
International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.9, September 2014 DOI:10.15693/ijaist/2014.v3i9.45-49

45

SystemVerilog-based Verification Environment

Employing SystemC OOP

 Gi-Yong Song Young-Jin Oh

Professor/Department of Semiconductor Professor/Department of Semiconductor

Engineering College of Electrical Computer Engineering College of Electrical Computer

Engineering Chungbuk National University, Engineering Chungbuk National University,

Cheongju, Chungbuk, Korea Cheongju, Chungbuk, Korea

Abstract—When a SoC (system-on-a-chip) grows larger,

connections between IPs become more complex. In addition, as

contemporary real chips are usually multi-functional, the

interaction between various IPs must be verified at a system

level. SystemVerilog has useful components for modeling and

verification at system-level, but the OOP of SystemVerilog

supports only single inheritance. So, SystemVerilog poses a limit

to constructing verification environment in a diverse manner.

SystemC is a language for system level design at multiple

abstraction levels and supports multiple inheritance. We adopt

SystemC to employ multiple inheritance, and combine it with the

SystemVerilog-based verification environment. The environment

can select verification routines during verification process using

SystemVerilog method such as callback or constraint, making it a

reconfigurable one.
Index terms - Verification environment, SystemVerilog,

SystemC OOP, Multiple inheritance,

I. INTRODUCTION

Since the early 1980s, when schematic capture was
introduced as an efficient way to design very large-scale
integration circuits[1], the design methodology has seen a lot
of progress, and today’s HDL-based designs are portable and
independent of technology, allowing designer to modify and
re-use designs to keep pace with improvements in technology.
When we deal with a complex digital system with several
components, system-level design and functional verification
methodology based on a high-level abstraction becomes more
important to increase the productivity of a digital system
design.

We need hardware units for dedicated functions and
peripheral devices, linked together by communications
network for complete system.

The typical functional verification of hardware mainly uses
BFM(bus functional model) of a design because most IPs for a
system are connected to and controlled through a bus. As
contemporary chips usually are multifunctional, the
interactions between the various devices need to be verified at
system-level[2][4-5]. For system-level verification, several
objects of environment class are used so that each object

verifies the functions of corresponding device. So the
components of environment class need to be designed with
multiple inheritance in order to increase code reusability
because the internal structures and functions of environment
class objects are alike each other.

SystemVerilog which is an extension to Verilog HDL has
characteristics of both hardware description languages and
hardware verification language[3][9-13]. SystemC extends
C++ by introducing capabilities for modeling hardware. It is a
single language for both hardware modeling and software
coding[3][7-8][11-12]. As internal structure and functionality
of environment class objects are alike each other, the
components in environment class need to be designed with
multiple inheritance to increase code reusability.

In order to verify a system consisting of several IPs, we
need to implement a new verification environment for each
communication protocols and bus architectures[2]. If
components are implemented using multiple inheritance of
SystemC, the verification environment can be reconfigured
through partial change of components. In a co-verification of
hardware and software, IPC(interprocess communication) is
adopted to communicate with other units[11-12]. We use
callback to select verification routine with SystemVerilog
mailbox or with SystemC FIFO channel.

II. SYSTEMVERILOG & SYSTEMC

Looking at the two languages, SystemC and

SystemVerilog, it is obvious that SystemVerilog extends the
Verilog HDL scope to object orientation, while SystemC
extends the C/C++ scope toward hardware. Both languages
support such concepts as OOP, events, interface and
signal[18].

A. Layerd Testbench of SystemVerilog

SystemVerilog is a set of extensions to the Verilog HDL,
allowing higher level modeling and efficient verification of
large digital systems [10]-[13]. SystemVerilog adds hardware
functional verification constructs such as OOP, randomization,
thread, IPC, etc.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.9, September 2014 DOI:10.15693/ijaist/2014.v3i9.45-49

46

A key concept for any modern verification methodology is
the layered testbench which helps control the
complexity[6][10] which frequently occurs in case of a
testbench design itself, by breaking the problem into
manageable pieces. Testbench creates stimulus, and applies it
to DUT in order to check operations of DUT. And it ascertains
whether the behavior is correct using response capture.

