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Abstract—A set S of vertices of a graph G = ( V, E ) is called a 

vertex cover, if each edge in E has at least one end point in S and 

the minimum cardinality taken over all vertex covering sets of G 

is called the vertex covering number denoted by β(G). This 

concept has also wide applications in industrial machine 

assignment, wireless sensor networks and in routing and fault 

tolerance algorithms. The star and wrapped butterfly networks 

were proposed as attractive alternatives to the popular 

hypercube for interconnecting processors on a parallel computer. 

In this paper, we present a characterization in connection with 

invertible networks. In particular, we examine their graph 

theoretic properties and present a polynomial time algorithm for 

solving VCP on star networks and for wrapped butterflies of 

even dimension.  
Index terms -Vertex cover, Edge cover, Invertible graphs, Star 

network, Wrapped Buttterfly. 
 

I. INTRODUCTION 
 

The problem of monitoring a network by placing an 

optimal set of nodes on which to strategically place controllers 

such that they can monitor the data going through every link in 

the network is modelled as the vertex covering problem (VCP) 

in graphs. The problem of finding a minimum vertex cover is 

a classical optimization problem in computer science and is a 

typical example of a NP hard optimization problem that has an 

approximation algorithm. Determining how well we can 

approximate vertex cover is one of the outstanding open 

problems in the complexity of approximation [1]. While 

vertex cover has a trivial 2-approximation algorithm, no better 

algorithms are known. The best approximation algorithm 

currently known for arbitrary graph is due to Karakostas [5]. 

On the other hand, minimum vertex cover is polynomial for 

several classes of graphs such as bipartite, chordal and graphs 

with bounded tree width etc. There has been many attempts to 

find the exact values of β(G) for special classes of graphs. 

Recently, Babak et.al.characterized minimum vertex cover in 

generalized Petersen graphs [3] and Madhavi.L et.al obtained 

exact values of minimum vertex cover and minimum edge 

cover in Mangoldt graphs [8]. Various graph characterizations 

have been done on covering relating to domination parameters 

and matching numbers and new graph parameters such as 

strong vertex cover, weak and balanced vertex covers and 

inverse vertex cover are being defined. Recently, statistical-

mechanical methods have also been applied to study the vertex 

cover problem. Thus all these efforts carried out so far has 
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resulted only in producing the approximate values for β(G). 

Although many approximation algorithms have been 

developed to solve the vertex cover problem no work has been 

done in finding the exact solution for the family of 

interconnection architectures. Among various kinds of popular 

networks, the star and wrapped butterfly networks have gained 

many researcher’s efforts for its nice topological properties. 

They belong to the family of cayley graphs and are therefore 

vertex transitive [11]. These cayley graphs have optimal fault 

tolerance and logarithmic diameter. In this paper we focus on 

the wrapped butterfly and star interconnection networks for 

their optimal covering. 
 

II. PRELIMINARIES 
 

Let G = (V, E) be a graph, where the set of points V 

called vertices represents a node and a collection E of 

unordered pairs of vertices called edges represent a link 

joining two nodes. A graph G is said to be a connected graph, 

if every pair of vertices of G has a path from one vertex to 

another. All the graphs considered here are finite, connected 

and undirected with no loops and multiple edges. We use the 

terms, graphs and networks, interchangeably. A matching in a 

graph is a set of pair wise non adjacent edges and a maximum 

matching is a matching that contains the largest possible 

number of edges denoted by µ(G). A perfect matching is a 

maximum matching which matches all vertices of the graph. It 

is also called a one factor. A matching is perfect if and only if 
it has n

2  edges where n is the number of vertices of G. The  
independence number α(G) of a graph G is the maximum 
number of non-adjacent vertices in G. A graph is said to be 

bridgeless if it contains no bridges. A graph G is bipartite if 
and only if it does not contain any odd cycles. A spanning tree 

T of a graph G is a tree that includes all of the vertices and 

some or all of the edges of G. Breadth first traversal of a graph 
also called breadth first search (bfs) of G corresponds to some 

kind of tree traversal goes a level at a time, left to right within 

a level, where a level is defined simply in terms of distance 
from the root of the tree. 

