
International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.24-32

24

Study Of Object Oriented Metrics

S.Pasupathy
Associate Professor,
Dept.of CSE, FEAT,

Annamalai University,
Tamilnadu

India.

ABSTRACT

This paper presents the results evaluated from our

study on metrics used in object oriented software design

strategies. This delivers tool-dependent metrics results and

has even implications on the results of analyses based on

these metrics results. The process provides a practical,

systematic, start-to-finish method of selecting, designing and

implementing software metrics. These metrics were

evaluated using object oriented metrics tools for the purpose

of analyzing quality of the product, encapsulation,

inheritance, message passing, polymorphism, reusability and

complexity measurement. It defines a ranking of the classes

that are most vital note down and maintainability. The results

can be of great assistance to quality engineers in selecting the

proper set metrics for their software projects and to calculate

the metrics, which was developed using a chronological

object oriented life cycle process.

Key Terms: Object Oriented Software design, Software

Metrics, Data Collection, Object oriented Life Cycle process

1. INTRODUCTION

 In Recent years the object oriented design

principles are widely used for developing good quality of

product. The use of object oriented software development

techniques introduces new element to software complexity

measurement and set of mechanisms are used to evaluate

object oriented concepts. This large variety of tools allows a

user to select the tool best suited, e.g., depending on its

handling, tool support, or price. However, this assumes that

all metrics tools compute / interpret / implement the same

metrics in the same way.

For this work, we assume that software metric (or

metric in short) is a mathematical definition mapping the

entities of a software system to numeric metrics values [1].

Furthermore, we understand a software metrics tool as a

program which implements a set of software metrics

definitions. It allows to assess a software system according to

the metrics by extracting the required entities from the

software and providing the corresponding metrics values. It

combines software metrics values in a well-defined way to

aggregated numerical values in order to aid quality analysis

R.Bhavani, PhD.

Professor,
Dept.of CSE, FEAT,

Annamalai University,
Tamil Nadu,

India,

and assessment. As regards the research in

software metrics, it has undergone a great evolution: in the

first period the focus was very much on inventing new

metrics for the different attributes of software, without so

much regard for the scientific validity of the metrics. In

recent times instead, a lot of work has been done on how to

apply the theory of measurement to software metrics and

how to ensure their validity.

These Metrics try to capture different aspects of

software product and its process [2]. Some of the metrics also

try to capture the same aspects of software e.g there are a

number of metrics to measure the coupling between different

classes. The remainder of these paper is structure as follows:

Section 2 describes the objective of this work and specify the

how to evaluate the performance. Section 3 describes various

object oriented metrics. Section 4 describes the comparison

results of various programs. Section 4 and Section 5 specifies

the experimental results and our interpretations for the two

main questions respectively. In Section 7, we discuss threats

to the validity of our study. Finally, in Section 8, we

conclude our findings.

2. OBJECTIVE

 The objective of the paper is

1) To describe the current state-of-the-art in the

measurement of software products and process.

2) Normal statistical inaccuracies can be dealt with by

using multiple data sources and estimating

methodologies, or by using multiple organizations

to do the estimating and check and analyze results.

3) The earlier the estimate is made the less is known

about the software to be developed and the greater

the estimating errors.

4) To find whether each measure is independent or we

can chose a subset of these metrics having equal

utility as original metrics set.

5) To analyze a system performance on object

oriented grounds and measure the design and code

quality.

6) To cover the basic structural mechanisms of the

object oriented paradigm.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.24-32

25

3. WHY MEASUREMENT:

 The main use of measurement is to evaluate quality

and reuse the corresponding program into various application.

a) To calculate object oriented concepts like classes,

objects, complexity(Halstead and McCabe’s),

encapsulation(Hiding factor), Inheritance,

polymorphism, Message Passing, Coupling,

Cohesion and Reuse ratio.

b) To evaluate metrics from existing measurement

tools and they are commercially used for validate

the performance. E.g Chidamber & Kemerer

Metrics Tool, MOOD Metrics [3][4].

The attributes of entities can be internal or external.

