
International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.11, November 2013 DOI:10.15693/ijaist/2013.v2i11.9-13

9

Security Application using multiprocessors firmware

architecture

A.L.SRIRAM, SUBRAMANIAN, SWARNA SWEETY

A.P. III, SASTRA University,Tanjavur.

Project Manager, Mistral solutions.Banglore.

Abstract

Modern day defence electronic systems running complex

software applications require very huge processing power.

These algorithms consume large quantity of data acquired

from multiple channels using high-speed ADCs. Many of

these systems require data from multiple channels to be

captured and processed concurrently for churning out

useful information. These systems require enormous

memory and high-speed data bus for transfer of data in

real-time. These are complemented with processors

running at high clock speeds, with specialized

signal/vector processing engines. This article will outline a

basic approach for designing real-time applications using

these multi processor boards.

Introduction

In this golden era of shrinking integrated electronic

circuits, the scope of building powerful systems, in small

form factors is becoming feasible.[1] Concern regarding

the weight and size of defence electronics systems has

driven the designers to look for processing boards, of

smaller form factors with very high processing power. This

has led to evolution of board design, especially boards

with multiple processors to meet the demand of these high

computation intensive applications.

There are many multiprocessor COTS boards available in

the market that specifically target defence applications.

Few of these boards provide a platform, with symmetric

architecture, and inherent support for high-speed data

acquisition PMC/XMC/FMC daughter cards. These boards

are available majorly on VME or VPX backplane.

Depending on the complexity of the system, multiple

boards can be used, with seamless data communication

fabric between the multiple processors and across multiple

boards over the backplane.

Operating system

Complex defense electronics systems require real time

operating systems for multitasking.[2] Since most of these

systems are bound to be onboard military aircraft, or ships,

they have to undergo recommended certification before

deployment. This warrants the use of well proven, certified

or certifiable operating systems. Few important things to

be considered are the OS tick, foot print, latencies, context

switch time, flexible scheduling and other aspects such as

availability of development tools, required software stacks

and the BSP.

The board vendors often provide sophisticated software

libraries for vector signal processing, inter node

communications etc.[3] The functions required though for

the system has to be thoroughly profiled, while arriving at

the system time budget.

Design philosophy

We will now discuss a structured design methodology for

multiprocessor application design. [4]

Architecture
The architect needs to perform top level mental modelling

of the system functionality before translating it into

feasible architecture. Various parameters of the processing

boards have to be thoroughly examined and tradeoffs have

to be weighed before arriving at the best suitable

architecture. Various possible architectures have to be

studied before zeroing in on the most efficient one for the

application. [5]

The design of a multi processor application follows the

usual software design process. The architecture outlines

the software modules and the hierarchy of modules.

Detailed design follows the architecture, addressing much

finer aspects of each module, to the level of each data

element.

http://www.ednasia.com/SEARCH/ART/algorithms.HTM
http://www.ednasia.com/SEARCH/ART/COTS+boards.HTM

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.11, November 2013 DOI:10.15693/ijaist/2013.v2i11.9-

13

10

Design
Start off with a context diagram, in which the entire system

with all the external interfaces is visualized. Then the

context diagram is broken down to multiple levels to

include finer details of the design. This also involves the

modular decomposition. The entire functionality of the

system is broken down into modules, each addressing a

specific functionality. This brings a structure to the

application. A good layered approach for the modular

decomposition will guarantee scalability and

configurability.

The control and data coupling between the modules has to

be defined properly. The Control flow Diagrams (CFDs)

and Data Flow Diagrams (DFDs) would help to get much

clarity on the design.[6]

Create a Main module, which will co-ordinate and control

all the other identified modules, to provide the required

system functionality. The intended operation of the system

has to be broken down into phases, such as configuration

phase, data acquisition phase, processing phase,

presentation phase etc. The performance requirement to be

met by the identified modules mapping to the phases of

operation shall be validated.

Budget the time required for all the phases to achieve the

required system performance. This step will help identify

the critical modules, in terms of performance and memory

usage. All the software libraries including the signal

processing library, and the inter node communication

libraries have to be very well profiled, in a real-like

scenario. This helps eliminate unpleasant surprises at a

later stage of development.

