
International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.1, No.6, October 2012 DOI:10.15693/ijaist/2012.v1i6.66-72

66

Requirement analysis to Provide Instant Diagrams

Using SE methodology

Priyanka More
Department of IT

GSMOZE College of
Engineering, University of

Pune,Pune -45

 Rashmi Phalnikar
Department of IT

MIT College of Engineering

University of Pune, Pune -45

r

ABSTRACT

The process of generating UML Diagrams from natural

language specification is a highly challenging task. This paper

proposes a method and tool to facilitate the requirements

analysis process and extract UML diagrams from textual

requirements using natural language processing (NLP) and

Domain Ontology techniques. Requirements engineers

analyze requirements manually to understand the scope of the

system. The time spent on the analysis and the low quality of

human analysis justifies - the need of a tool for better

understanding of the system. “Requirement analysis to

Provide Instant Diagrams (RAPID)” is a desktop tool to

assist requirements analysts and Software Engineering

students to analyze textual requirements, finding core

concepts and its relationships, and extraction UML diagrams.

The evaluation of RAPID system is in the process and will be

conducted through two forms of evaluation, experimental and

expert evaluation.

General Terms
Software Engineering

Keywords

Natural language processing (NLP), Domain Ontology,

Unified Modeling Language, Requirement engineering,

Software Requirement Specification

1. INTRODUCTION
Software requirements are often specified in natural language

(NL). These NL requirements are typically coming from a

pool of natural language statements which are gathered from

interview excerpts, documents and notes [1]. However,

requirements specified in NL can often be ambiguous,

incomplete, and inconsistent. Moreover, the interpretation and

understanding of anything described in NL has the potential

of being influenced by geographical, psychological and

sociological factors. For this reason, Informal natural

language requirements are better to be expressed as formal

representations [1]. It is the job of requirements analysts to

detect and fix any potential ambiguities, inconsistencies, and

incompleteness in the requirements specifications documents.

However, human reviewers can overlook some

defects while reading complex NL descriptions which can

lead to multiple interpretations and difficulties in recovering

implicit requirements when the requirement analyst does not

have extensive domain knowledge [2]. UML class diagrams

are the main core of OO analysis and design systems where

most other models are derived from [3]. Natural language

processing (NLP) is recognized as a general assistance in

analyzing requirements [5]. The NLP systems use different

levels of linguistic analysis: Phonetic (phonological) level,

Morphological level, Lexical level, Syntactic level, Semantic

level, Discourse level and Pragmatic level [7, 9]. In addition

to NLP techniques, Domain Ontology has been widely used to

improve the performance of concept identification. Domain

ontology refers to domain knowledge that consists of

structured concepts which are semantically related to each

other.

The aim of this paper is to demonstrate the use of NLP and

domain ontology techniques for the extraction of UML

diagrams from informal natural language requirements by

implementing a prototype tool that uses the mentioned

techniques. The proposed tool is referred to as Requirement

analysis to Provide Instant Diagrams (RAPID). The

RAPID tool assists analysts by providing an efficient and fast

way to produce the class diagram from their requirements. It

supports a good interaction with users by providing a modern

and human-centered user interface.

1.1 Related Work

There have been several efforts for the analysis of natural

language requirements [4, 8, 9]. However, few are focused on

class diagram extraction from natural language (NL)

requirements. Thus, few tools exist to assist analysts in the

extraction of class diagram. In this section we survey the

works that use NLP or domain ontology techniques to analyze

NL requirements, and the works that aim to extract class

diagram based on NLP or domain ontology techniques.