Internal attributes of an entity can be measured

only based on the entity and therefore the measures are direct.

For example size is an internal attribute of any software

document.

External attributes of an entity can be measured

only with respect to how the entity relates with the

environment and therefore can be measured only indirectly.

For example, reliability, an external attribute of a program,

does not depend only on the program itself but also on the

compiler, machine and user [5][6]. Productivity, an external

attribute of a person, clearly depends on many factors such as

the kind of process and the quality of the software delivered.

The entities considered in software measurement are

1. product: any artifact produced during software

development.

Table 1: Product Oriented Metrics (Entity and Attributes)

Entity Internal

Attribute

External Attribute

Requirements Size, Reuse,

Modularity,

Redundancy,

Functionality

Understandability,

Stability

Specification Size, Reuse,

Modularity,

Redundancy,

Functionality

Understandability,

Maintainability

Code Size, Reuse,

Modularity,

Coupling,

Cohesion, ,

Control Flow

Complexity

Reliability,

Usability,

Reusability,

Maintainability

Test set Size, Coverage

level

Quality

2. processes: any activity related to software

development.

Table 2: Process Oriented Metrics (Entity and Attributes)

3. resource: people, hardware, or software needed for

the processes.

Table 3: Resource Oriented Metrics (Entity and

Attributes)

Entity Internal Attribute External

Attribute

Personnel Age, Cost Productivity,

Experience

Team Size, Communication

Level, Structure

Productivity

Software Size, Communication

Level, Structure

Usability,

Reliability

Hardware Price, Speed, Memory

size

Usability,

Reliability

The external attributes are clearly the most

interesting from the point of view of the manager, but they can

be measured only indirectly. For example, productivity of

people can be measured as the ratio of size of product

delivered (an internal code attribute) and effort (an internal

process attribute). Furthermore, external attributes are difficult

to define: it is rare that there is a consensus on the definitions

of these attributes [7][8]. For example, quality can be defined

as the ratio of faults discovered during formal testing (an

internal process attribute) and size, measured by KLOC (Kilo

Lines Of Code)[9]. In alternative, quality can be considered as

a very high-level attribute constituted by a combination of

reliability, availability, maintainability and usability. In turn,

maintainability comprises understandability, modifiability and

testability. Moreover each of these component is influenced

by complexity. So we see that external attributes are not

isolated from each other but are closely related.

Entity Internal Attribute External

Attribute

Requirements

Analysis

Time, Effort Cost

effectiveness

Specification Time, Effort, Number

of requirements

changes

Cost

effectiveness

Design Time, Effort, Number

of requirements

changes

Cost

effectiveness

Code Time, Effort, Number

of requirements

changes

Cost

effectiveness

Test set Time, Effort, Number

of code changes

Cost

effectiveness

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.24-32

26

 12 STEPS IN OBJECT ORIENTED

METRICS EVALUATION

Fig .2 Flow chart for Evaluation process of Object Oriented

Metrics

 4. SYSTEM METRICS

 The metrics are selected from most well known metrics

that have been proposed and could be easily applied to object

oriented programming as well [10][11]. The major system

metrics are used to evaluate complexity of the program[12].

 These complexity comes under time and execution of

the program. These analyzed from existing tools Halstead

complexity metrics suite and McCabe’s Complexity metrics

suite[13][14][15] our proposed work evaluate average,

maximum and minimum cyclomatic complexity of the

program.

5. OBJECT ORIENTED METRICS

To Measure object oriented concepts in the

Software product is Object oriented Metrics.

Some of the object oriented metrics attributes are

 Number of classes

 Number of Methods

 Lines of codes

 Weighted Methods per Class

 Coupling Between Object

 Depth of Inheritance

 Number of Children

 Number of Packages

 Coupling Factor

 Reuse Ratio

 Specialization Ration

 Polymorphism factor

 Number of loop

 Number of bugs

 Method of Hiding Factor

 Attribute Hiding Factor

 Message Passing Call for Factor

 Number of Attributes per class

 Response for a class

 Lack of cohesion in method

5.1 Class Oriented Metrics

Classes, which are the central points of every object

oriented language implement methods and define attributes.

