
International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.12, December 2014 DOI:10.15693/ijaist/2014.v3i12.69-73

69

Performance enhancement of H.264 video decoder

using NVIDIA CUDA

Om Mehta Assistant Professor, Indus University, Ahmadabad, Gujarat India Jitiksha Patel, Assistant Professor,A.D.

Patel Institute of Technology, Aanand, Gujarat India Jignesh Patel, Assistant Professor,Indus

University,Ahmedabad,Gujarat,India

Abstract—H.264/AVC is an industry standard for video com-

pression, the process of converting digital video into a format that

takes up less capacity when it is stored or transmitted. It provides

a good compression ratio with good quality as compared to the

previous video compression standards. But it all comes at a higher

computational cost. So some part of this standard can be

computed on GPU to free the CPU. In this paper, we have

discussed the H.264 video compression standard and have

explored the NVIDIA CUDA for using the GPU for reducing the

computational requirements. NVIDIA provides Video decoding

API using which we can enhance the efficiency of the decoding

process. Here, we have implemented a decoder using this API’s

functions and compared its execution efficiency in terms of time

and its Frame rate with the Joint Model(JM) Reference Software.

JM Reference software is used for academic reference of H.264

and it was developed by JVT (Joint Video Team) of ISO/IEC

MPEG and ITU-T VCEG (Video coding experts group).

Index Terms—H.264, NVIDIA CUDA codec API, JM 18.4

decoder, Performance comparison.

In this paper we have discussed the H.264 decoder in brief in

the section II. Introduction to Joint Model(JM) Reference

software is given in section III. CUDA based implementation

of proposed decoder is given in section IV and its results are

presented and compared with JM 18.4 decoder in section V.

Finally section VI draws the conclusion.

II. H.264 DECODER

I. INTRODUCTION

H.264 is a video codec standard which can achieve high quality video

in relatively low bitrates. One can think it as the successor of the existing
formats (MPEG2, MPEG4,

DivX, XviD, etc.) as it aims in offering similar video quality in

half the size of the formats mentioned before.The standard is

complex and therefore challenging to the engineer or designer

who has to develop, program or interface with an H.264

codec.Computationally expensive, an H.264 codec can lead to

slow coding and decoding times or rapid battery drain on

handheld devices.[1]
The computational requirements of encoding and decoding

the H.264 force us to look for the better options to reduce the

computational load of CPU. Looking for the better options,

GPUs are the best pick for computationally very expensive

jobs now-a-days. GPUs are small devices with hundreds of

computing cores which are designed for high performance

computing. The GPU accelerates applications running on the

CPU by offloading some of the compute-intensive and time

consuming portions of the code.
For leveraging the parallel compute engine in GPU for

solving computational problems in a more efficient way than

in CPU, NVIDIA introduced a parallel computing architecture

named CUDA (Compute Unified Device Architecture).We are

aiming to use CUDA for enhancing the performance of H.264

decoder using GPU.

Fig. 1. Decoder [2]

1. • Entropy Decoder: The H.264 CODEC uses variable

length entropy coding to encode integers. H.264 uses
two techniques for this: CAVLC(Context
Adaptive Variable Length Coding) and

CABAC(Context Adaptive Binary Arithmetic

Coding). Both techniques feature context- aware bit-

mappings that vary during decoding. CABAC

produces better compression but its complicated

proba- bility models makes it more computationally

intensive.[5]
2. • Inverse Transformation and Quantization: H.264,

like many video CODECs, represents data via a fixed

predict- tion, based on previously decoded image data,

coupled with a residual error value representing the

difference between the fixed prediction and the

original image. This greatly enhances compression,

since the prediction modes can be concisely expressed.

In H.264 error-correction residual can be either 4x4 or

8x8 pixels (previous standards used only 8x8 blocks).

Since residual data exhibits high spatial entropy,

H.264 employs a lossy, low-pass discrete cosine

transform to develop a compact representation of the

residual values. H.264 also allows variable

quantization of DCT coefficients to enhance coding

density.[5]

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.12, December 2014 DOI:10.15693/ijaist/2014.v3i12.69-73

70

3. Intraprediction: Video frames have a high amount of

spatial similarity. Intraprediction use previously de-

coded, spatially local macroblocks to predict the next

macroblock. Intraprediction works well for low-detail

images.[5]
4. • Interpretation: In video, frames nearby in time have

only small differences. Interpretation attempts to capi-

talize on this similarity by encoding macroblocks in

the current frame using a reference to a macroblock in

a previous frame and a vector representing the

movement that macroblock took to a 14 pixel

granularity. The decode uses an interpolation process

known as motion compensation to generate the

prediction value. Fractional motion vectors are

interpolated from multiple previous macroblocks[5].
5. • Deblocking Filter: Since loss compression used to

en- code pixel blocks in H.264, decoding errors appear

most visibly at the block boundaries. To remove these

visual artifacts, the H.264 CODEC incorporates a

smoothing filter into its encoding loop. However, not

all inter- block discontinuities are undesirable; edges

in the original image may naturally occur on
block boundaries. H.264 incorporates fine-grained
filter control to preserve these edges.[5]

