
International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.3, No.8, August 2014 DOI:10.15693/ijaist/2014.v3i8.68-75

68

On the development of base specification
for implementing Distributed Applications

on Embedded Platforms
K.Chaitanya1 K. Rajasekhara Rao2

Department ofC.S.E Department ofC.S.E
1Research Scholar in JNTU Hyderabad 2Director in Sri Prakash college

 Hyderabad, India of Engineering,
Tanuku,E.G.Dist.,India

Abstract

Many loaded systems exist as on date which work

on the principle of distributed processing and

distributed data. Networking of the computing units

and heterogeneity of the platforms that are used at

respective computing locations are the main issues that

are needed to be addressed in regard to implement

distributed embedded systems. Middleware is

generally used to address the heterogeneous issues.

Communication is one of the important issues that

must be addressed for implementing a distributed

application. Many loaded applications have been

developed and implemented in the past based on the

concept of distributed computing.

Embedded systems are being used for

implementing most of the real time applications. These

days, the concept of distributed computing is also

being extended for the implementation of applications

that require usage of many embedded systems, each

embedded system implementing a particular aspect of

the real time processing; keeping in view of response

time and need for extending the scope of real time

processing

Not much work has been reported to be done in

developing a network of embedded systems. Each

embedded system is different as it may use different

micro controllers, real time operating systems and

programming languages used for the development of

embedded software.

Thus it becomes necessary to bring out all the

issues involved in developing a distributed application

using embedded systems as a general requirement.

This paper is related to the development of a

specification document that brings out all the issues

related to development of distributed embedded

systems based applications.

Keywords

Distributed Embedded systems,Middleware,Networking

issues,Performance issues

IINTRODUCTION

A. Theoretical foundation:

An embedded system is a special-purpose

information processing systemthat is closely

integrated into its environment. It is usually

dedicated to acertain application

domain.Theknowledge about the system behavior at

the time of design can be used to minimize resources

while maximizing predictability. Embedding into a

technical environment and the constraints imposed

by a particular application domain very often lead to

heterogeneous and distributed implementations. In

this case, systems are composed ofhardware

components that communicate via some

interconnection network.

Many embeddedsystem applications exist

in day to day life. Some of the applications have

been developed and implemented based on the

concept of Distributed embedded systems.

Automobile systems use the distributed embedded

system in a more advanced way these days.

Distributed process is a valuable design alternative

for the system to achieve the real time constraints.

The distributed systems are more complex because

they are integrated with heterogeneous network.

These conditions lead to the concept of Middleware.

The term middleware suggests that it is software

positioned between the operating system and the

application and can be spread itself over a

heterogeneous network, concealing the complexity

of underlying technology from the application being

run on it.

Distributed embedded system can be

defined in terms of, multiple computers

interconnected by a network that share some

common state and cooperate to achieve some

common goal.Distribution generally leads to sharing

of resources and sharingimproves availability,

reliability, fault tolerance, maintainability,

performance and scalability.

Many issues have to be considered while

attempting to develop a distributed system which

generally includeMiddleware, Communication,

Performance,Networking, Heterogeneity and

Security. Application segmentation and allocation of

the application segments to various embedded

systems is another important issue that needs

consideration. A thorough understating of these

issues is necessary so as to embark on the

development of distributed embedded systems.

Literature has not brought out general requirement

specifications for the development of distributed

embedded systems.

B. Problem Definition:

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.3, No.8, August 2014 DOI:10.15693/ijaist/2014.v3i8.68-75

69

Keeping the correlations as aforesaid in view, the

problem can be said as: To bring out a general

requirement specification that must be considered

each time, one proceeds to develop distributed

embedded system. The general requirement

specification must include all these issues at macro

level for developing a distributed embedded system.

C. Scope:

The scope of this work includes the following,

1. Literature survey for determining the requirements

which should be considered for development of

distributed embedded system

2. Making comparative analysis of the

recommendations.

3. Verification of various requirements

projected by the authors to check whether all

the development related issues have been

projected by various other authors.