The class metrics address thus this aspect: their complexity

can be expressed through methods and attributes and the way

these entities behave. Hierarchy nesting level (HNL) also

called depth of inheritance tree. The number of classes in

superclass chain of class. In case of multiple inheritances,

count the number of classes in the longest chain.

5.1.1 Number of Class Measurement

 NA Number of accessors, the number of get/set -

methods in a class.

 NAM Number of abstract methods.

 NC Number of constructors.

 NCV Number of class variables.

 NIA Number of inherited attributes, the number of

attributes defined in all superclasses of the subject

class.

 NIV Number of instance variables.

 NMA Number of methods added, the number of

methods defined in the subject class but not in its

superclass.

 NME Number of methods extended, the number of

methods redefined in subject class by invoking the

same method on a superclass.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.24-32

27

 NMI Number of methods inherited, i.e. defined in

superclass and inherited unmodified.

 NMO Number of methods overridden, i.e. redefined

in subject class.

 NOC Number of immediate children of a class.

 NOM Number of methods, each method counts as 1.

NOM = NMA + NME + NMO.

 NOMP Number of method protocols. This is

Smalltalk - specific: methods can be grouped into

method protocols.

 PriA Number of private attributes and PriM Number

of private methods.

 ProA Number of protected attributes and ProM

Number of protected methods.

 PubA Number of public attributes and PubM

Number of public methods.

 WLOC Lines of code, sum of all lines of code in all

method bodies of the class.

 WMSG Number of message sends, sum of number

of message sends in all method bodies of class.

WMCX Sum of method complexities.

 WNAA Number of times all attributes defined in the

class are accessed.

 WNI Number of method invocations, i.e. in all

method bodies of all methods and WNMAA

Number of all accesses on attributes and WNOC

Number of all descendants, i.e. sum of all direct and

indirect children of a class.

 WNOS Number of statements, sum of statements in

all method bodies of class.

5.1.2 Methods present in the class

Methods can be seen as a flow of instructions which take

input through parameters and which produce output. Methods

can invoke other methods or access attributes. The method

metrics are defined in this context.

 LOC Lines of code in method body.

 MHNL Hierarchy nesting level of class in which

method is implemented.

 MSG Number of message sends in method body.

 NI Number of invocations of other methods in

method body.

 NMAA Number of accesses on attributes in method

body.

 NOP Number of parameters which the method

takes.

 NOS Number of statements in method body.

 NTIG Number of times invoked by methods non-

local to its class, i.e. from methods implemented in

other classes.

 NTIL Number of times invoked by methods local to

its class, i.e. from methods implemented in the same

class.

5.1.3 Attributes present in the class

Attributes are properties to classes. Their main function

is to return their value when accessed by methods. The

attribute metrics are defined in such a context.

 AHNL Hierarchy nesting level of class in which

attribute is defined.

 NAA Number of times accessed. NAA = NGA +

NLA.

 NCM Number of classes having methods that access

it.

 NGA Number of times accessed by methods non-

local to its class.

 NLA Number of times accessed by methods local to

its class.

 NM Number of methods accessing it.

5.2 Method Metrics

 There are three basic methods for measuring method

size. Historically, the primary measure of software size has

been the number SLOC. However, it is difficult to relate

software functional requirements to SLOC, especially during

the early stages of development. An alternative method,

function points, should be used to estimate software size.

Function points a reused primarily for management

information systems (MISs), whereas, feature points (similar

to function points) are used for real-time or embedded

systems. SLOC, function points, and feature points are

valuable size estimation techniques. Fig 6 and 7 summarizes

the differences between the function point and SLOC

methods.

5.3 Encapsulation Metric

The encapsulation metrics evolves packaging (or binding

together) of a collection of items.

 Low-level examples of encapsulation include

records and arrays.

 Subprograms (e.g., procedures, functions,

subroutines, and paragraphs) are mid-level

mechanisms for encapsulation.

 In object-oriented (and object-based) programming

languages, there are still larger encapsulating

mechanisms, e.g., C++'s classes, Ada's packages,
and Modula 3's modules.