 Deva Kumar [2 ,3] propose a domain independent

tool, named, UML Model Generator from Analysis of

Requirements (UMGAR), which generates UML models like

the Use-case Diagram, Analysis class model, Collaboration

diagram and Design class model from natural language

requirements using efficient Natural Language Processing

(NLP) tools. UMGAR implements a set of syntactic

reconstruction rules to process complex requirements into

simple requirements. UMGAR also provides a generic XMI

parser to generate XMI files for visualizing the generated

models in any UML modeling tool. With respect to the

existing tools in this area, UMGAR provides more

comprehensive support for generating models with proper

relationships, which can be used for large requirement

documents.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.1, No.6, October 2012 DOI:10.15693/ijaist/2012.v1i6.66-72

67

Fig 1 Use Case Diagram for RAPID System

Ambriola and Gervasi [4] present a Web-based environment

called Circe. Circe helps in the elicitation, selection, and

validation of the software requirements. It can build semi-

formal models, extract information from the NL requirements,

and measure the consistency of these models. Circe gives the

user a complete environment that integrates a number of tools.

Cico [4] is the main tool that is considered as a front-end for

the other components; it recognizes the NL sentences and

extracts some facts from them. These facts are handed to the

remaining tools for graphical representation and analysis.

Zhou and Zhou [10] propose a methodology that uses NLP

and domain ontology. It is based on that the core classes are

always semantically connected to each other‟s by one to one,

one to many, or many to many relationships in the domain.

This methodology finds candidate classes using NLP through

a part of speech (POS) tagger, a link grammar parser,

linguistic patterns and parallel structure, and then the domain

ontology is used to refine the result [8].

Mich L. [11] proposes a NLP system, LOLITA to generate an

object model automatically from natural language. This

approach considers nouns as objects and use links to find

relationships amongst objects. LOLITA system is built on a

large scale Semantic Network (SN) that does not distinguish

between classes, attributes, and objects. This approach is

limited to extract objects and cannot identify classes [4].

Song et al. [12] propose a taxonomic class modeling (TCM)

methodology for object-oriented analysis which incorporates

several modeling rules such as noun analysis, English

sentence structure rules, class categories, checklists and other

heuristic rules. The TCM methodology works as follows.

First, it finds candidate classes using noun analysis. Then the

spurious classes are eliminated using class elimination rules.

After elimination, the hidden classes are discovered using pre-

defined class categories. Finally, the list is reviewed using

domain knowledge. This survey reflects the current stage of

using NLP techniques for analyzing NL requirements, the

current stage of using domain ontology to express an

application domain related to NL requirements, and the

current stage of class diagram extraction from NL

requirements.

1.2 Proposed approach for RAPID

In the previous section, we have reviewed the most recent

works. Meanwhile, we recognized a typical class

Identification framework and adapted the RACE process

model.

Fig 3. RACE Process Model (Activity Diagram)

The aim of our approach is to efficiently apply NLP and

domain ontology techniques to achieve a fast and accurate

analysis result. Figure 1 illustrates the use cases of our system.

Further elaborations will be under sections 3.4 and 3.6.

2. RAPID ARCHITECTURE AND

DESIGN

RAPID system is decomposed into internal and external

components and sub-systems. Figure 2 illustrates the

architecture model of RAPID

2.1 Normalizing requirements component

This component aims at normalizing NL requirements to

remove ambiguous requirements and identify incomplete

requirements. This component consists of the following sub

components:

2.1.1 Syntactic Reconstruction: The tool takes

stakeholder‟s requests as input and performs syntactic

reconstruction to split a complex sentence into simple

sentences to extract all possible information from the

requirements document. We are using some syntactic

reconstructing rules that have been implemented in UMGAR

[2].

Create Software Requirement

Perform requirement Analysis

Modify Analysis Result

Analyst [user1]

View Generated Class Diagram

View Generated

Use case Diagram

View Generated

Sequence/collaboration

View Report

<<Extend>>

<<Extend>>

<<Extend>>

Administrator

Manage Users

Add/Modify Ontology

Add/Modify Analysis Rules

<<Extend>>

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.1, No.6, October 2012 DOI:10.15693/ijaist/2012.v1i6.66-72

68

Fig 4: RAPID System Aritecture

Fig 2 RAPID System Architecture

The tool scans each sentence to test whether that requirement

satisfies the Statement sentence structure, which is of the form

“Subject: Predicate” or “Subject: Predicate: Object”, and

applies rules accordingly. If a sentence does not satisfy the

proposed rules, then it prompts a message to the user to

change the sentence accordingly to the statement structure.