4. To comprehensively shortlist all the

requirements that are to be considered for

undertaking development of a distributed

embedded system.

D.Limitations:

This work brings out general requirement

specification which addresses various issues that

must be considered while attempting to develop a

distributed embedded system. Howeverthese issues

must be fine-tuned and the applicability of the same

must be verified each time a user attempts to

develop specific distributed embedded system. The

present scope of the work is limited to wired

distributed embedded systems.

II LITERATURE SURVEY

Various issues have been referred from the

literaturewhich are needed to be considered for

undertaking development of distributed embedded

systems. The issues that have been traced from the

literature include Middleware issues,

Communication issues, Performance issues,

Networking issues, Heterogeneity issues, and

Security issues. The survey conducted related to

each of the issue is detailed below:

A.Survey related to Middleware Issues:

Middleware requirements

Middleware [8] is a class of software technology

designed to help manage the complexity and

heterogeneity inherent in distributed systems. It is

defined as a layer of software, which is above the

operating system but below the application program

that provides a common programming abstraction

across a distributed system.

The distributed systems create new problems that do

not exist in centralized systems. It is obvious that

new concepts and mechanisms are necessary, but

there is no specific need to know at which level they

should be embedded. From support at the hardware

levels, all the ways for extension of programming

languages to enable support of distributed

applications. Software solutions typically provide

the greatest flexibility because of their suitability for

integrating existing technologies. These conditions

lead to the concept of Middleware. Middleware

offers general services that support distributed

execution of applications. The term middleware

suggests that it is software positioned between the

operating system and the application. Viewed

abstractly, middleware can be spread itself over a

heterogeneous network, concealing the complexity

of the underlying technology from the application

being run on it.

Using middleware for distributed systems

has several advantages viz.a.viz.it eases the

distributed system development, increases the

portability of the software and improves the system

maintenance and reliability. The economic benefits

of middleware are significant with up to 50%

decrease reported in software development time and

costs. Despite these benefits, general-purpose

middleware poses numerous challenges when

developing real-time systems.

Middleware services requirements

The main issue that must be addressed in regard to

the middleware is related to the services that must be

included into the middleware that essentially

addresses the heterogeneity. Services that must be

included into Middleware [10] fall into different

categories. The categories include communication

services (Procedure calls across networks, Remote-

object method invocation, Message-queuing

systems, advanced communication streams, Event

notification service etc.), Information system

services (Services that help manage data in a

distributed system (Large-scale, system wide

naming services, Advanced directory services

(search engines, Location services for tracking

mobile objects, Persistent storage facilities, Data

caching and replication), Control services(Services

giving applications control over when, where, and

how they access data, Distributed transaction

processing, Code migration), Security

services(Services for secure processing and

communication:, Authentication and authorization

services, Simple encryption services, Auditing

service)

Middleware object requirements

Various tasks/ objects that must also be included

into the Middleware [11] have been presented into

the literature.

An object encapsulates state and behavior

and can only be accessed via a well-defined

interface. The interface hides details that are specific

to the implementation, thereby helping to

encapsulate different technologies. An object

therefore becomes a unit of distribution. Recall that

objects communicate with each other by exchanging

messages.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.3, No.8, August 2014 DOI:10.15693/ijaist/2014.v3i8.68-75

70

Various kinds of objects that must be used

to form the middleware software include Model

support object (Middleware should offer

mechanisms to support the concepts incorporated in

the object model), Operational interaction object

(Middleware should allow the operational

interaction between two objects. The model used is

the method invocation of an object-oriented

programming language), Remote interaction object

(Middleware should allow the interaction between

two objects located in different address spaces),

Distribution transparency object (from the

standpoint of the program, interaction between

objects is identical for both local and remote

interactions), Technological

independenceobject(The middleware supports the

integration of different technologies).

Middleware structure requirements

The structure of Middleware platform [12] plays a

major role on which the middleware must be

implemented.