6. • Buffer Control: H.264 does not require interpre-
dicted images to depend on temporally-local,

temporally- ordered images. Rather, frames can be
predicted from previously decoded frames

corresponding to frames far in the past or future of the

video. Buffer control maintains a set of previously

decoded frames and is responsible for handling the in

stream requests to access (e.g.,delete, prediction logic

reads, writes from deblocking) these frames in its

store.[5]

We note in passing that H.264 decoding entails a large amount

of computation. Most of these computations take place in four

blocks Inverse Discrete cosine transform and Quantization,

Inter and Intra prediction and the Deblocking filter.

III. JOINT MODEL REFERENCE SOFTWARE

Joint Model (JM) reference software is used for academic

reference of H.264 and it was developed by JVT (Joint Video

Team) of ISO/IEC MPEG and ITU-T VCEG (Video coding

experts group). JM 18.4 is the latest version of the same. The

JM 18.4 software provides all the features of H.264 codec

which are specified in ITU-T H.264 standard but it is not

optimized. It provides all features at very high computational

cost. The execution flow graph of the JM 18.4 video decoder is

shown in the Figure 2.

In this function the frame is divided into slice and then to

macroblocks of various sizes, i.e. 4x4, 8x8 or 16x16, for

inverse quantization and inverse discrete cosine transform

(iDCT). These two tasks are performed by the decode one mb

function. After the whole frame is decoded, the decoder checks

for the end of file if the file has reached to its end by checking

the value of EOF flag. If the flag is set then the decoder frees

Fig. 2. JM 18.4 decoder Flow graph (1)

the slice structures and global buffers and it also closes bits

file, else it keeps on reading the next frame data.

Fig. 3. JM 18.4 decoder Flow graph (2)

In JM 18.4 decoder the processes which consumes most

time are inverse quantization, iDCT, motion compensation and

variable length coding. These processes can be offloaded to

GPU using CUDA API to be executed in parallel. Command

to Execute the JM 18.4 Decoder:
ldecod -i testfile.264 -o testoutput.yuv

IV.CUDA BASED VIDEO DECODER

IMPLEMENTATION A. Background of CUDA

Compute Unified Device Architecture (CUDA) is a parallel

computing architecture developed by NVIDIA for graphics

processing. CUDA is the computing engine in NVIDIA graph-

ics processing units (GPUs) that is accessible to software

developers through variants of industry standard programming

languages. Programmers use ’C for CUDA’ (C with NVIDIA

extensions and certain restrictions) to code algorithms for

execution on the GPU.[2]
1) Programming model: CUDA programming environment

allows the GPU to be programmed through traditional CPU. It

means you can use C++ language and compiler to realize

operations on GPU. A fundamental building block of CUDA

programs is the CUDA kernel function, which is a special C++

function. The kernel is downloaded to the GPU device that

acts as a coprocessor to the CPU(host). Figure 4 is CUDA

programming model.

The kernel function is executed by threads which are organized

in a block. There are maximally 1024 threads in a block

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.12, December 2014 DOI:10.15693/ijaist/2014.v3i12.69-73

71

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.12, December 2014 DOI:10.15693/ijaist/2014.v3i12.69-73

72

Fig. 4. CUDA programming model [3]

and the threads within a block can co-work with each other

through the shared memory. Though the number of threads in

a block are limited, we can co-operate multiple blocks or grid

whose basic unit is a block to get enough threads for data

paralle processing. Nevertheless, blocks within a grid cannot

communicate with each other. The CUDA architecture

provides access to three kinds of memory: Global Memory,

Local Memory and Shared Memory. And memory

instructions include any instruction that reads from or writes

to shared, local or global memory. Global memory and local

memory spaces are not cached. By contrast, share memory is

on-chip,so it is much faster than any other two kinds of

memories.
2) CUDA video decoder API: NVIDIA provides a video

decoding API for enhancing the efficiency of the H.264 video

decoder. This API gives developers access to hardware video

decoding capabilities on NVIDIA GPU.This CUDA Video

Decoder API allows developers access the video decoding

features of NVIDIA graphics hardware.This API allows the

video bitstream decode to be fully offloaded to the GPUs

video processor. The tasks that take major time, i.e. motion

compensation, inverse discrete cosine transform, inverse quan-

tization, VLD (variable-length decoding) and deblocking, can

be offloaded to GPU using this API and can be executed in

parallel[4]. The CUDA Video Decode API consists of:

• cuviddec.h

• nvcuvid.h

• nvcuvid.lib

• nvcuvid.dll

B. CUDA Implementation

Here we have proposed a decoder which uses this API for

reducing the computational cost of compute intensive tasks.