Some basic rules for syntactic reconstruction are as follows

[3]:

1. Discard prepositional phrase (PP), adjective phrase

(ADJP), determiner (DT) or adjective (JJ), if they

precedes the subject of the sentence.

2. If NP and VP is preceded by “No”, then convert it

into “NP not VP”.

3. Noun phrases (NP) which are separated by

connectives like “and, or” are taken as individual

sentences. If {{NP1}{VP1{ VBZ NP2,NP3 and

NP4}}} then convert it into {{NP1}{VP1{ VBZ

NP2 }}}, {{NP1}{VP1{ VBZ NP3}}},

{{NP1}{VP1{ VBZ NP4}}}.

4. Sentences which are connected by connectives like

“and, or, but, yet” are spitted at their connectives

and created at two individual sentences. If sentence1

and/or sentence2, then convert it into two sentences

{sentence1} {sentence2}.

5. If a sentence has no verbs (VP) then discard that

sentence.

6. If a sentence is of the form {{NP1} {VP1 {NP2}

{VP2 {NP3}}}}, then convert it into two sentences

like {{NP1} {VP1 {NP2}}} and {{NP2} {VP2

{NP3}}}.

7. In the Sentences which are having a semicolon, treat

the sentence after the semicolon as extra

information for the preceding sentence and so

discard sentence after semicolon.

8. If a sentence is in passive voice, ask user to convert

it into active voice. Normally passive voice

sentences will contain word “be” which gives the

sense as passive voice form. This needs some user

interference to decide which sentence acts as

passive voice.

2.2 NLP Technologies Used

The following are the NLP tools used for developing RAPID:

2.2.1 OpenNLP Parser: We chose OpenNLP [19] as a

parser in our system. OpenNLP is an open-source and re-

usable algorithm. It provides our system with lexical and

syntactic parsers. OpenNLP POS tagger (lexical) takes the

English text as input and outputs the corresponding POS tags

for each word; On the other hand, OpenNLP Chunkier

(syntactic) chunks the sentence into phrases (Noun phrase,

verb phrase, etc.) according to English language grammar.

The high accuracy and speed in OpenNLP encouraged us to

choose it rather than other existing parsers. OpenNLP uses

lexical and syntactic annotations to denote to the part of

speech of the terms; for example, NN denotes to Proper Noun,

VB denotes to Verb, and NP denotes to Noun Phrase.

OpenNLP parser supports our system with an efficient way to

find the terms‟ part of speech (POS) which we need in order

to accomplish the noun and verb analysis.

2.2.2 RAPID Stemming Algorithm: Stemming is a

technique that abbreviates word by removing affixes and

suffixes [14]. In RAPID system, it is very important to return

words back to its base form; this will reduce the redundancy

and increase the efficiency of the system. To perform the

stemming, we implemented a new stemming algorithm using

C#. Based on the stemming result, we find that our stemming

algorithm is efficient and sufficient to be used in the

morphological analysis of requirements in RAPID system.

Our stemming algorithm is simple and re-usable.

2.2.3 Word Net: Word Net [15] is used to validate the

semantic correctness of the sentences generated at the

syntactic analysis. It also enables users to display all

hyponyms for a selected noun. We used this feature to verify

Generalization relationship where a noun phrase is supposed

to be „a kind of‟ another noun phrase [5]. Word Net can used

to find semantically similar terms, and for the acquisition of

synonyms. We used synonyms to extract words which are

semantically related to each other. We calculated the words

frequency to keep the synonyms with high frequency in the

document.

2.2.4 Concepts Extraction Engine: The aim of this

module is to extract concepts according to the requirements

document. This module uses OpenNLP parser in [11], RACE

stemming algorithm, and Word Net in [13], to extract

concepts related to the given requirements. We illustrate the

algorithm of this module by the following steps [1]:

RAPID Stemming

Algorithm

OpenNLP POS Tagger

(Lexical, Syntactic Parser)

RAPID Concept Extraction

Engine

Syntactic

Reconstructio

n Rules

Word Net

(Semantic Parser)

Application

Domain

(Ontology)

Heuristic Rules

RAPID Class Extraction

Engine

RAPID Concept Management

UI

CLASS Diagram

UML Diagrams

Informal

Requirement

Document

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.1, No.6, October 2012 DOI:10.15693/ijaist/2012.v1i6.66-72

69

 Step1: Use the requirements document as input.

