
International Journal of Advanced Information Science and Technology (IJAIST)  ISSN: 2319:268 

Vol.2, No.7, July 2013                                                              DOI:10.15693/ijaist/2013.v2i7.29-32 
 

29 
 

Non-Real Time Testing: An Addition to Testing Process 

Anshuman Singh
1
, Rachit Shrivastava

2
, Vairamuthu S.

3
 

1 2 
B.Tech, School of Computer Science and Engineering, VIT University, Vellore, Tamil Nadu, India 

3
 Assistant Professor (Sr.), School of Computer Science and Engineering, VIT University, Vellore,  

Tamil Nadu, India 

 

 

Abstract This paper introduces the concept of Non-

Real Time (NRT) Testing, and attempts to describe 

why a new methodology like it was needed and was 

introduced. It describes the situations in which Non-

Real Time Testing is preferable to Real-Time Testing 

and enumerates its advantages over other methods of 

testing. The challenges faced during the process of 

testing of a Flight Control System’s Control Laws are 

also described in this paper. Due to the high costs and 

resources involved in testing of the Control Laws as 

part of the flight development program, NRT Testing 

was introduced to augment the verification and 

validation of the Digital Flight Control Laws at 

different stages of the testing process. 

Keywords: Testing, Non-Real Time, Safety Critical 

System, Ada 

1. INTRODUCTION 

Any system software is developed in certain steps. 

Development of system‟s software requires certain 

procedure or a process structure to be followed which is 

commonly known as Software Development Life-Cycle 

(SDLC). Testing is considered as an important step in 

the software development cycle as it helps in the 

validation of the final product/system. It makes the 

product more robust by determining the running 

conditions; behavior of the system upon certain user 

action and check the functionality of the system. 

Software testing can be considered as a process of 

verifying and validating the system if it is 

 able to meet through the system requirements,  

 working as expected, 

 gives desired output for some user input, 

 correctly designed as per the stakeholder‟s 

viewpoint 

Modern day fighter aircrafts have to be highly agile in 

order to compete with the other fighter aircrafts of today. 

This agility, flexibility and maneuverability can be 

achieved with making the aircraft deliberately unstable 

and having a digital fly by wire flight control system on 

board which controls the stability of the aircraft. The 

flight control system uses the Digital Flight Control Law 

scheduled at every flight condition. Due to the real time 

requirement of the system, the flight control software 

goes through extensive verification and validation for a 

fighter aircraft program. The software goes through Unit 

Level Testing, Integration testing and Hardware 

Software Integration. After these testing procedures, the 

software is again tested on ground in the facilities called 

“MiniBird” and “IronBird”.  

 

IronBird is a ground based testing facility which is used 

to validate vital aircraft systems including the flight 

controls. All of the aircraft systems are physically 

integrated and each of them is laid out according to the 

actual configuration of the aircraft and all components 

are also installed on the same place as they would on the 

real airframe. It also has the facility to record the flight 

data for subsequent analysis and treatment of failures 

introduced in the systems. MiniBird is a less extensive 

form of IronBird where although flight worthy actuators 

are used, they are not necessarily physically oriented 

according to the actual configuration of the aircraft. 

Also, in MiniBird inspite of using two separate actuators 

to indicate the left and right elevons, only one actuator is 

used to check for functionality. They are hardware-in-

loop test facilities where the real actuators, flight model 

and flight computer are tested. IronBird operates in a 

closed loop mode whereas MiniBird operates in an open 

loop mode.   

 

2. WHAT IS NRT TESTING? 



International Journal of Advanced Information Science and Technology (IJAIST)  ISSN: 2319:268 

Vol.2, No.7, July 2013                                                              DOI:10.15693/ijaist/2013.v2i7.29-32 
 

30 
 

In Software Development Process, testing is mainly done 

after the design phase. Testing helps to validate the 

product by determining whether the system works as per 

the requirements and accordingly generates output. 

Testing has various types, some test for security, some 

for regression analysis, some for functional and non-

functional requirements, some for performance, etc. 

Non-Real Time Testing can be considered as a type of 

testing which is used to test a system thereby reducing 

the cost involved in  testing it in the actual environment. 

NRT testing is basically used for safety critical systems 

in which testing in the real environment in real-time may 

involve a lot of cost, when the same can be achieved by 

testing it on a cross-compiler.  

A perfect example for this can be considered as the NRT 

testing of a Safety Critical Ada code which reduces the 

cost involved at testing the Ada code at the MiniBird and 

IronBird levels, moreover such testing also checks for 

minor test cases at the developers end so as to meet the 

requirements. 

NRT Testing can be grouped under Unit Testing 

category as it refers to those tests that verify the 

functionality of a specific section of code; usually at the 

function level. NRT Testing uses the gray-box testing 

approach where the testers have some knowledge about 

the system and hence preparation of test cases can be 

done accordingly.  

3. NEED FOR NRT TESTING 

Safety critical systems should not give high errors at the 

final levels of testing in their actual environments. 

Questions are raised whether the systems have been 

coded  correctly as per the required functionality, thus 

introducing the concept of testing the code at local level 

on a cross-compiler simulating real-time environment 

and conditions while being non real-time. NRT focuses 

on stressing the software to its limits i.e. each and every 

condition is tested covering all the boundary values. 

NRT Testing is introduced to those systems dealing with 

time constraints and where the occurrence of any error at 

the final level of testing is not permitted (e.g. safety 

critical systems). NRT Testing reduces the chances of 

failure of the code at the final levels by detecting the 

errors at the intermediate levels.  