 
III. OVERVIEW OF THE PAPER 

 
The paper is organized as follows. In section III, we give 

the definitions of the vertex cover, edge cover and inverse 
cover problems and the importance of invertible graphs in 
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electrical networks. We then present the topological properties 
of star interconnection networks. Section IV presents a 
characterization for invertible graphs and our important results 
on star networks, followed by section V which deals with 
wrapped butterfly networks. Section VI describes the MVC set 
algorithm for star interconnection networks and wrapped 
butterflies of even dimension. Finally, we conclude the paper 
by summarizing the main contributions and some future 
directions. 
 
A.Minimum vertex cover problem 
 
A set S of vertices of a graph G = (V, E) is called a vertex 

cover, if each edge in E has at least one end point in S. The 

minimum vertex cover is a vertex cover of smallest size. 

The cardinality of the minimum vertex cover set is called 

the covering number of G, denoted by β (G). Finding the 

minimum vertex cover is called the vertex cover problem.  
 
 
 
 
 
 
 

 
Figure 1. Minimum vertex cover set = {1, 3, 5, 7} 

 

B. Minimum edge cover problem  
A set C of edges of a graph G, such that each vertex of G 

is incident with at least one edge in C is called an edge cover. 
The minimum edge cover is an edge cover of smallest size and 
the cardinality of the minimum edge cover set is called the 

edge covering number denoted by β
’
(G). A perfect matching 

or a 1-factor is always a minimum edge cover. Finding the 
minimum edge cover is called the edge covering problem.  
 
 
 
 
 
 
 
 
 

 
Figure 2 : Minimum edge cover set = {(1, 6), (2, 3), (4,5)} 

 

 

C. Invertible graphs 
 
Let D be a minimum vertex covering of G. A set S ⊆ V- D which is a 
vertex covering of G is called an inverse vertex covering of G with 
respect to the covering D. Then the inverse vertex covering number β

-

1
(G) is the order of smallest inverse vertex covering of G. We see that β

-

1
(G) need not exist for every graph. For example, the cycle graph on odd 

number of vertices has no inverse vertex cover. A graph G is said to be 

 
 
invertible if G admits an inverse vertex covering [3]. In figure 
3a, the minimum vertex cover set D = {1,3,5,7} or {2,4,6,8} 
and β(G) = 4, whereas, the minimum inverse vertex cover set 
V - D = {2, 4, 6, 8} or {1, 3, 5, 7} with respect to D and 

therefore, β
-1

(G) = 4. Since minimum inverse vertex cover 

exists the graph in figure 3a is invertible. Figure 3b is an 
example of a graph which is not invertible as it is 2-colorable.  
 
 
 
 
 
 
 
 
 

Figure: 3a Figure: 3b 

 

The covering and the inverse covering parameters play a 
vital role in coding theory, computer science, operations 
research, switching circuits, electrical networks, etc. [4]. In an 
electrical network, we have a set of primary nodes where the 
sensors are placed to monitor the entire system. In case, the 
system fails, we need to have another set of secondary nodes, 
to do the job in the complement. So if we want a vertex 
covering set in the complement set we look for the inverse 
covering set of G. Thus the covering and the inverse covering 
sets together facilitate the monitoring process. But this can 
happen only if the network is invertible. So we present a 
characterization for the invertible graphs We require the 
following theorems to prove our results. 
 

Theorem 3.1: (Konig’s) If G is a bipartite graph with no 

isolated vertices then α(G) = β
’
(G). 

 
Theorem 3.2: [2] Let G be a bridgeless graph. Then G is 

invertible if and only if G is 2-colorable. 
 

Theorem 3.3: [2]Let G be a bipartite graph with n number of vertices and Ḡ having no isolates. Then β(Ḡ) 
= n – 2, where n is the number of vertices of G. 
 