 Step2: Identify the stop words and save the result as

{Stopwords_Found} list.

 Step3: Calculate the total number of words in the

documents without the stop words, the number of

occurrences Ol of each word, and then calculate the

frequency Ƒ of each word, as in

Ƒ = Ol / ∑

 Step4: Use RACE stemming algorithm module to

find the stemming for each word and save the

result in a list.

 Step5: Use OpenNLP parser in [11] to parse the

whole document (including the stop words)
 Step6: Use the parser output to extract Proper

Nouns (NN), Noun phases (NP), verbs (VB). And

save it in {Concepts-list} list.

 Step7: Use Step2 and Step 6 to extract: {Noun

phrases (NP)} - {Stopwords_Found} and save

results to {Concepts-list}

 Step8: For each concept (CT) in {Concepts-list} if

{synonyms list} contains a concept (CT2) which

have a synonym (SM) which lexically equal to CT,

then CT and CT2 concepts are semantically related

to each other.

 Step9: For each concept (CT) in {Concepts-list} if

{hypernyms_list} contains a concept (CT2) which

have a hyponyms (HM) which lexically equal to

CT, then CT2 “is a kind of“CT. Then save result as

{Generalization-list}.



2.2.5 Domain Ontology: As mentioned early in this
paper, domain ontology is used to improve the performance of

concepts identification. We used the XML to build the

ontology.

2.2.6 Class Extraction Engine: This module uses the

output of “concept extraction engine” module and applies

different heuristic rules to extract the class diagram; However,

We use domain ontology in this module to refine the extracted

class diagram. We can summarize the heuristic rules used as

the following.

2.2.6.1 Class Identification Rules [1]: At the first

step, concepts that extracted using the „Concepts Extraction

Engine” module will be used as the input and the following

rules will be applied to extract classes [1].

 C-Rule1: If a concept is occurred only one time in

the document and its frequency is less than 2 %,

then ignore as class.

 C-Rule2: If a concept is related to the design

elements then ignore as class. Examples:

“application, system, data, computer, etc…”

 C-Rule3: If a concept is related to Location name,

People name, then ignore as a class. Examples:

“John, Ali, London, etc…”

 C-Rule4: If a concept is found in the high level of

hyponyms tree, this indicates that the concept is

general and can be replaced by a specific concept,

then ignore as class. Examples: “user, object, etc.”

 C-Rule5: If a concept is an attribute, then ignore as

a class. Examples: “name, address, number”

 C-Rule6: If a concept does not satisfy any of the

previous rules, then it‟s most likely a class.
 C-Rule7: If a concept is noun phrase (Noun+Noun),

if the second noun is an attribute then the first Noun

is a class. The second noun is an attribute of that

class. Examples: “Customer Name” or “Book

ISBN”

 C-Rule8: if the ontology (if-used) contains

information about the concept such as relationships,

attributes, then that concept is a class.

2.2.6.2 Attribute Identification Rules [1]: We use

the following rules for attributes identification.
 A-Rule1: If a concept is noun phrase (Noun+Noun)

including the underscore mark “_” between the two

nouns, then the first noun is a class and the second

is an attribute of that class. Examples

“customer_name”, “departure_date”.

 A-Rule2: If a concept can has one value, then it‟s

an attribute. Examples:”name, date, ID, address”.

Based on A-Rule2, we collected and stored a

predefined list including the most popular attributes

to be used as a reference in RACE system.

2.2.6.3 Relationship Identification Rules [1]:
Using verb analysis as input, y we can apply the following

rules:

 R-Rule1: using step10 in the concept extraction

engine (section 4.4), all the elements in the

{generalization-list} will be transferred as

Generalization (IS-A) relationship.