Middleware is conceptually located

between the application and the operating system (as

in below figure2.1) the middleware hides the

heterogeneity that occurs in a distributed system.

This heterogeneity exists at different places:

Programming languages:

Different objects can be developed in different

programming languages.

Operating system:

Operating systems have different characteristics and

capabilities.

Computer architectures:

Computers differ in their technical details. (e.g.: data

representation).

Networks:

Different computers are linked together through

different network technologies.

Middleware overcomes this heterogeneity by

offering equal functionality at all access points.

Applications have access to this functionality

through an Application Programming Interface

(API).Because the API depends on the programming

language in which the application is written, the API

has to be adapted to the conditions of each

programming language that is supported by the

middleware.

Various applications

Middleware

External Sensors
Wireless

Communication
Smart Phone OS

Support Data and Power

Management

Read Data and

Monitor Status Sensors and

Application

Transport Data

with Near by

Devices

Figure 2.1: Middleware Architecture

An applications programmer typically sees

middleware as a program library and asset of tools.

The form these takes naturally depends on the

development environment that the programme is

using. Along with the programming language

selected, this is also affected by the actual

compiler/interpreter used to develop a distributed

application.

If we were to project a middleware to a

global, worldwide network, we would find special

characteristics that differ from those of a

geographically restricted distributed system. At the

global level, middleware spans several technological

and political domains, and it can no longer be

assumed that a homogenous technology exists

within a distributed system.

Due to heterogeneity and the complexity

associated with it, we cannot assume that one vendor

is able to supply middleware in the form of products

for all environments. From the standpoint of market

policy, it is generally desirable to avoid having the

monopoly on a product and to support innovation

through competition. However the implementation

of middleware through several competing products

should not result in partial solutions that are

compatible.

Middleware – Portability and inter-operability

issues

In the context of middleware, a standard has to

establish the interfaces between different

components to enable their interaction with one

another. We want to distinguish between two types

of interface: horizontal and vertical. Horizontal

interface exists between an application and the

middleware and defines how the application can

access the functionality of the middleware. This is

also referred to as Application Programming

Interface (API).The standardization of the interface

between middleware and application results in the

portability[9] of an application to different

middleware because the same API exists at each

access point as shown in fig 2.2

In addition to the horizontal interface there is a

vertical interface that defines the interface between

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.3, No.8, August 2014 DOI:10.15693/ijaist/2014.v3i8.68-75

71

two instances of a middleware platform. This

vertical interface is typically defined through a

protocol on the basis of messages, referred to as

protocol data units (PDUs).APDU is a message sent

over the network. Both client and server exchange

PDUs to implement the protocol.

Distribution Platform 1 Distribution Platform 2

Client Server

Figure 2.2 portability and interoperability

The vertical interface separates technological

domains and ensures that applications can extend

beyond the influence area of the product of

middleware. The standardization of this interface

allows interoperability between applications.

Applications programmers are typically

only interested in horizontal interface because it

defines the point of contact to their applications.

From the view of the applications programmer, the

vertical interface is of minor importance for the

development of an application. Yet an implicit

dependency exists between horizontal and vertical

interfaces.

B.Survey related to Communication Issues:

Communication [3] is essential to achieving a

dependable distributed embedded system. Designers

of these systems are faced with several challenges in

specifying the communication network. Complex

systems usually require some sort of shared media

network. In this environment, the designer must

recognize the fundamental trade-off that exists

between the efficiency and the predictability of the

network. Given this trade-off, the designer must

evaluate and select the communication network.

Particular attention must be given to the protocols,

which determine much of the network behaviour.

Finally, many error detection methods are available

which are necessary to build a reliable

communication system.

The majority of embedded communication

systems can be classified as either point-to-point

networks (data links) or shared media networks

(data highways). It is important to understand the

trade-off between these two types of systems. In

point-to-point networks, each node of the system is

connected to every other node. These systems are

simple and reliable. Reliability is high since correct

transmission between two nodes only depends on a

single transmitter and receiver. Since each link is

dedicated to communication between two nodes, it

is easy to meet real-time deadlines without any

sophisticated scheduling mechanism. In shared

media systems all nodes are connected together

using a ring or bus topology. The primary

motivation for shared media is the reduction in

wiring (and thus cost). These networks are easily

extendable without adding any new data ports to

individual nodes. Limited new cabling is required.