Information Hiding is the suppression (or hiding) of details.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.24-32

28

 The general idea is that we show only that

information which is necessary to accomplish our

immediate goals.

 There are degrees of information hiding, ranging

from partially restricted visibility to total

invisibility.

 Encapsulation and information hiding are not the

same thing, e.g., an item can be encapsulated but

may still be totally visible. Information hiding plays

a direct role in such metrics as object coupling and
the degree of information hiding.

5.4 Reuse Metrics

Reuse Ratio (U):

 The reuse ratio (U) is given by U=number of super

class/total number of class.

Specialization Ratio(S):

 This ratio measures the extent to which a super class

has captured abstraction. S=number of subclass/number of

super class.

Average Inheritance Depth:

 The inheritance structure can be measured in terms of

depth of each class with in its hierarchy. Average inheritance

depth = sum of depth of each class/number of class.

5.5 Quality Metrics

Reusability: Reusability means reflects the presence of OO

Design characteristics that allow a design to be reapplied to

new problem without significant. Reusability formula= (-

0.25*coupling) + (0.25*cohesion) + (0.5*messaging) +

(0.5*design size).

Flexibility: Characteristics that allow the incorporation of

change in a design. The ability of a design to be adapted to

provide Functionality related capabilities. Flexibility formula=

(0.25*encapsulation)

(0.25*coupling)+(0.5*composition)+(0.5*polymorphism).

Understandability: The properties of the design that enable it

to be easily learned and comprehend. Understandability

formula= (-0.33*abstraction) + (0.33*encapsulation)-

(0.33*coupling) + (0.33*cohesion)-(0.33*polymorphism)-

(0.33*complexity)-(0.33*design size).

Functionality: The responsibilities assigned to the classes of

design, which are made available by the classes through their

public interfaces. Functionality formula= (0.12*cohesion) +

(0.22*polymorphism) + (0.22*messaging)+ (0.22*design size)

+ (0.22*hierarchies).

Extendibility: It refers to the presence and usage of properties

in an existing design that allow for the incorporation of new

requirements in the design. Extendibility formula =

(0.5*Abstraction)-(0.5*coupling) + (0.5*inheritance) +

(0.5*polymorphism).

Effectiveness: It refers to a design's ability to achieve the

desired functionality and behavior using OO Design concepts.

Effectiveness formula= (0.2*abstraction)

+(0.2*encapsulation) + (0.2*composition) + (0.2*inheritance)

+ (0.2*polymorphism).

5.6 Overall Metrics Status

A software measurement is a quantifiable

dimension, attribute, or amount of any aspect of a software

program, product, or process. It is the raw data which are

associated with various elements of the software process and

product. Metrics (or indicators) are computed from measures.

They are quantifiable indices used to compare software

products, processes, or projects or to predict their outcomes.

With metrics, we can Monitor requirements, Predict

development resources, Track development progress and

Understand maintenance costs.

Table 4. Example for Selecting Measurement Tool.

AREA MEASURES

Requirements CSCI requirements, CSCI design

stability

Performance Input/output bus throughout,

capability, Processor memory

utilization, Processor throughput,

utilization

Schedule Requirements allocation status,

Preliminary design status, Code and

unit test status

Integration status

Cost Person-months of effort, Software

size

6. PERFORMANCE MATCHING

6.1 Object Oriented Metrics in Software

Engineering Approach

“Given the central role that software development

plays in the delivery and application of information

technology, managers are increasingly focusing on process

improvement in the software development area. This demand

has spurred the provision of a number of new and/or improved

approaches to software development, with perhaps the most

prominent being object-orientation (OO). In addition, the

focus on process improvement has increased the demand for

software measures, or metrics”.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.24-32

29

6.2 Applying And Interpreting Object

Oriented Metrics

“Object-oriented design and development is

becoming very popular in today's software development

environment. Object oriented development requires not only a

different approach to design and implementation, it requires a

different approach to software metrics. Since object oriented

technology uses objects and not algorithms as its fundamental

building blocks, the approach to software metrics for object

oriented programs must be different from the standard metrics

set. Some metrics, such as lines of code and cyclomatic

complexity.”