 R-Rule2: If the concept is verb (VB), then by

looking to its position in the document, if we can

find a sentence having (CT1 - VB – CT2) where

CT1 and CT2 are classes, then (VB) is an

Association relationship.

 R-Rule3: If the concept is verb (VB) and satisfies

R-Rule2, and the concept is equal to one of the

following {"consists of", "contain", "hold,

"include", "divided to", “has part", "comprise",

"carry", "involve", "imply", "embrace"}, then the

relationship that discovered by that concept is

Composition or Aggregation. Example: “Library

Contains Books” then the relationship between

“Library” and “Book” is Composition relationship.

 R-Rule4: If the concept is verb (VB) and satisfies

R-Rule2, and the concept is equal to one of the

following {"require", "depends on", "rely on",

"based on", "uses", "follows"} , then the

relationship that discovered by that concept is the

Dependency relationship. Example: “Actuator uses

sensors and schedulers to open the door”, then the

relationships between (“Actuator” and “sensor”),

(“Actuator” and “Scheduler”) are the Dependencies

relationships.

 R-Rule5: Given a sentence in the form CT1 + R1 +

CT2 + “AND”+ CT3 where CT1, CT2, CT3 is a

classes, and R1 is a relationship. Then the system

will indicate that the relation R1 is between the

classes (CT1, CT2) and between the classes (CT1,

CT3).

 R-Rule6: Given a sentence in the form CT1 + R1 +

CT2 + “AND NOT”+ CT3 where CT1, CT2, CT3

are classes, and R1 is a relationship. Then the

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.1, No.6, October 2012 DOI:10.15693/ijaist/2012.v1i6.66-72

70

system will indicate that the relation R1 is only

between the classes (CT1, CT2) and not between

the classes (CT1, CT3).

2.2.7 RAPID Concept Management (UI)[1]:
User interaction is a vital in RAPID system; RAPID includes

an interactive user interface (UI) that manages the tasks such

as creating, printing, saving and analyzing requirements. It

also handles the graphical representation of the class diagram

and let User add, delete, rename classes and relationships in

the class diagram. As a part of RAPID UI, concept

management UI is a very important interface which let user

add, modify, view, and organize concepts and relationships.

User can simply add new concept, change the concept type,

and add new relationship. RAPID Concept management

system gives user the flexibility to lead the processing in the

way he/she wants.

3. RAPID IMPLEMENTATION
RAPID system interfaces and algorithms are implemented

using C#. The External components are then added to the

system and checked for consistency. The inconsistent and the

incompatible components are re-implemented in C# to be

conformed to our system. RAPID can open textual

requirements from different sources including words

documents (DOC), text files (TXT), rich text files (RTF), and

hypertext document (HTML). The UML diagrams are visually

represented. In addition, system can highlight nouns and

verbs, in the document. For a good consistency, we use C#
Threads to run different process at the same time. In the

current version of RAPID, we use SQL SERVER to manage

RAPID databases. RAPID supports one interface language

which is English language.

4. EXPERIMENTS AND RESULTS
This section describes results of some preliminary

experiments. A number of experiments were performed to

check the performance of the designed system. Following is

the set of phases those were followed during the experiments.

1. CASE STUDY

“The library System is used by the Informatics students and

Faculty. The Library contains Books and Journals. Books can

be issued to both the Students and Faculty. First of all there is

CONCEPT Extraction Window. Object Oriented Software

Modeling Using NLP Based Knowledge Extraction Journals

can only be issued to the Faculty. Books and Journals can

only be issued by the Librarian. The deputy- Librarian is in-

charge of receiving the Returned Books and Journals. The

Accountant is responsible for receiving the fine for over-due

books. Fine is charged only to students and not to the Faculty”

2. Requirements Analysis Results

A. concept extraction Engine:

Fig 5. Concept Extraction

CONCEPT Extraction window is the preliminary window,

where the user types the natural language text related to his

required business scenario. Given text is in English language

and follows all the primary grammatical rules [19] for better

accuracy in the output. After that Pos Tagger gives pos

tagging output using labeling and this output is given to the

parser for parsing and making the Concept list. In first step,

the available classes/objects in the given text are extracted

with their related attributers and methods. Here an extra

facility has been provided to the software designer that he

may select or de-select the extracted attributes and methods

for his required classes. Diagrams are generated for only his

prescribed classes/ objects.