SystemVerilog is a set of extensions to Verilog HDL.
Those extensions enable us to model hardware at a higher
level and to make more efficient verification for large systems.
SystemVeilog adds such constructs as OOP, randomization
thread and IPC for functional verification of hardware. Still,
SystemVerilog allows only single inheritance. Two structures
of a layered testbench using SystemVerilog are introduced in
[10][11].

We chose the structure of a layered testbench in [11] here.
The whole structure is shown in Figure.1.

Figure 1. Structure of a layered testbench

B. Multiple Inheritance of SystemC

A SoC performing multiple functions consists of several
devices, so it is necessary to verify the interaction between
devices. SystemC is a language for system level design at
multiple abstraction levels. Being built on standard C/C++
language, the SystemC describes functions and
communications at various levels of abstraction. As it supports
concepts of time, hardware data type, concurrency, and
hierarchy[8-9]. SystemC uses a layered approach that allows
for the flexibility of introducing new, higher-level constructs
sharing an efficient simulation. The base layer of SyatemC
provides an event-driven simulation kernel to work with event
and processes in an abstract manner[8].

As multiple inheritance which is one of the important
characteristics of OOP provides polymorphism, it is easy to
reconfigure components through a pointer of the base class.
By defining a component class of the environment as a
derived class out of base sub-classes representing operational
diversity, code reusability can significantly be improved. The
definition of each component class in such a way as described
above should employ multiple inheritance in the course of
class derivation in order to gain code reusability. Applying
multiple inheritance to the design of an object at behavioral
level does not scarify the simulation performance. In the

result, employing multiple inheritance of SystemC makes the
design phase of verification environment simple and easy.

As an example, Figure. 2 shows a hierarchical structure of
generator component employing multiple inheritance. The
SystemC module, sc_module, is a base for designing a
module. And Gen_base class and Env_base class contain
fundamental operations of generator component itself and
verification process, respectively.

sc_module Gen_base Env_base

sc_simcontext*
rand_testvector(); configure();

sc_get_curr_simcontext();
wait_setup();

 send_testvector();

sc_module(const char* nm)
report();

 // ...

// ...
// ...

 Generator

 rand_testvector();

 send_testvector();

 configure();

 wait_setup();

 // ...

Figure. 2. Hierarchical structure of generator component

III. VERIFICATION ENVIRONMENT WITH SYSTEMVERILOG
EMPLOYING SYSTEMC OOP

The components of environment class can be defined as a

single flat class that has variables and routines declared and
defined using SystemVerilog. However, if class has a flat
hierarchy, it is hard to expand upon existing code in an
organized way without directly editing the code. The
components are designed with SystemC constructs, and
classes are linked to the SystemVerilog-based verification
environment in this paper.

By combining SystemVerilog methods and components
with SystemC, a reconfigurable verification environment is
implemented. To link generator component to the verification
environment, generator component should be modified with
SystemVerilog DPI[18] and ModelSim macro[19], and
compiled to shared library for the SystemVerilog-based
verification environment.

For this reason, component of environment class is
designed with SystemC constructs as SystemVerilog does not
allow multiple inheritance, and linked to the SystemVerilog-
based verification environment

As shown in Figure. 3 SystemVerilog module has to
import the methods of generator component employing
multiple inheritance of SystemC constructs, using DPI-SC
modifier in order to link it to the SystemVerilog-based
verification environment. The DPI-SC modifier indicates to
SystemVerilog compiler that those methods of generator
component are import functions/tasks defined in the SystemC
shared library. The sub-blocks of top-level module are able to
reference the imported functions/tasks through SystemVerilog
search rule. Each variable that is passed through the DPI-SC
has two matching definitions; one for the SystemVerilog side,

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.9, September 2014 DOI:10.15693/ijaist/2014.v3i9.45-49

47

and one for the SystemC side. It is designer's responsibility to
use compatible type

module top ;

Generator i_ Gen();
import “DPI-SC” context function
void Gen_rand_testvector output bit [33:0]
i); import “DPI-SC” context function
void Gen_send_testvector (bit [33:0] i);
import “DPI-SC” context function void Gen_configure();
import “DPI-SC” context task Gen_wait_setup();
// …

bit RESETn;
bit CLK;
DUT_if DUT_IF (CLK, RESETn);
DUT1 DUT1(DUT_IF)
// …
endmodule;

Figure. 3. Partial code of top module of SystemVerilog

DUT_if which is defined using the interface constructor
includes bus signals as well as read/write tasks which are
internally defined to drive signals under bus read/write
protocols. The SystemVerilog layered testbench can drive the
signals of DUT.

