Suppose the pattern matching processor

examines the word from left to right. The filtering engine

fetches a piece of word from the word buffer according to

the pattern pointer and checks it by a shift-signature table. If

the position indicated by the pattern pointer is not a

candidate position, then the filtering engine skips this piece

of word and shifts the pattern pointer rights multiple

characters to continue to check the next position. The shift-

signature table created by the data structure used the Bloom

filter algorithm, and it provides layer filtering. If layer is

missing their filter, the processor enters the exact-matching

phase. The next section has details about the shift-signature

table.

After filtering engine filters the word, the exact-

matching engine precisely verifies this word by retrieving

a trie structure [11]. This structure divides a pattern into

multiple sub-patterns and systematically verifies it. The

exact-matching engine generally has four steps for each

check. First, the exact-matching engine gets a slice of the

word and hashes it to generate the trie address. Then, the

exact-matching engine fetches the trie node from memory.

This step causes a long latency due to the access time of the

off-chip memory.

Fig.5. Two-Phase execution

Finally, the exact-matching engine compares the

trie node with this slice. When this node is matched, the

exact-matching engine repeatedly executes the above steps

until it matches or misses a pattern. The pattern matching

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
 Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.80-87

84

then backs out to the filtering engine to search for the next

candidate. The details of table generation and matching flow

are explained in the following sections.

IV. FILTERING ENGINE (FE)

Designs that feature filters indicate that the action

behind these filters is costly and necessary. In this work, the

overall performance strongly depends on the filtering

engine. Providing a high filter rate with limited space is the

most important issue. We introduce a classical filtering

algorithm for pattern matching in the following sections. We

then show how to merge their structures in the same space

to improve the filter rate.

A. Bloom Filter Algorithm

A Bloom filter is a space-efficient data structure

used to test whether an element exists in a given set. This

algorithm is composed of different hash functions and a

long vector of bits. Initially, all bits are set to 0 at the

preprocessing stage. To add an element, the Bloom filter

hashes the element by these hash functions and gets

positions of its vector. The Bloom filter then sets the bits at

these positions to 1. The value of a vector that only contains

an element is called the signature of an element. To check

the membership of a particular element, the Bloom filter

hashes this element by the same hash functions at run time,

and it also generates positions of the vector. If all of these

bits are set to 1, this query is claimed to be positive,

otherwise it is claimed to be negative. The output of the

Bloom filter can be a false positive but never a false

negative. Therefore, some pattern matching algorithms

based on the Bloom filter must operate with an extra exact-

matching algorithm. However, the Bloom filter still features

the following advantages: 1) it is a space-efficient data

structure; 2) the computing time of the Bloom filter is scaled

linearly with the number of patterns; and 3) the Bloom filter

is independent of its pattern length.

Fig.6. Bloom Filter matching process

Fig. 6 describes a typical flow of pattern matching

by Bloom filters. This algorithm fetches the prefix of a

pattern from the word and hashes it to generate a signature.

Then, this algorithm checks whether the signature exists in

the bit vector. If the answer is yes, it shifts the search

window to the right by one character for each comparison

and repeats the above step to filter out safe data until it finds

a candidate position and launches exact-matching.

B. Shift-Signature Algorithm

 The proposed algorithm re-encodes the shift table

to merge the signature table into a new table named the

shift-signature table. The shift-signature table has the same

size as the original shift table, as its width and length are the

same as the original shift table. There are two fields, S-flag

and carry, in the shift signature table. The carry field has

two types of data: a shift value and a signature. These two

data types are used by two different algorithms. Thus, the S-

flag is used to indicate the data type of a carry. The filtering

engine can then filter the word using a different algorithm

while providing a higher filter rate. The method used to

merge these two tables is described as follows.

First, the algorithm generates two tables, a shift

table and signature table, at the preprocessing stage. The

generation of the shift table is the same as in the normal

filter algorithm. The shift table is used as the primary filter.

The signature table could be considered a set of the bit

vector of the Bloom filter, and it is used for the second-level

filtering. The signature table’s generation is similar to the

Bloom filter but is not identical; it hashes the tail characters

of patterns to generate their signatures instead of the prefix.

Generated signatures are mapped onto the signature table

and indexed by bad-characters, which have shift values of

zero in the shift table. In other words, a pattern is assigned

a zero shift value in the shift table by its last characters,

and it uses the same index to locate its signature in the

signature table. After the shift table and signature table are

generated, the algorithm re-encodes the shift value into two

fields: an S-flag and a carry in the shift-signature table. The

S-flag is a 1-bit field used to indicate the data type of the

carry. Two data types, shift value or signature, are defined

for a carry. The size and width of the shift-signature table

are the same as those of the original shift table. To merge

these two tables, the algorithm maps each entry in the shift

table and signature table onto the shift-signature table. For

the non-zero shift values, the S-flags are set, and their

original shift values are cut out at 1-bit to fit their carries.