 

D.Topological properties of Star networks 
 

The star graph was proposed as an attractive interconnection 

network for parallel processing, featuring smaller degree and 

diameter than a hypercube of comparable size. Due to its 

interesting properties, such as symmetry, sublogarithmic 

diameter, hamiltonicity and simple routing algorithms, the star 

graph has gained much attention and hence been widely studied 

in the past [6, 9, 10]. An n-dimensional star network also referred 

to as n-star or Sn, is an undirected 
graph consisting of   ! vertices and (  −1)  ! edges. Each vertex  

2 
is uniquely assigned a label a1, a2, ..an which is the permutation 
of n distinct symbols {1, 2, 3, ..,n }. Two vertices are joined 
by an edge if the label of one vertex can be obtained from 
another by swapping the first element with any other element. 
For example, the vertex labelled 1234 will be connected with a 
vertex labelled 3214. Star graph of order 4 is shown below. 
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Proof:  
Let G be an n – dimensional star network. We know that G is 

invertible and hence bipartite for all n. Therefore by theorem  
3.6, β( ) =| | – 2 = 6  2 − 2. 

 
V. WRAPPED BUTTERFLY NETWORK WB(r) 

 
In a r-dimensional butterfly network [11], when the nodes 

of level 0 are merged with those in level r a new structure 
called the wrapped butterfly is obtained. The r-dimensional 

wrapped butterfly has r.2
r
 nodes, each of degree 4 and r.2

r+1
 

edges. These networks are Hamiltonian for r ≥ 2 [12]. In this 
section, we determine the exact value of the covering 
parameters of a wrapped butterfly network and prove that it is 
not invertible.  

 

 

Figure 4 : Star network S4 

 

IV. OUR MAIN RESULTS 
 
Theorem4.1: Let G be a graph with   (  ) > 1. Then G is invertible if and only if G is bipartite. 
 
Proof: 
 

Assume that G is invertible. Then by theorem 3.5, G is bipartite. 
Conversely, assume G is bipartite. We shall prove that G is invertible. 
Since δ(G) > 1, G will not have any pendent vertices. Therefore all 
vertices of G will lie on a cycle. Since G is bipartite, G will contain 
only even cycles. Each of these cycles are invertible and hence G is 
also invertible. 
 

 

Theorem 4.2: Star networks Sn are invertible for all n. 
 
Proof: 
 

We observe that Sn is a bridgeless graph and is 2-
colorable for all values of n. Therefore, from theorem 3.5, Sn 
is invertible. 
 

 

Theorem 4.3: Let G be an n – dimensional star network. 
Then β(G) = β’(G) = β

-1
(G) =  ! .  

2  
Proof:  
Let G be an n – dimensional star network. Since G is bipartite, 

by Konig’s theorem , we have α(G) = β
’
(G). Now G has a 1- 

factor and so β
’
(G) = 

| | 
. 

 

  

2 
 

This implies β(G) = β
-1

(G) = β
’
(G) = |2

| =   !2.  
 

 

Theorem 4.4: Let G be an n – dimensional star network. 
  ! 

Then β( ) = −  .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5: 3-dimensional wrapped butterfly network 

 

Theorem 5.1: 
 
Let G be an r-dimensional wrapped butterfly network. Then 

(i) If r is even, then β (G) = r.2
r-1

. 
(ii) If r is odd, then β (G) = ⌊  + ⌋.  .  
 

Proof: 
Let G be an r-dimensional wrapped butterfly network. If r 
is even , to cover the edges in the first row, we need 
2 vertices. Therefore for 2 rows, we require exactly   
2 . 2 vertices to cover all edges of G. That is, the minimum vertex cover number, β(G) = r. 2  −1.   
If r is odd , to cover the edges in the first row, we need ⌊  +1

2⌋ vertices.  
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Therefore for 2 rows, we require exactly ⌊  +1

2⌋ . 2 vertices to cover all edges of G. That is, the minimum vertex cover  
number, β(G) = ⌊  +12⌋ . 2 .   
Theorem 5.2:  
Let G be an r-dimensional wrapped butterfly network. 