Now the job of spreading the application on multiple

processing nodes starts. The system architecture should

take care of the load balancing between the various

processing nodes. The application architecture can group

the nodes into the controlling nodes and the processing

nodes. The controlling nodes shall utilize the full power

available with the processing nodes, by parallel loading.

The software running on multiple processors are doing

actual parallel processing, rather than multi threaded

applications running in a single core.

Analyze the resource requirements of each module for the

optimized performance, in terms of processor time,

quantity of input and output data, memory and identify the

critical modules. It is the critical modules that have to be

designed to run parallel on multiple nodes. These critical

modules are usually the modules associated with the

processing of the captured data.

Complex algorithms require large amount of memory,

which may be practically impossible to provide in a single

processor in a useful manner. Splitting and spreading the

algorithm on multiple cores or processors helps to

efficiently use the memory available over multiple

processors.[7]

The critical processing modules require the input data to be

supplied at or faster than the capture rate. Certain systems

would have multiple data acquisition cards, controlled by

different processors. The data captured by all the data

acquisition modules have to be made available for

processing. This requires transfer of enormous quantity of

data across the processors. This has to be very well

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.11, November 2013 DOI:10.15693/ijaist/2013.v2i11.9-13

11

considered while placing the processing modules on

multiple nodes.[8]

Apart from the input and output data there are many other

messages flowing between all the processing nodes. These

messages have to be short and precise. The number of

processing nodes, the modules to coexist on a node and the

number of tasks on each module shall be determined, using

a minimalist approach.

The ease of testing and debugging also has to be kept in

mind during the design phase. The access to data at various

levels especially during the integration of multiple

modules is important for debugging.[9]

Data transfer
The software architecture shall consider the data transfer

time between the nodes, and shall reduce it to the

maximum extent. An inefficient design involving more

data transfers would nullify the advantages of multi

processors

The data transfer shall be done in such a way that bus

contention between the nodes are eliminated or reduced to

the minimum. Though the processing nodes provide

multiple DMA channels, they may be using the same

physical bus. Initiating multiple channels of DMA for

faster data transfer has to be carefully done.

The design should carefully avoid choking of various data

transfer channels.

Error handling

The design should consider the state of the system on

occurrence of problems at any instant on any remote node.

The system should be bound with proper timeout

mechanism to bring back the system to normal state, in

case of error at any level. The errors occurring at any level

should be propagated back, to the top level. The

controlling node should have absolute mechanism in place

to terminate all the processing nodes and bring them back

to normal.

Power dissipation

The heat generated during the peak loading of the

processors/FPGAs has to be balanced, to avoid hot spots

on the boards. Normally, the chassis housing multiple

these boards, have fans (in case of forced air-cooled

systems) for the dissipation of heat. The board vendor

usually provides software support for determining the

temperature at various points on the board.

Health monitoring

The use of multiple processors warrants a very efficient

health monitoring, which has to run on all the nodes. The

error reporting mechanism has to address the propagation

of the error to the top layer on the controlling node.[9]

The various sensors on the board, have to be monitored

periodically, and appropriate actions has to be taken on

occurrence of any undesired event, for e.g. Temperature

rises above the permissible

levels, or voltage drop etc.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.11, November 2013 DOI:10.15693/ijaist/2013.v2i11.9-13

12

Case study

This case study showcases the design methodology to

build a system, which had 6 channels of data captured at

100MHz. The system had totally 8 processors spread over

two boards. There were three data acquisition cards. The

system captured and processed about 10MHz on every

capture. The performance requirement was to complete the

operation on 10MHz data within 1ms.[10]

The major phases of the entire operation were

configuration, data acquisition, processing, packetizing

and sending over Gigabit Ethernet (GbEth) to other

subsystem.

The configuration phase budget was 50 microseconds, and

it was not a concern since it will be pipelined, and parallel

from the second iteration onwards.

The data capture phase (including the capture and transfer

of data to the processing nodes) budget was about 150

microseconds consistently. The data captured at the three

capturing nodes (B1, D1 and D2) has to be made available

for all the processing nodes. The data transfer was

optimized using DMA transfer. The physical bus

contention was carefully avoided by initiating non-

colliding transfers between the multiple nodes, at any point

of time. All the processing nodes were chosen to be on a

single board. This was done keeping in mind the data

transfer overheads.