Figure.4 shows the structure of the verification
environment including components of the SystemC design
units such as generator and FIFO channel. The generator uses
the multiple inheritance of SystemC to replace an existing
counterpart of SystemVerilog.

Test

Generator
 Environment

 SystemC design unit

 function/task call

agent Scoreboard Checker

 Mail box

Driver assertions Monitor FIFO channel

 Virtual interface

 Design Unit

 Test

Figure.4 The verification environment including SytemC design units.

We can configure the environment to verify through
selection of components at the simulation phase, and also
change the verification routine using the callback method. The
callback routine can be defined differently in each test. As a
result, the test can add new functionality to the driver using
callbacks without editing the driver class[3]. A callback
method created in the top-level module is called from the
driver in the verification environment.

We can configure the environment to verify through
selection of components at the three simulation phase[12].
 Step 1 : Build phase

- Generate configuration
- Build environment

allocate and connect the testbench
components based on the configuration

- Reset the DUT
- Configure the DUT

 Step 2 : Run phase

-Start environment

run the testbench components such as BFMs
and stimulus generators.

-Run the test
start the test and then wait for it to complete.

 Step 3 : Wrap-up phase -

Sweep

after the lowest layer completes, wait for

the final transactions to drain out of the

DUT.

-Report

create the final report on whether the test
passed or failed

Figure. 5 shows how we reconfigured the test module using
callback and ID as selection variables.

program test(ahb_ifahb_if_);
`include "Environment.sv"

Environment env_;
bit [1:0] ID;
initial begin

env_ = new (ahb_if_);
begin

ID = randomize();
end

env_.gen_cfg (ID);
env_.build ();

begin
Driver_cbssw = new();
env_.drv_.cbsq.push_back(sw);

end
env_.run ();
env_.wrap_up ();

end
endprogram

Figure 5. The callback method of systemVerilog
.

IV. EXPERIMENTAL RESULTS

The generator uses multiple inheritance of SystemC to
replace an existing part of SystemVerilog. The execution
times of generators corresponding to each design method are
shown in Figure. 6 for several number of test vectors.

The performance of each generator, one designed with
SystemC and the other designed with SystemVerilog, is very
similar, but as the number of test vector grows, simulation
time is observed to increase

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.9, September 2014 DOI:10.15693/ijaist/2014.v3i9.45-49

48

Figure 6. Comparison of performance of design units

The results from each verification environment constructed
with mailbox, or FIFO channel is shown in Figure. 7, Figure.
8, respectively.

Figure 7. Results in case of a SystemVerilog mailbox

Figure 8. Results in case of a SystemC FIFO channel

We ascertain that various generators can be configured

using multiple inheritance of SystemC, and verification
environment also can be reconfigured by selecting routines
with SystemVerilog methods. Communication among various
modules is made using elementary SystemC channel such as
sc_signal, sc_buffer or sc_fifo. The sc_signal and sc_buffer
channel perform an operation of input or output per data
instead of processing through data grouping. Comparison of
performance of each channel is shown in Figure. 9.

Figure 9. Comparison of performance of each channel

V. CONCLUSIONS

As the OOP of SystemVerilog does not allow multiple
inheritance, we have constraints on the configuration of the
verification platform. However, SystemC can secure
polymorphism by allowing multiple inheritance. We adopt
SystemC to design a component and link SystemC design
units to the verification environment using SystemVerilog DPI
and ModelSim macro. We created various verification
platforms through a combination of multiple inheritance
applied to components of SystemC and SystemVerilog-based
verification platform in this paper.