Then for all r, β
'
(G) = r.2

r-1
. 

 
Proof: 
Let G be an r-dimensional wrapped butterfly network.  
If r is even, for minimum edge cover, we choose 2 . 2 edges to cover all the vertices of G. This implies that β

’
(G) = r.2

r-1
. 

If r is odd, we need ⌊2⌋ . 2 + 2r−1 edges to cover all vertices of G. That is the minimum edge covering number, β
’
(G) =  

⌊2⌋ . 2 + 2r−1.  
 β

’
(G) = (2 − 1

2) . 2r + 2r−1.

 β’(G) = (r − 1). 2r−1 + 2r−1.


 β’(G) = r. 2r−1.
 

 
Theorem 5.3: Wrapped butterfly networks are invertible 
for even values of r. 

 

Proof:  
Let G be an r-dimensional wrapped butterfly network. Since 
WBF(r) does not contain odd cycles for even values of r, by 
theorem 4.1, WBF(r) is invertible for even dimension. 
 

 

V. AN ALGORITHM FOR FINDING A MINIMUM VERTEX 
COVER SET IN STAR NETWORKS AND WRAPPED 
BUTTERFLIES OF EVEN r. 
 

In this section we introduce an algorithm to find the minimum 
vertex cover (MVC) set of star network and wrapped butterfly network 
with even dimension G. In this algorithm we use some variables which 

are defined below: h is the height of the bfs tree of G, Li(x) is the set of 
all vertices of G in level Li of the BFS tree. 
 

Input: A star network or wrapped butterfly network with 

even dimension G  
Output: A MVC set S  
1. Construct the bfs tree for G 
2. i ← 1; S ← empty set; 
3.While (i ≤ h) 
4. S ← S ∪ Li(x);  
5. i ← i + 2; 
 

6. endwhile  
7. Return S 

 
 

There are efficient parallel algorithms in the literature to 

construct a bfs tree of a graph G. We can use any of them (for 

one example, see [7]) for the first step of the algorithm. Time 

complexity of the bfs algorithm is O(V + E) and the time for 

“while” loop that is executed is O(h), and hence the total 

running time is O(V + E + h). 

 
The following theorem gives the proof of correctness. 

 

Theorem 6.1: Let T be a bfs tree rooted at v. Then the 

vertices in the alternate levels of T starting from level Li 

forms a MVC set of G. 

 
Proof:  
Let T be a bfs tree BFS(v), then all vertices incident to v, will 

be in level L2 of T. We choose the vertex v. Since the vertex v 

covers all the edges incident to both vertices in L2 and v, we 

skip level L2 and choose all vertices in L3. Similarly those 

vertices in L3 will cover all the edges incident to both vertices 

in L3 and L4 and hence we skip L4. Repeating this process until 

we reach Li where i = h + 1 we get the MVC set S =  
⋃ℎ+1

  =0   +2. Since G is bipartite, there should not be any vertices adjacent to vertices of the same level. Therefore, S  
covers all the edges of G. Hence S is a vertex covering set of 

G. We claim that S is minimum. Suppose if S is not minimum,  

then there exists a covering D such that . If such a 

set exists then S is not a covering set, which is a contradiction. 

Therefore, S is the MVC set of G. Hence the proof. 

 
VI. CONCLUSION 

 
`In this paper we have characterized invertible graphs 

and using that we have shown that the star networks and 

wrapped butterflies of even dimension are invertible. Further a 

MVC set algorithm is developed which runs in polynomial 

time and the exact values of the covering parameters of star 

networks and its complement are also obtained. The above 

results can also be applied to study the covering parameters of 

various other parallel architectures like pancake and pyramid 

networks. 
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