B. Class Extraction Engine:

In next step, the actual class diagrams are generated in the

class diagram output window. All the class diagrams also

have their respective methods and attributes. If the software

designer is not satisfied with the generated output window, he

can go to the previous window and change the specification of

the diagram and can re-generate the class diagrams according

his required specification. The output has been shown in the

following figure.

Fig 6. Generating Class Diagram

To test the accuracy of the diagrams generated by the

designed system four parameters had been decided. Each

generated class diagram is tested under: no. of objects and

classes, no. of attributes, no. of methods, no. of associations

and diagram labeling.

Table 1.0: Testing results of Class UML Diagrams Scenario

Type

Scenario

Type

Obje

cts/C

lasse

s

Attribut

es

Metho

ds

Relatio

nships

Labelin

g

Total

Simple 24 25 19 22 21 89%

Average 24 24 22 17 19

86%

Complex 21 22 21 18 19 85%

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.1, No.6, October 2012 DOI:10.15693/ijaist/2012.v1i6.66-72

71

A matrix representing UML diagrams accuracy test (%) for

class, activity, sequence and use case diagrams has been

constructed. Overall diagrams accuracy for all types of UML

diagrams is determined by adding total accuracy of all

categories and calculating average of it. Following graph is

Showing the accuracy ratio of various diagram types in terms

of objects, attributes, sequence and labeling parameters

Graph 1.0: Testing results of Class UML Diagrams

.

5. ACKNOWLEDGMENTS

I thank my guide Prof. Rashmi Phalnikar, Assistant Professor,

MITCOE, for her proper guidance, and valuable suggestions.

6. REFERENCES

[1] Mohd Ibrahim, Rodina Ahmad “Class diagram extraction

from textual requirements using Natural language

processing (NLP) techniques”,IEEE journal 2010

[2] Deva Kumar Deeptimahanti, Muhammad Ali Babar “An

Automated Tool for Generating UML Models from

Natural Language Requirements” IEEE journal 2009

[3] Deeptimahanti Deva Kumar, Ratna Sanyal “Static UML

Model Generator from Analysis of Requirements

(SUGAR)” IEEE journal 2008

[4] Ambriola, V. and Gervasi, V. “Processing natural

language requirements”, Proc. 12th IEEE Intl. Conf. on

Automated Software Engineering, pp. 36-45,1997

[5] Farid Meziane, Nikos Athanasakis, Sophia Ananiadou,

2007, Generating Natural Language specifications from

UML class diagrams, Springer-Verlag London Limited

2007

[6] Ke Li, R.G.Dewar, R.J.Pooley, a, 2003, “Requirements

capture in natural language problem Statements”

[7] Elizabeth D. Liddy & Jennifer H. Liddy, 2001, “An NLP

Approach for Improving Access to Statistical

Information for the Masses”.

[8] Gobinda G. Chowdhury , 2001, Natural Language

Processing.

[9] Haruhiko Kaiya, Motoshi Saeki, 2005, “Ontology Based

Requirements Analysis: Lightweight Semantic

Processing Approach”, Proceedings of the Fifth

International Conference on Quality Software

(QSIC‟05), 2005 IEEE

[10] Xiaohua Zhou and Nan Zhou, 2004, Auto-generation of

Class Diagram from Free-text Functional Specifications

and Domain Ontology.

[11] L. Mich, NL-OOPs: “From Natural Language to Object

Oriented Using the Natural Language Processing System

LOLITA.”, Natural Language Engineering, 2(2), 1996,

87.

[12] Song, Il-Yeol, et al, (2004). “A Taxonomic Class

Modeling Methodology for Object-Oriented Analysis”,

In Information Methods and Methodologies, Advanced

Topics in Databases Series, Ed, pp. 216-240. Idea

Publishing Group.

