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Abstract—Topological methods are rapidly developing and are 

becoming more used in physics, biology and chemistry. One area 

of topology has showed its immense potential in explaining 

potential financial contagion and financial crisis in financial 

markets. The aforementioned method is knot theory. The 

movement of stock price has been marked and braids and knots 

have been noted. By analysing the knots and braids using Jones 

polynomial, it is tried to find if there exists an untrivial knot 

equal to unknot? After thorough analysis, possible financial 

contagion and financial crisis prediction is analysed by using 

instruments of knot theory pertaining in that sense to 

Jones,Laurent and Alexander polynomial. It is proved that it is 

possible to predict financial disruptions by observing possible 

knots in the graphs and finding appropriate polynomials. The 

aforementioned approach is innovative and it could be used in 

accordance with stochastic analysis and quantum finance. 

 

Index terms -topology, knot theory, financial markets, stochastic 

analysis, financial disruption, financial crisis, topology, knots, 

braids 
 

I. INTRODUCTION 

In this paper, random dynamical systems are considered. It is 

assumed that financial time series exhibit fractional Brownian 

motion  and knot theory is used in order to analyse the formation 

of knots in financial time series. The foundations are set up to 

further the analysis of the financial time series using quantum 

physics, knot theory and topology. 
reduced as the result of presence of a small portion of malicious 
nodes in the network.  Overall the simulation results show that 
the ad hoc network performance is severely deteriorating along 
with the move speed of nodes increasing.It can be explained by 
the notion that the faster malicious node moves, the bigger region 
it covers. 

 

II. THEORY AND RESULTS 

 Conjecture 1:  (Frisch-Wasserman Delbruck (FWD) 

Conjecture)[1] The probability that a randomly embedded circle 

of length n  in 
3R  is knotted tends to one as n tends to infinity. 

 

The probability to find a closed N-step random walk in 
3R  in 

some prescribed topological state can be presented in the 

following way[1]: 
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 Where  1j jg r r   is the probability to find 1j  th 

step of the trajectory in the point 1jr   if j th step is in jr  and 

 Inv w  is the functional representation of the knot invariant 

corresponding to the trajectory with bond coordinates 

 1 2, ........ Nr r r . 

 

 

 In three dimensional space the following expression is 

found for [1]: 
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Introducing the time, s , along the trajectory we rewrite the 

distribution function NP  Inv  in the path integral form with the 

Wiener  measure density[2]: 
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If phase trajectories can be mutually transformed by means of 

continuous deformations, then the summation should be extended 

to all available paths in the system but if the phase space consists 

of different topological domains, then the summation in the 

above equation refers to the paths from the exclusively defined 

class and knot entropy problem arises. 

 

The 2D version of the Edward’s model is formulated as follows. 

Take a plane with an excluded origin, producing the topological 

constraint for the random walk of length L with the initial and 
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final points 
0r  and 

Lr  respectively. The trajectory makes n turns 

around the origin, but as we want to use so how to calculate the 

distribution function 
0( , , )N LP r r L  

In the said model the state C is fully characterised by number of 

turns of the path around the origin. The corresponding abelian 

topological invariant is known as Gauss linking number and 

when represented in the contour integral form, reads [3]: 
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And v  is angle distance between the ends of random walk. 

 

Using the Fourier transform of the  -function we arrive at by 

substituting equation (14) into equation (11): 
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We introduce the entropic force: 
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Which acts on the closed chain ( 0 , 0Lr r v   ) when the 

distance between the obstacle and a certain point of the trajectory 

changes. Apparently the topological constraint leads to the strong 

attraction of the path to the obstacle for any 0n   and to the 

weak repulsion for 0n  . 

Distribution function 0( , , )S LP r r L  for the random walk with the 

fixed ends and specific algebraic area S. 