Event versus State Based Communication

In practice communication systems may not be

purely event or state based[1]. A communication

protocol may contain some properties of each.

However, it is instructive to examine the

fundamental differences between an event based

system and a state based system. One of the

fundamental trade-offs between these two types of

systems is the efficient use of resources found in

event based systems versus the predictability of the

network found in state based systems. The primary

resources of concern in the network are bandwidth

and the buffer space required at nodes to process

incoming or outgoing messages.

In an event based communication system,

messages are generated and transmitted in response

to "events" detected at a local node in the network.

Examples of "events" include changes in the value

of process variables, new alarm conditions that have

been detected, conditions that represent alarms

clearing or requests by other nodes for data.

Messages are generated by users whenever they

send data to printers, access data on shared network

drives, run applications that exist on other machines

or send email to others in the network.

One goal of event based communication is

the efficient use of network bandwidth. By

transmitting only necessary data, an efficient use of

network bandwidth is assured. However, since data

is transmitted only when there is a change at the

source node, every message becomes important.

This places additional requirements on the

communication system to assure that each message

is delivered successfully. One mechanism to do this

is for destination nodes to acknowledge each

successful transmission and request a retry for each

corrupted message. If an acknowledgement is not

generated within a specified timeout, the source

node may also repeat the message of its own accord.

Note that this acknowledges and retry mechanism

consumes some additional network bandwidth.

In a state based communication system,

messages represent the entire state of a node. For

instance, all of the alarms for a node are transmitted

as either on or off in its message. A node sends its

fixed size message at pre-defined, regular intervals.

Access to the media is easily scheduled, since the

message requirements of each node never change.

Network load is fixed and can be easily calculated

during system design. An example of a state based

system is a distributed process control system. Each

node has a fixed number of inputs, calculated

values, and alarm conditions that it sends in its

message to other nodes in the network.

The state based system is a less efficient in

terms of network bandwidth than in the event based

system. Network bandwidth is sacrificed for the

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.3, No.8, August 2014 DOI:10.15693/ijaist/2014.v3i8.68-75

72

predictability of regular message size and regular

access to the communication channel. Note that

some reduction in the overall data is possible. Each

piece of data occupies a fixed location in the

message. Therefore the data can be restricted to

value. Information about what each data point

represents is not required to be transmitted with the

message.

State based systems can be designed to

tolerate the occasional missed message. Re-

transmission may not be necessary, since the entire

state will be transmitted again in the next time

interval. If messages are transmitted at twice the

required frequency, the system can meet its

deadlines even if every second message is corrupted.

In order to tolerate two corrupted messages in a row,

the each node could be designed to transmit its

messages at three times the required frequency.

The single most important difference between a

distributed system and a uniprocessor system is the

inter process communication. In a uni-processor

system, most inter process communication implicitly

assumes the existence of shared

memory.Communication is mainly divided into two

types. They are,

Transient communication

A message is discarded by a communication server

as soon as it cannot be delivered at the next server,

or at the receiver.

Persistent communication

A message is stored at a communication server as

long as it takes to deliver it at the receiver.

Communications are often handled by layered

protocols. Protocols are formal set of rules that

govern the format, contents, and meaning of the

messages send and received. Connection oriented

and connectionless protocols. Connection oriented

does some initial work to set up a “virtual circuit”.

Connectionless does not.

Communication: Middleware Protocols:

Middleware logically at application layer, but

provides commonservices and protocols that can be

used by manydifferent applications.

1. A rich set communication protocols to allow

different applications to communicate

2. Naming protocols, so that different applications can

easily share resources.

3. Security protocols, to allow different applications to

communicate in a secure way.

4. Scaling mechanisms, such as support for replication

and caching.