The processing phase estimate was around

1.6milliseconds.[12] These estimates were as per the

profile figures obtained in a real-like scenario. It was a

challenge to spread this critical processing module over

multiple nodes. The processing module was spread over

four nodes, each processing about 2.5MHz. This reduced

the estimate from 1.6milliseconds to approximately 500

microseconds. The number of parallel processing nodes

was restricted to four (A1, B1, C1 and D1), since each

board had four nodes, and increasing the processing nodes

further did not improve the total performance.

The memory requirement of the processing module for

processing the entire 10MHz was approximately 23MB.

The requirement came to about 6MB when the processing

module was spread over four nodes. In addition, this

module was designed to re-use the memory for every band

of operation, to reduce the memory requirement at any

point of time.

The processed data from all the processing nodes was

transferred to the controlling node, where it was packetized

after applying required filtering and sent to other

subsystem.[11]

Conclusion

The design of a computational intensive defense

application should always consider a layered approach for

modularity and scalability. Most of the applications have

many requirements changes during the SDLC, which can

be well accommodated only by a scalable architecture. The

spreading of the application across multiple processors has

to be carefully executed, considering the data transfer

overheads, memory utilization and other important aspects.

References

1. Censier L M, Featrier P (1978) A New Solution to

Coherence Problems in Multicache Systems,"

IEEE Transactions on Computers, 27(12):1112-1118

2. Gschwind M, Hofstee H P, Flachs B, Hopkin M,

Watanabe Y, Yamazaki T (2006) Synergistic

Processing in Cell’s Multicore Architecture. IEEE Micro

26(2):10-24

3. Intel Corporation (2010) Petascale to Exascale:

Extending Intel’s HPC Commitment. http://download.

intel.com/pressroom/archive/reference/ISC_2010_Skaugen

_keynote.pdf. Accessed 11

January 2011

4. Sonics MemMax Scheduler.

http://www.sonicsinc.com/uploads/pdfs/memmaxscheduler

_

DS_021610.pdf. Accessed 10 January 2011

5. Mutlu O, Moscibroda T (2009) Parallelism-Aware

Batch Scheduling: Enhancing both Performance

and Fairness of Shared DRAM Systems. IEEE Micro

Special Issue 29(1):22-32

6. Ahn J H, Leverich J, Schreiber R S, Jouppi N P (2009)

Multicore DIMM: an Energy Efficient

Memory Module with Independently Controlled DRAMs.

Computer Architecture Letters

8(1): 5-8

7. The OpenMP Architecture Review Board (2008) The

OpenMP Application Program Interface.

http://www.openmp.org/mp-documents/spec30.pdf.

Accessed 10 January 2011

8. Frigo M, Leiserson C E, Randall K H (1998) The

implementation of the Cilk-5 Multithreaded

Language. Proceedings of the ACM SIGPLAN 1998

conference on Programming Language

Design and Implementation, 212-223

9. Culler D E, Gupta A, Singh J P (1998) Parallel

Computer Architecture: A Hardware/Software

Approach. Morgan Kaufmann

10. Hennessy J L, Patterson D A (2006) Computer

Architecture: A Quantitative Approach 4th

Edition, Morgan Kaufmann

11. Wikipedia article Hyper-threading.

http://en.wikipedia.org/wiki/HyperThreading. Accessed

10.1.2010

12. Mars J, Williams D, Upton D, Ghosh S, Hazelwood K

(2008) A Reactive Unobtrusive

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.11, November 2013 DOI:10.15693/ijaist/2013.v2i11.9-13

13

Prefetcher for Multicore and Manycore Architecture.

Proceedings of the Workshop on Software

and Hardware Challenges of Manycore Platforms 2008,

41-50

13. Nellans D, Sudan K, Balasubramonian R, Brunvand E

(2010) Improving Server Performance

on Multi-Cores via Selective Off-loading of OS

Functionalility. Proceedings of the

10th Workshop on Interaction between Operating Systems

and Computer Architecture