Therefore according to D.S.Khandekar and F.W.Wiegel again 

represented the distribution function in terms of the path integral 

(equation 11) with the replacement: 

 

   ( ) ( )Inv r s Inv S r s S          (7) 

 

Where the   S r s  is written in the Landau gauge: 
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The final distribution function reads to[1]: 
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And  

 

iq   (11) 

There is no principal difference between the problems of random 

walk statistics in the presence of a single topological obstacle or 

with a fixed algebraic area- both of them have the ‘abelian’ 

nature. 

The principal difficulty connected with application of the Gauss 

invariant is due to its incompleteness. 

Any closed path on R can be represented by the ‘word’ 

consisting of set of letters  1 1

1 2 1 2, , ,    
. Taking into 

account 
1 1

i i i ie        the word can be reduced to the 

minimal irreducible representation. It is easy to understand that 

the word W e  represents only the irreducible representation. 

The non-abelian character of the topological constraints is 

reflected in the fact that different entanglements do not commute: 

1 2 2 1    . 

Application of Gauss invariant is due to its incompleteness. It has 

been recognized that the Alexander polynomials being much 

stronger invariants than the Gauss linking number, is a good for 

calculation of entangled random walks. 

 

The probability to find a randomly generated knot in a specific 

topological state. Take an arbitrary graph and assume the 

following theorem: Two knots embedded in 
3R  can be deformed 

continuously one into the other if and only if the diagram of one 

knot can be transformed into the diagram corresponding to 

another knot via the sequence of simple local moves of type I, II 

and shown in figure below. 

 

Knot complexity, the power of some algebraic invariant ( )Kf t : 

 

Knot complexity, the power of some algebraic invariant ( )Kf t : 

ln ( )
lim
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 (12) 

 

One and the same value of  characterizes a narrow class of 

‘topologically similar’ knots which is, however, much broader 

than the class represented by the polynomial invariant  X t . 

This makes it possible to introduce the smoothed measures and 

distribution functions for  . 
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Take a set of knots obtained by closure of 
3B -braids of length 

N  with the uniform distribution over the generators. The 

conditional probability distribution  ,U m N  for the 

normalized complexity   of Alexander polynomial invariant has 

the Gaussian behavior and is given by[2]: 
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Actually, the conditional probability distribution  ,U m N  

that the random walk on the backbone graph,  C  , starting in 

the origin, visits after first m ( .
m

const
N
 ) steps some graph 

vertex situated at the distance   and after N  step returns to the 

origin, is determined as follows: 
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Recall that the distribution function ( , )P r t  for the free random 

walk in D-dimensional Euclidean space obeys the standar\d heat 

equation[1]: 

( , ) ( , )P r t D P r t
t


 


(15) 

With the diffusion coefficient  
1

2
D

D
  and appropriate initial 

and normalization conditions: 
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( , ) 1P r t dr  (17) 

 

The diffusion equation for the scalar density ( , )P q t  of the free 

random walk on a Riemann manifold reads 
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Where 

 

 , 0 ( )P q t q  (19) 

 

( , ) 1gP q t dq  (20) 

 

And det ikg g  where ikg  is the metric tensor of the manifold. 

 

3D space: 

 

The Brownian brigde condition for random walks in space of 

constant negative curvature makes the space ‘effectively flat’ 

turning the corresponding limit probability distribution for 

random walks to the ordinary central limit distribution. 

 

This question is valid in Euclidean space. If we translate it 

into two dimensional space, the following result is obtained: 

 

The Brownian bridge condition for random walks in 2 

dimensional space makes the corresponding limit probability 

distribution for random walks to the ordinary central limit 

distribution. 

 

 
III. CONCLUSION  

The following equations have set up the foundations of applying 

knot theory to financial time series analysis. It has set up the 

equations for forming knots  in the three dimensional space using 

quantum physics tools and has translated them into the 2 

dimensional space by using Brownian bridge. The equations are 

given that demonstrate the possible braid and knot formation in 

the two dimensional space. 
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