Transmission modes:

Different timing guarantees with respect to data

transferAsynchronous (No restrictions with respect

to when data is to be delivered), Synchronous

(Define a maximum end-to-end delay for individual

data packets), Isochronous (Define a maximum and

minimum end-to-end delay (jitter is bounded)).

1. Pack parameters and other information into a

message (marshalling).

2. Send message to process on remote machine.

3. Unpack message on remote machine (un-

marshalling).

C. Survey related to Performance Issues:

[Richard, Zurawski] have presented several

performance related issues that must be considered

for the development of distributed embedded system

especially the design related issues [2] [7].

Correctness:

The results of the analysis should be correct, i.e.

there exist no reachable system states and feasible

reactions of the system environment such that the

calculated bounds are violated.

Accuracy:

The lower and upper bounds determined by the

performance analysis should be close to the actual

worst case and best case timing properties.

Embedding into the design process:

The underlying performance model should be

sufficiently general to allow the representation of the

application (which possibly uses different

specification mechanisms), of the environment

(periodic, aperiodic, busty, different event types), of

the mapping including the resource sharing

strategies (pre-emption, priorities, time-triggered)

and of the hardware platform. The method should

seamlessly integrate into the functional specification

and design methodology.

Short analysis time:

Especially, if the performance analysis is part of a

design space exploration, a short analysis time is

important. Inaddition, the underlying model should

allow for configurability in terms of application,

mapping and hardware platform.

As distributed systems are heterogeneous in

terms of the underlying execution platform, the

diverse concurrently running applications, and the

different scheduling and arbitration policies used,

modularity is a key requirement for any performance

analysis method. We can distinguish between

several composition properties.

Process Composition:

Often, events need to be processed by

severalconsecutive application tasks. In this case,

the performance analysismethod should be modular

in terms of this functional composition.

Scheduling Composition:

Within one implementation, differentscheduling

methods can be combined, even within one

computingresource (hierarchal scheduling); the

same property holds for thescheduling and

arbitration of communication resources.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.3, No.8, August 2014 DOI:10.15693/ijaist/2014.v3i8.68-75

73

Resource Composition:

A system implementation can consist of different

heterogeneous computing and communication

resources. It shouldbe possible to compose them in a

similar way as processes and scheduling methods.

Building Components:

Combinations of processes associated scheduling

methods and architecture elements should be

combined into components. This way, one could

associate a performance component to

acombinedhardware/OS/software module of the

implementation that exposes the performance

requirements but hides internal implementation

details.

1. Performance loss due to communication

delays:

 Fine-grain parallelism: high degree of

interaction

 Coarse-grain parallelism

2. Performance loss due to making the system

fault tolerant.

D. Survey related to Networking Issues:

[.cs.wpi.edu/~cs535/s08/week3-comm] have

presented several performance related issues that

must be considered for the development of

distributed embedded system especially the design

related issues[4] are Performance(latency and data

transfer rate (throughput)),Scalability,

Reliability(high for physical networks, with most

errors due to software or buffer

overflow),Security(common use of a firewall to filter

messages, encryption, Virtual Private Network

(VPN) does encryption),Mobility(big and growing

issue),Quality of service(applications have different

demands, no longer just “best

effort”)Multicasting(sends to a group).

2.4.1 Performance issues:

Latency:

The delay that occurs after a send operation is

executed before data starts to arrive at the

destination computer. It can be measured as the time

to transfer an empty message. It forms a part of

process-to-process latency.

Data transfer rate:

The speed at which data can be transferred between

two computers in the network once transmission has

begun, bits/s.

Message transmission time = latency + length / data

transfer rate.

Data transfer rate is determined primarily

by network physical characteristics, whereas the

latency is determined primarily by software

overheads, routing delays and delay of accessing to

transmission channels. In distributed systems,

messages are always small in size, so the latency is

more significant than data transfer rate.

Total system bandwidth:

The total volume of traffic that can be transferred

across the network in a given time.