6.3 Design Principles and Design Patterns

 “What is software architecture? The answer is

multitier. At the highest level, there are the architecture

patterns that define the overall shape and structure of software

applications1. Down a level is the architecture that is

specifically related to the purpose of the software application.

Yet another level down resides the architecture of the modules

and their interconnections. “

6.4 Using Educational Tools For Teaching

Object Oriented Design And Programming

 “The development of software systems is a complex

process which requires a diverse set of skills and expertise.

The Object Oriented programming paradigm has been proven

to better organize the inherent complexity of software

systems, than the traditional procedural paradigm. Hence,

Object Oriented (OO) is becoming the dominant paradigm in

the recent years. The software industry is placing increasing

emphasis on newer, object-oriented programming languages

and tools, such as Java. It is highly interested for software

engineers capable to analyze and develop systems using the

OO programming paradigm.”[16]

6.5 Quality Metrics Tool For Object

Oriented Programming

“Metrics measure certain properties of a software

system by mapping them to numbers (or to other symbols)

according to well-defined, objective measurement rules

[17][18].Design Metrics are measurements of the static state

of the project’s design and also used for assessing the size and

in some cases the quality and complexity of software.

Assessing the Object Oriented Design (OOD) metrics is to

predict potentially fault-prone classes and components in

advances”

6.6 Message Creation Overhead and

Performance

 Since all messages and parameters must possess

particular meanings to be consumed (i.e., result in intended

logical flow within the receiver), they must be created with a

particular meaning. Creating any sort of message requires

overhead in either CPU or memory usage. Creating a single

integer value message (which might be a reference to a string,

array or data structure) requires less overhead than creating a

complicated message such as a SOAP message. Longer

messages require more CPU and memory to produce. To

optimize runtime performance, message length must be

minimized and message meaning must be maximized.

7. Experimental Result:

By applying the following code to Jhawk Metric tool, we got
the following result.

package src;

class Sample

{

int a,b,c;

public Sample()

{

}

public void dis()

{

}

}

public class Demo extends Sample

{

int a=10;

int b=20;

public static void main(String args[])

{

Sample ob = new Sample();

}

}

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.24-32

30

Piechart For System Metrics:

Overall Metrics

Method Metrics

Class Metrics

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.24-32

31

8. CONCLUSION AND FUTURE SCOPE

 The above results can be used in order to determine

when and how each of the above metrics can be used according

to quality characteristics a practitioner wants to emphasize.

Make sure the software quality metrics and indicators they

employ include a clear definition of component parts are

accurate and readily collectible, and span the development

spectrum and functional activities. Survey data indicates that

most organizations are on the right track to making use of

metrics in software projects. For organizations which do not

reflect “best practices”, and would like to enhance their metrics

capabilities, the following recommendations are suggested to

Measure the “best practices” list of metrics more consistently

across all projects. Focus on “easy to implement” metrics that

are understood by both management and software developers,

and provide demonstrated insight into software project

activities[19].

 A number of object oriented metrics have been

proposed in the literature for measuring the design attributes

such as inheritance, polymorphism, message passing,

complexity, Hiding Factor, coupling, cohesion, reusability

etc,[19][20]. The number of methods and the complexity of

methods involved is a predictor of how much time and effort is

required to develop and maintain the class. This metrics set can

be applied on various projects and evaluate and compare the

performance of the code using object oriented paradigm. While

in the past the focus in research was on inventing new metrics,

now the focus is more on measurement theory, in particular on

the definition of new validation frameworks or of new set of

axioms. A practical, systematic, start-to-finish method of

selecting, designing, and implementing software metrics is a

valuable aid[21].

8. REFERENCES

[1] J. Alghamdi, R. Rufai, and S. Khan. Oometer: A

software quality assurance tool. Software Maintenance

and Reengineering, 2009. CSMR 2009. 9th European

Conference on, pages 190{191, 21-23}, March 2010.

[2] H. Bsar, M. Bauer, O. Ciupke, S. Demeyer, S.