The flowgraph of the proposed Decoder which uses this API is

shown in Figure 5.

Fig. 5. Proposed Decoder

For the implementing the proposed decoder, we have

developed a video parser which can parse the video data to the

slice level. This slice data are then fed to the API decoder

function named cuvidDecodePicture().
The parser contains the read frame data() functions, which

calls the cuvidparseVideoData() function. This function gets

the various parameters like flag values of headers, payload

size, pointer to the payload, payload type etc.
After the parameters are fetched and passed to the

cuvidDecodePicture() function the frame data is copied to the

device memory and the decoding process is started on

GPU.The decoder provides a the output in YUV format which

rests in device memory which can be brought back to the host

memory.
The flag named End of file is checked after every single frame

decoding to check whether the file has come to its end or not.If

yes then the decoder is destroyed and if no then the next frame

data is read by the read frame data() function.

V. IMPLEMENTATION RESULTS

We have used various video files for testing our decoder.

The list of the details of the video files is shown in Table I. We

have given this video files as an input to both JM 18.4 decoder

and our CUDA based decoder. The decoding time taken by

both decoders is given in Table II.

• Input file type: H.264 file

• Output file type: yuv file

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.12, December 2014 DOI:10.15693/ijaist/2014.v3i12.69-73

73

From the graphs, it is clear that the implemented decoder

 Video File Decoding Time

provides better decoding frame rate than the JM 18.4.

Name

 JM 18.4 Decoder CUDA based

Sample1 174.749 sec (1.749 fps)

Decoder VI. CONCLUSION AND FUTURE WORK

 1.142 sec (200.53 fps)

The decoding time is very less in implemented decoder

 Foreman 37.566 sec (7.986 fps) 0.672 sec (445.91 fps)

 cars 7.008 sec (24.971 fps) 0.380 sec (460.11 fps) compared to JM 18.4 and this is evident from the Table

Akiyo 2.420 sec (123.967 fps) 0.421 sec (711.54 fps)

as well as from Graphs. The reason why our decoder is so

 TABLE I fast is because it is multi-threaded and uses GPU-optimized

 CO M PA R I S O N O F T H E EX E C U T I O N TI M E CUDA video Decoder API functions.It uses CUDA libraries

 to offloads the major compute intensive parts (i.e. motion

 compensation, inverse discrete cosine transform, inverse quan-

Video File Name

Size of Frame

No. of Frames

 tization, VLD (variable-length decoding) and deblocking) of

Sample1

1280x544

229

decoder to the GPU for decoding. Thus, Parallel execution

Foreman

352x288

300

 of those parts takes much less time than the JM 18.4. It is

Cars

320x240

175

 possible to decode multiple video streams using CUDA API

Akiyo

176x144

300

 functions but it requires appropriate memory management. By

 TABLE II managing the global and shared memory of GPU properly we

 Video Files can decode multiple video streams in parallel which will be

The graphical presentation of the Execution time and the

our future work.

 Frame rates of both decoders is shown in Figures 6 and 7.
REFERENCES

 One can compare both decoders using these graphs.

 1. [1] Iain E. Richardson, The H.264 advanced video compression

 standard 2nd Edition ,2010.

 2. [2] http://en.wikipedia.org/wiki/CUDA

 3. [3] NVIDIAs Next Generation CUDA Compute Architecture:Fermi,

 White Paper, Version 1.1 ,2009.

 4. [4] NVIDIA CUDA VIDEO DECODER API specification, Version 1.1

 ,August 2010.

 5. [5] Fleming, Chun-Chieh Lin, Dave, Arvind, Raghavan, Hicks, H.264

 De- coder: A Case Study in Multiple Design Points, Version 1.1 ,

 2008.

 Authors Profile

Om Mehta received the B.E. degree in

 information and technology from

 Vishwakarma Govt. Engg.

 College,Gujarat,India in 2010.Currently

 Fig. 6. Comparison of the Execution Time pursuing PH.D. from Indus University in

 Computer Engineering. His research

 interest includes wireless sensor

 netwoks,multimedia,operating system,fuzzy logic.

Jitiksha Patel received the B.E. degree in

 information and technology from A.D. Patel

 Institute of Technology in 2011. Currently

 working as an assistant professor in A.D.

 Patel Institute of Technology.His research

 interests are Maths , Multimedia ,Compilers

 ,Software Engineering.

Jignesh Patel received the B.E. degree in

 computer engineering H.N.G.U University

 in 2008. Currently working as an assistant

 professor in Indus University.His research

 interestsareParallelprocessing,

 Multimedia & Computer graphics

 Compilers ,Software Engineering.