 Ethernet: system bandwidth is as same as

data transfer rate.

 WAN: multiple channels, deteriorates when

there are too many messages.

Comparison of different communication channel,

 Local network – a null message

transmission time is under a millisecond.

 Local memory - 1000 or more times faster

than local network.

 Local hard disk - 500 times slower than fast

local network.

 Internet - round-trip latencies are in 300-

600ms due to switching and contention.

2.4.2 Survey related to Scalability:

 No traffic figures are available for the

internet, but the impact of traffic on

performance can be gauged from

communication latencies.

 future Internet: several billion nodes and

hundreds of millions of active hosts, new

addressing and routing mechanisms

 the ability of the internet infrastructure to

cope with this growth will depend upon the

economics of use, in particular charges to users and

the patterns of communication that actually occur.

ex.: degree of flexibility.

2.4.3 Survey related to Reliability:

Networks are highly reliable, whereas client and

server computers and their software often aren't, so

error detection and recovery is best performed end-

to-end at the highest feasible level.(Errors: e.g.

failures in software of sender or receiver, or buffer

overflow).

2.4.4 Survey related to Quality of Service:

It is the ability to meet deadlines when transmitting

and processing streams of real-time multimedia

data.Require guaranteed bandwidth and bounded

latencies.

Multicasting:

Multicasting can be simulated by sends to several

destinations, this is more costly than necessary, and

may not exhibit the fault-tolerance characteristics

required by applications. It can be need for one-to-

many communication.

E. Survey related to Security Issues:

Firewall: to protect the resources in all of the

computers inside the organization from access by

external users or processes and to control the use of

resources outside the firewall by users inside the

organization, always runs on a gateway.Secure

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.3, No.8, August 2014 DOI:10.15693/ijaist/2014.v3i8.68-75

74

network environment (e.g. VPN (virtual private

network).

Security[5]is a generic term used to

indicate several different requirements in computing

systems. Depending on the system and its use,

several security properties may be satisfied in each

system and in each operational environment.

Overall, secure systems need to meet all or a subset

of the following requirements:

Confidentiality:

Data stored in the system or transmitted from the

system have to be protected from disclosure; this is

usually achieved through data encryption.

Integrity:

A mechanism to ensure that data received in a data

communication was indeed the data transmitted.

Non repudiation:

A mechanism to ensure that all entities (systems or

applications) participating in a transaction cannot

deny their actions in the transaction.

Availability:

The system’s ability to perform its primary functions

and serve its legitimate users without any disruption,

under all conditions, including possible malicious

attacks that target to disrupt service, such as the well

known Denial of Service (DoS) attacks.

Authentication:

The ability of the receiver of a message to identify

the message sender.

Access control:

The ability to ensure that only legal users may take

part in a transaction and have access to system

resources. To be effective, access control is typically

used in conjunction with authentication.These

requirements are placed by different parties involved

in the development and use of computing systems,

for example, vendors, application providers, and

users.

IIICOMPARATIVE ANALYSIS

The various issues and the requirements are initiated

along with its associated properties as suggested by

different authors for developing a distributed

embedded system are tabulated and placed in the

table 3.1.

Table 3.1 Comparative Analysis – Requirements projection

for distributed Embedded

S
.N

o

Is
su

es

R
ic

h
a

rd

Z
u

ra
w

sk
i

A
n

d
re

w
 S

.

T
a

n
en

b
a

u
m

K
o

o
p

m
a

n

S
h

ib
u

R
a

jk
a

m
a

l

1
Middleware X √ √ X X

Horizontal interface

Vertical interface

RTOS

Micro Controller

Languages

2

Communication √ √ √ √ √

Protocols

RS232C

I
2
C

USB

Fire wire

Ethernet

ESA

PCI

Direct Connecting

IrDA

Wi-Fi

Hi-Fi

Bluetooth

Any other

Protocol conversion

3 Performance √ √ X X X

4

Networking X X X √ √

Topologies

Interfacing

RS232C

I
2
C

USB

Ethernet

ESA

PCI

Direct Connecting

IrDA

Wi-Fi

Hi-Fi

Bluetooth

Any other

5

Heterogeneity (In

the absence of

Middleware)

X √ X X X

RTOS

Micro Controller

Languages

6
Security √ √ X

S
.N

o

Is
su

es

R
ic

h
a

rd

Z
u

ra
w

sk
i

A
n

d
re

w
 S

.