Conversely, for the zero shift values, their S-flags are clear,

and their carries are used to store their signatures. In this

method, all of the entries in the shift-signature table

contribute to the filtering rate at run time. Because of the

address collision of bad-characters, most entries contain less

than half of the maximum shift distance for a large pattern

set. Therefore, although this method sacrifices the maximum

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
 Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.80-87

85

shift distance, the filter rate is not reduced but rather

improved.

V.EXACT-MATCH ENGINE (EME)

The EME must verify the false positives when the

filtering engine alerts. It also precisely identifies patterns for

upper-layer applications. Most exact-match algorithms use

the two kinds of trie structures shown in Fig. 7, loose and

compact tries, to establish their pattern databases. Both trie

structures have their merits. The AC algorithm uses loose

tries, which check each input character in a constant amount

of time because of their fan-out states for all possible input

characters. Thus, the input data do not affect the AC-based

algorithm’s performance, but their memory requirements

increase exponentially with pattern size. Unlike loose tries,

compact tries construct pattern databases with two pointers,

sibling and child, to reduce their memory requirements.

However, this method has potential performance problems

because it may redundantly search link lists formed by

sibling pointers. Despite this limitation, compact tries are

still highly practical because, in practice, attack texts are not

easy to generate. Attacks can be avoided by removing

patterns that cause attacks before constructing the pattern

database. For this reason, we use compact tries as our exact-

matching engine’s algorithm, and we propose several

solutions to mitigate the effect of algorithmic attacks. Fig.8.

shows exact-matching flow.

Fig.7. a) Compact trie b) FSM of AC algorithm

Fig.8. Exact-matching Flow

VI.RESULTS

A.AREA

As mentioned several times, this is compensated

with a clear savings in area. To study this, the three designs

have been implemented in VHDL and synthesized, for

different values of N, using a XC65LX75 device. The

obtained results are depicted, in number of equivalent gates,

in Table 1.

Table.1. synthesis results for three designs with different code lengths

Table.2. synthesis results for RFTS with different code lengths

The conclusions on the area results are given as follows.

• The MLD design requires large area compared with the

other two designs. However, as seen before, the

performance results are not very good.

•The MLDD version has a very similar performance to SFD;

however it requires a much lower area overhead, ranging

from 29.1% to 31.2%.

• The Reconfigurable Fault Tolerant System (RFTS) version

has a very similar performance to MLDD; however it

requires a much lower area, ranging from 44.16% to51.28%

of overhead reduced.

These conclusions can be extrapolated to

power. The overhead reduced by RFTS, contrary to the

MLDD case.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
 Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.80-87

86

B. SPEED & MEMORY ACCESS TIME

 The memory read access time of the plain MLD is

directly dependent on the code size, i.e., a code with length

73 needs 73 cycles, etc. Then, two extra cycles need to be

added for I/O. On the other hand, the memory read access

delay of the MLDD is only dependent on the word error rate

(WER). If there are more errors, then more words need to be

fully decoded. RFTS is not dependent on size and error.

In Table 3, a comparison of the MLDD and RFTS

techniques is provided for several values of N. Although this

is only a best case scenario, because it is assumed that all

words come without errors, it gives the idea of how much

speed-up can be obtained in an ideal situation. In a real

situation, a fraction of the words would have bit-flips. This

fraction is represented by the WER. Since MLDD needs five

cycles to handle correct words N+5 and for erroneous

words, the average performance would be

MLDD – performance = (1-WER).5+ WER.(N+5).

Using this expression, the performance of the three

techniques has been studied for different values of the WER.

The first comment on these results is that the MLD

technique has the worst performance, whose value is

independent of the WER (i.e., it needs the same number of

cycles to handle correct and erroneous data). And MLDD is

very similar in this aspect, since both values are very close.

Table.3. Speed-up for different code lengths

 This small performance difference is

compensated for with the area savings that MLDD

provides. This difference is even smaller for large

values of N and WER. Both the technique only detects

and corrects fixed type of faults only. But our proposed

technique (RFTS) is detected and corrects all type of

faults. So it’s independent of word size and fault types.

C. SIMULATION RESULT

VII. CONCLUSION

In this paper, Fault –detection mechanism, RFTS,

has been presented based on filtering engine and Exact-

match engine. Exhaustive simulation test results show that

the proposed technique is able to detect any pattern of faults

at on-time process. This improves the performance of the

design with respect to the traditional MLD and MLDD

approach.

On the other hand, the RFTS error detector module

has been designed in a way that is independent of the code

size. This makes its area overhead quite reduced compared

with other traditional approaches such as Majority logic

decoder(MLD) and Majority logic

detector/decoder(MLDD).we have proposed a

reconfigurable architecture error control framework to

address the performance, energy and reliability issues in a

variable fault and dense environment. With the assistance of

the reconfigurable framework, configuration of the error

control codec used in the VLSI environment can consider

both the fault conditions and delay time. As a result, delay,

area, energy and reliability are simultaneously managed. In

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
 Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.80-87

87

future, this approach is motivated to solve the traffic and

better to manage the fault injected in Network on Chip

(NOC) links.