Ducasse, M. Lanza, R. Marinescu, R. Nebbe, O.

Nierstrasz, M. Przybilski, T. Richner, M. Rieger, C. Riva,

A. Sassen, B. Schulz, P. Steyaert, S. Tichelaar, and J.

Weisbrod. The FAMOOS Object-Oriented Reengineering

Handbook, Oct. 2006.

[3] B. Bohem, Software Engineering Economics, Prentice

Hall, Englewood Cliffs, 1981 [Briand et al 94] L. Briand,

S. Morasca, V. Basili, Defining and Validating High-

Level Design Metrics, Tech. Rep. CS TR-3301,

University of Maryland, 2009.

[4] L. Briand, S. Morasca, V. Basili, Property-Based

Software Engineering Measurement, IEEE Trans.

Software Eng. 22(1), 2000, pp. 68-85.

[5] Kaur Amandeep, Singh Satwinder, K. Kahl.

“Evaluation and Metrication of Object Oriented System”,

International Multi Conference of Engineers and Cmputer

Scientists, 2009 vol. 1.

[6] M. Xenos, D.Stavrinoudis, K.Zikouli and D.

Christodoulakis, “Object Oriented Metrics – A Survey”,

Proceeding of the FESMA 2000, Federation of European

Software Measurement Association, Madrid. Spain, 2006.

[7] V. Basili, Qualitative Software Complexity Models: a

Summary, in Tutorial on Models and Methods for

Software Management and Engineering, IEEE Computer

Society Press, Los Alamitos, CA, 2004.

[8] A. Albrecht: "Measuring application development

productivity", in Proc. Joint SHARE/GUIDE/IBM

Applications Development Symposium, Monterey, CA,

2007.

[9] A. Albrecht and J. Gaffney: Software Function,

Source Lines of Code, and Development Effort

Prediction: A Software Science Validation; in IEEE

Trans. Software Eng., 9(6), 2008, pp. 639-648.

[10] S. Conte, H. Dunsmore, V. Shen, Software

Engineering Metrics and Models, Benjamin/Cummings,

Menlo Park, CA.

[11] S. Chidamber, C. Kemerer, A Metrics Suite for

Object Oriented Design, IEEE Trans. Software Eng.,

20/6), 2000, pp. 263-265.

[12] S. Morasca, Software Measurement: State of the Art

and Related Issues, slides from the School of the Italian

Group of Informatics Engineering, Rovereto, Italy,

September 2008.

[13] J. Stathis, D. Jeffrey, An Empirical Study of

Albrecht’s Function Points, in Measurement for Improved

IT management, Proc. First Australian Conference on

Software Metrics, ACOSM 93, Sydney, 2002, pp. 96 -

117.

[14] E. Weyuker, Evaluating Software Complexity

Measures, IEEE Trans. Software Eng., 14(9), 2002, pp.

1357-1365.

[15] H. Zuse, Software Complexity: Measures and

Methods, Walter de Gruyter, Berlin, 2006.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
Vol.2, No.4, April 2013 DOI:10.15693/ijaist/2013.v2i4.24-32

32

[16] Ada and C++: A Business Case Analysis, Office of

the Deputy Assistant Secretary of the Air Force,

Washington, DC, June 1999.

[17] Albrecht, A.J., “Measuring Application

Development Productivity,” Proceedings of the IBM

Applications Development Symposium, Monterey,

California, October 2005.

[18] Boehm, Barry W., Software Engineering Economics,

Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 2006.

[19] Boehm, Barry W., as quoted by Ware Myers,

“Software Pivotal to Strategic Defense,” IEEE

Computer, January 2001.

[20] Campbell, Luke and Brian Koster, “Software

Metrics: Adding Engineering Rigor to a Currently

Ephemeral Process,” briefing presented to the

McGrummwell F/A-24 CDR course, 2003.

[21] Carey, Dave and Don Freeman, “Quality

Measurements in Software,” G. Gordon Schulmeyer and

James I. McManus, eds., Total Quality Management for

Software, Van Nostrand Reinhold, New York, 2005.