The generator and user-defined channel were designed
with SystemC constructs employing multiple inheritance, and
then applied as part of a SystemVerilog-based verification
platform. The operation of the environment with SystemC
design units was validated through simulation on a DUT, and
the performance of a SystemC generator is roughly the same
as a SystemVerilog one.

Applying SystemC OOP such as multiple inheritance to
the design of an object raises source code reusability without
sacrificing the simulation performance. Also, it allows
reconfiguration of the verification platform through a
combination of necessary components using SystemC multiple
inheritance. The reconfigurability of the verification
environment based on OOP is gained easily.

ACKNOWLEDGEMENT

“This work was supported by the research grant of the
Chungbuk National University in 2011”

REFERENCES

[1]. Weng Fook Lee, “Verilog Coding for Logic Synthesis”,
Wiley & Sons inc. 2011.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.9, September 2014 DOI:10.15693/ijaist/2014.v3i9.45-49

49

[2]. Jason R. Andrews, “Co-Verification of Hardware and
Software for ARM SoC Design”,Elsevier Inc., 2005.

[3]. Myoung-Kenu You, Gi-Yong Song, “SystemVerilog-based
Verification Environment Employing Multiple Inheritance of
SystemC”. IEICE TRANS. Vol E-93A, No 5, May 2010,
pp.989-992.

[4]. Ando Ki, “SoC Design and Verification : Methodologies and
Environments”. Hongreung Science, 2008.

[5]. S. Yoo, A.A. Jerraya, “Hardware/software cosimulation
from interface perspective, Computers and Digital
Techniques IEE Proceedings”. vol.152, issue3, 2005.

[6]. T. Jozawa, L. Huang, T. Sakai, S. Takeuchi, M. Kasslin,
“Heterogeneous co-simulation with SDL and SystemC for
protocol modeling”. RWS, 2006, pp.603-606.

[7]. S. Chikada, S. Honda, H. Tomiyama, H. Takada,
“Cosimulation of ITRON-based embedded software with
SystemC”. HLDVT, 2005, pp.71-76.

[8]. Thorsten Grotker, Stan Liao, Grant Martin, Stuart Swan,
“System Design with SystemC”. Kluwer Academic
Publishers, 2002.

[9]. Mike Mintz, Robert Ekendahl, “Hardware Verification with
SystemVerilog : An Object-Oriented Framework”. Springer,
2007.

[10]. Stuart Sutherland, Simon Davidmann and Peter Flake,
“SystemVerilog for Design (2nd Edition): A Guide to Using
SystemVerilog for Hardware Design and Modeling”.
Springer, 2006.

[11]. Chris Spear, “SystemVerilog for Verification (2nd Edition):
A Guide to Learning the Testbench Language Features”,
Springer, 2008.

[12]. Stuart Sutherland, Integrating SystemC Models with Verilog

and SystemVerilog Models Using the SystemVerilog Direct

Programming Interface, SNUG, USA, Boston, 2004
[13]. Stuart Sutherland, “SystemVerilog, ModelSim, and You,”

MentorUser2User,2004.
[14]. Myoung-Kenu You , Young-Jin Oh, Gi-Yong Song,

“System-level Hardware Function Verification System”.
Journal of The Institute of Signal Processing and Systems,
Vol. 11, No 2, April 2010. pp177-182.

[15]. ModelSim SE User's Manual, http://www.mentor.com
[16]. SystemC Language Reference Manual,

http://www.systemc.org
[17]. SystemVerilog3.1aLanguageReference

Manual:Accellera's Extensions to Verilog, Accellera,

Napa,California,2004.
[18]. http://www.soccentral.com.
[19]. ModelSimSEUser'sManual, http://www.mentor.com

Authors Profile

Gi-Yong Song (corresponding author) received his Ph.D

degree in Computer Engineering from University of
Louisiana, Lafayette in 1995. He is now working as a
professor at the Department of Semiconductor Engineering,
Chungbuk National University, Korea. His research interests
includes design and verification of digital systems, high-level

synthesis.

Young-Jin Oh received his Ph.D degree in Semiconductor

Engineering from Chungbuk National University, Korea, in

2013. His research interests include the areas of digital system

design, embedded system design, design and verification of

SoC.