 REFERENCES

[1] Shih-Fu Liu, Pedro Reviriego, “Efficient Majority Logic

Fault Detection With Difference-Set codes for Memory

Applications”, IEEE Trans.VLSI., VOL.20, NO.1,

JANUARY 2012.

[2] M. A. Bajura et al., “Models and algorithmic limits for

an ECC-based approach to hardening sub-100-nm SRAMs,”

IEEE Trans. Nucl. Sci.,vol. 54, no. 4, pp. 935–945, Aug.

2007.

[3] J. von Neumann, “Probabilistic synthesis of reliable

organisms from Unreliable components,” Automata

Studies, pp. 43–98, 1956.

 [4] R. Naseer and J. Draper, “DEC ECC design to improve

memory reliability in sub-100 nm technologies,”

in Proc. IEEE ICECS,2008, pp.586–589

[5] S. Lin and D. J. Costello, Error Control Coding, 2nd ed.

Englewood Cliffs, NJ: Prentice-Hall, 2004.

[6] I. S. Reed, “A class of multiple-error-correcting codes

and the decoding scheme,” IRE Trans. Inf. Theory, vol. IT-

4, pp. 38–49, 1954.

[7] J. L. Massey, Threshold Decoding. Cambridge, MA:

MIT Press, 1963.

[8] S. Ghosh and P. D. Lincoln, “Low-density parity check

codes for error correction in nanoscale memory,” SRI

Comput. Sci. Lab. Tech. Rep.CSL-0703, 2007.

[9] B. Vasic and S. K. Chilappagari, “An information

theoretical framework for analysis and design of

nanoscale fault-tolerant memories based on low-density

parity-check codes,” IEEE Trans. Circuits Syst. I, Reg.

Papers, vol. 54, no. 11, pp. 2438–2446, Nov. 2007.

[10] H. Naeimi and A. DeHon, “Fault secure encoder and

decoder for NanoMemory applications,” IEEE Trans. Very

Large Scale Integr. (VLSI) Syst., vol. 17, no. 4, pp. 473–486,

Apr. 2009.

[11] E. Fredkin, “Trie memory,” Commun. ACM, vol. 3, pp.

490–499, 1960.

[12] R. S. Boyer and J. S. Moore, “A fast string searching

algorithm,”Commun. ACM, vol. 20, pp. 762–772, 1977.

[13] F. Yu, R. H. Katz, and T. V. Lakshman, “Gigabit rate

packet patternmatching using TCAM,” in Proc. 12th IEEE

Int. Conf. Netw. Protocols, 2004, pp. 174–183.

[14] P. Piyachon and Y. Luo, “Efficient memory utilization

on network processors for deep packet inspection,”

presented at the ACM/IEEE Symp.Arch. for Netw.

Commun. Syst., San Jose, CA, 2006.

[15] C.-C. Wang, C.-J. Cheng, T.-F. Chen, and J.-S. Wang,

“An adaptively dividable dual-port BiTCAM for virus-

detection processors in mobile devices,” IEEE J. Solid-State

Circuits, vol. 44, no. 5, pp. 1571–1581, May 2009.

[16] Z. K. Baker and V. K. Prasanna, “High-throughput

linked-pattern matching for intrusion detection systems,”

presented at the ACM Symp. Arch. for Netw. Commun.

Syst., Princeton, NJ, 2005.

[17] Chieh-jen cheng,Chao-ching wang, Wei-chun ku, Tie –

Fu chen, Jinh-shyan wang “A Scalable High-perfomance

Virus Detection Processor Against a large pattern set for

Embedded Network Security,” IEEE Trans.VLSI

Systems,vol.20,No.5 May 2012

 Authors Profile

P.VEDHANAYAGI received the

B.E. degree in Electronics and

Communication Engineering from the

PSR Engineering College Sivakasi,

Anna University, Chennai, India, in

2008. Currently doing M.E. in VLSI Design in

Sethu Institute of Technology Kariapatti, Anna

University Chennai, India. Her research interest

includes VLSI Testing, Low Power VLSI, Networking

and Wireless Communication.

V. KARTHIK received the B.E.

degree in electronics and

communication engineering from

National Engineering College,

Kovilpatti, Anna University,

Chennai, and received the

M.Tech degree in VLSI Design

from SATHYABAMA

UNIVERSITY, India, in the year

of 2009 and 2011 respectively. He is presently working

as Assistant Professor, Department of Electronics and

Communication Engineering at Sethu Institute of

Technology India. He has published 9 research papers

in the National & International Conferences.

Dr.R.Ganesan received his B.E.

Instrumentation & Control

Engineering from Arulmigu

Kalasalingam College of

Engineering and ME

(Instrumentation) from Madras

Institute of Technology in the year 1991 and 1999

respectively. He has completed his PhD from Anna

University, Chennai, India in 2010. He is presently

working as Professor and head in the department of

M.E-VLSI Design at Sethu Institute of Technology,

India. He has published more than 25 research papers

in the National & International Journals/ Conferences.

His research interests are VLSI design, Image

Processing, Neural Networks and Genetic algorithms.