[13] OpenNLP: http://opennlp.sourceforge.net/

[14] Tobias Karlsson, 2004, “Managing large amounts of

natural language requirements through natural language

processing and information retrieval support” ,Master‟s

Thesis, Department of Communication Systems, Lund

Institute of Technology,

[15] Word Net (2.1)http://www.cogsci.princeton.eu/~wn/.

[16] Jawad Makki, Anne-Marie Alquier, and Violaine Prince,

2008 Ontology Population via NLP techniques in Risk

Management

[17] Booch, G. (1994). Object-Oriented Analysis and Design

with Applications, 2nd Ed., Benjamin Cummings

[18] Ahmad Alsaadi ,”UML-Based Representation for

Textual Objects”.2008 IEEE.

0
5

10
15
20
25
30 objects/classes

attributes

methods

Relationships

Labeling

Total

Table 2.0: Automatic OO modeling using

NLPs

Diagram

Type

NLO

OPS

96[29

]

D-H

98

[31]

CMB

uilder

00[32]

LID

A

01[

35]

GOOA

L

03[36] RACE

External

& Static

Use case

Diagram no no no no no Yes

Internal

& Static

Class

Diagram No No Yes Yes Yes Yes

Internal

&

Dynamic

Object

Diagram Yes Yes No Yes no no

Sequence

Diagram No No No No No Yes

Collabor

ation

Diagram No No No No No No

External

&

Dynamic

Activity

Diagram No No No No No No

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.1, No.6, October 2012 DOI:10.15693/ijaist/2012.v1i6.66-72

72

[19] Imran Sarwar Bajwa ,”Object Oriented Software

Modeling Using NLP Based Knowledge

Extraction”.2009 EJSR

[20] Farid Meziane, Nikos Athanasakis, Sophia Ananiadou,

2007,”Generating Natural Language specifications from

UML class diagrams”, Springer-Verlag London Limited

2007

[21] Elizabeth D. Liddy & Jennifer H. Liddy, 2001, “An NLP

Approach for Improving Access to Statistical

Information for the Masses”.

[22] L. Mich, NL-OOPs: “From Natural Language to Object

Oriented Using the Natural Language Processing System

LOLITA.”, Natural Language Engineering, 2(2), 1996,

pp.161-187.

[23] L. Mich, R. Garigliano, "A linguistic approach to the

development of object-oriented system using the NL

system LOLITA”, In Object-Oriented Methodologies

and Systems Int‟l Symposium, (ISOOMS‟94), LNCS

858, 1996, pp. 371-386.

[24] Delisle S. Barker K. Biskri I. "Object-Oriented Analysis:

Getting Help from Robust Computational Linguistic

Tools." The Fourth International Conference on

Applications of Natural Language to Information

Systems (OCG Schriftenreihe 129), Klagenfurt, Austria,

1999, 167- 171.

[25] H.M. Harmain and R. Gaizauskas, “CM-Builder: An

Automated NL-based CASE Tool”, In Proceedings of the

15th IEEE International Conference on Automated

Software Engineering (ASE'2000), 2000, PP. 45-53.

[26] H. M. Harmain and R. Gaizauskas, “CM-Builder: A

Natural Language-based CASE Tool”, Journal of

Automated Software Engineering, 10, 2003, pp. 157-181

[27] J. Börstler, “User-Centered Requirements Engineering in

RECORD - An Overview”, the Nordic Workshop on

Programming Environment Research, Proceedings

NWPER'96, Aalborg, Denmark, May 1996, pp. 149-156.

[28] S.L.V. Overmyer and O. Rambow, "Conceptual

Modeling through Linguistics Analysis Using LIDA",

23rd international conference on Software engineering

July 2001

[29] H.G. Perez-Gonzalez and J.K. Kalita, “GOOAL: A

Graphic Object Oriented Analysis Laboratory”,

OOPSLA‟02,November 2002 pp. 38-39

[30] R.E. Callan, Building Object-Oriented Systems: An

Introduction From Concepts to Implementation in C++,

Computational Mechanics Publications, 1994.

[31] XML Metadata Interchange,

http://www.omg.org/technology/documents/formal/xmi.h

tm[last accessed 11/2/5