T
a

n
en

b
a

u
m

K
o

o
p

m
a

n

S
h

ib
u

R
a

jk
a

m
a

l

7
EDLC at each of the

Embedded Systems

 √

8

Design Models to be

used

 √ √

State Machines √ √

Sequential Flow √ √

Data Flow √ √

HW and SW Co-

design

 √ √

Clean room

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.3, No.8, August 2014 DOI:10.15693/ijaist/2014.v3i8.68-75

75

software

engineering models

9
Design models for

undertaking Testing

X X X X X

IV INVESTIGATIONS AND FINDINGS

Thus the requirement specifications for developing a

distributed embedded application are

investigated.The issues that have been traced from

the literature include Middleware issues,

Communication issues, Performance issues,

networking issues, and Security issues. While

developing any distributed application, Middleware

plays an important role for heterogeneity services.

Distributed systems are mainly used for sharing of

resources and messages through the network

connections. Thus the communication between the

systems is done through the messages.

Recommended Requirement Specification for

development of distributed Embedded Systems

Middleware, Communication, Performance

Networking, Security

VCONCLUSION

The survey of literature revels that those different

types of issues being used for developing an

effective distributed embedded systems.

Distributed systems are mainlyused for sharing of

resources between the systems/devices and they

are all combined together to form a single

application. These sharing of resources are done

through the messages with the help of network

connections. Thus it becomes necessary to bring

out all the issues involved in developing a

distributed application using embedded systems as

a general requirement specification.

REFERENCES
[1]. [Kopetz97] Kopetz, H., Real-Time Systems,

Design Principles for Distributed

Embedded Applications, Klower Academic

Publishers, 1997, Chpt.7-8.

[2]. Ti-Yen Yen and Wayne Wolf, “Performance

Estimation for Distributed Embedded

System”, IEEE TRANSACTIONS ON

PARALLEL AND DISTRIBUTED

SYSTEMS, VOL. 9, NO. 11, NOVEMBER

1998

[3]. [Koopman94] Koopman, P.J., and

Upender, B.P, "Communication Protocols

for Embedded Systems", Embedded

Systems Programming, 7(11), November

1994, pp. 46-

48,http://www.cs.cmu.edu/People/koopman

/protsrvy/protsrvy.html, Accessed: May 8,

1999.

[4]. http://web.cs.wpi.edu/~cs535/s08/week3-

comm.pdf

[5]. Richard,Zurawski , Embedded Systems

Hand Book,2006,chapter17

[6]. distributed operating system by Andrew

S.Tanenbaum

[7]. Richard,Zurawski , Embedded Systems

Hand Book,Performance Analysis of

Distributed Embedded Systems,Lothar

Thiele and Ernesto

Wandeler,2006,chapter15

[8]. Wayne Wolf,”Middleware Architectures

For Distributed Embedded System”,11
th

IEEE Symposium on Object Oriented Real-

Time Distributed Computing,2008,pp.377-

380

[9]. Arno Puder,KeyRomer& Frank Pilhofer,

Distributed systems:A Middleware

Approach,Elsevier,2006,24-25

[10]. Liu JingYong, Zhang LiChen, Zhong Yong

and Chen Yong, Middleware-based

Distributed Systems Software Process,

International Journal of Advanced Science

and Technology Volume 13, December,

2009

[11]. Arno Puder,KeyRomer& Frank Pilhofer,

Distributed systems:A Middleware

Approach,Elsevier,2006,21-22

[12]. Arno Puder,KeyRomer& Frank Pilhofer,

Distributed systems:A Middleware

Approach,Elsevier,2006,22-24