 

4. ADVANTAGES OF PERFORMING NRT 

TESTING 

Introducing NRT Testing at the intermediate levels of 

software development cycle has some following 

mentioned advantages: 

 The functional behavior and performance of the 

system is tested. The testability is increased as the 

user is able to tap out intermediate values. 

 Since the test cases are based on knowledge of the 

system, each block has a specific number of tests 

associated with it and the types of input to the block 

is finite. 

 The effect of parameters on final system 

performance is easy to analyze. The extent to which 

an error can be adjusted with can be answered which 

avoids costly system changes. 

 NRT Testing can be started early on in the software 

development life cycle which saves time and cost to 

the project.  

 NRT Testing provides the advantage during the 

other phases as it narrows down the places where to 

look for bugs. 

 

5. EXPERIENCE/APPLICABILITY 

In order to facilitate better development of CLAW code, 

the following points can be taken into consideration: 

 Always test for transient behavior as static tests 

don‟t give much information about the system. By 

transit behavior, it is meant that values of signals 

change as time changes. 

 Even though a good SQA (Software Quality 

Assurance) plan is followed along with good 

compilers and auto code generators, extensive 

testing is a must to ensure proper software 

development. 

DFCL BLOCK

MODEL CODE COMPARATOR

FOUR CHANNEL ADA CODE

REDUNDANCY MANAGER

A SCHEMATIC OF THE NRT PHILOSOPHY  

Fig 1 shows the schematic diagram for the concept of 

NRT Testing.  



International Journal of Advanced Information Science and Technology (IJAIST)  ISSN: 2319:268 

Vol.2, No.7, July 2013                                                              DOI:10.15693/ijaist/2013.v2i7.29-32 
 

31 
 

The concept involves testing only a part of the code on a 

single target machine. Only the required Ada Code is 

clipped and stubbed. An Ada driver is added to the 

clipped Ada code which helps to accept the flight input 

parameters and taps out the required outputs for CLAW 

functionality. This code with the Driver file is compiled 

with the same compiler and settings as the final build of 

the actual Flight Code.  

The project involved certain steps to be taken in order to 

perform NRT Testing over the flight code of the aircraft. 

The steps have been described below: 

Implementation of MATLAB driver file for 

running the Simulink model of the FCS 

Based on the requirements, a Simulink model had been 

developed which is essentially the same as the Ada code 

which is used in the fighter aircraft. The driver file for 

the Simulink model provides the input parameters, 

initializes the parameters and provides a framework for 

the way in which the output is generated. Various test 

cases have been prepared which initialize different 

values to different parameters in order to check the full 

functionality of the CLAW module. 

 

Implementation of Ada driver file for running 

the Ada code used in the aircraft 

The responsibility of the Ada driver file is to take the 

same inputs for particular test case that are also fed into 

the Simulink model, process the result from the Ada 

code of the Fighter Aircraft. The driver file consists of 

the file; read and write operations so as to have all the 

values of input parameters assigned to the Ada variables 

and to generate the result in a particular orderly manner. 

A specification file relates all the input parameters to 

some dummy variables before assigning them to actual 

variables of Ada code. The driver file acts as an interface 

between the test case inputs and the variables for the Ada 

code. The Ada code is stubbed in order to successfully 

assign these variables and hence run the test cases. This 

code with the driver is compiled with the same compiler 

and settings as the final build of the critical system 

software. 

  

Analyzing outputs generated and finding cause 

of discrepancies between them 

After getting the outputs from the Simulink model and 

Ada code, the values of the parameters of interest are 

checked manually to see if there are any differences. If 

differences are found, the fault is in the driver file of 

either the model or the Ada code. 

  

Generation of utility to compare the outputs 

graphically 

Due to the high number of parameters that had to be 

checked, the approach of comparing them manually was 

not feasible. A utility was created with the help of 

MATLAB which takes the signal values from both the 

Simulink model and the Ada code and compares them 

graphically. Also, it points out the points on the graph 

where the signal values are not matching. The utility is 

useful to find out the points of difference without any 

need of manually going through the values. A sample 

graphical comparison can be seen from Figure 2.  

 
Fig 2: Graphical Comparison of a Flight Parameter 

(ptp01) 

 

6. CONCLUSION 

NRT Testing was successfully used to test the safety 

critical Ada code against the Simulink model. To 

conclude, we can point out a number of reasons as to 

why non real time testing was preferred against real time 

testing.  

NRT testing can be done on any computer as long as it 

has got all the correct compilers and simulators. IronBird 

and MiniBird facilities are limited whilst NRT testing 

can be done on virtually any number of machines. This 

saves on the resources used to operate IronBird and 

MiniBird. Not only are resources saved, more extensive 

testing can be done before the MiniBird and IronBird 

level so as to ensure code is performing as per the 

requirement. With NRT Testing, it is relatively easier to 

tap out intermediate values which increase the testability. 



International Journal of Advanced Information Science and Technology (IJAIST)  ISSN: 2319:268 

Vol.2, No.7, July 2013                                                              DOI:10.15693/ijaist/2013.v2i7.29-32 
 

32 
 

Also, this can be started early on in the SDLC leading to 

savings in cost and time in the long run.   

7. ACKNKOWLEDGEMENT 

Special thanks to Aeronautical Development 

Establishment - Defense Research & Development 

Organization, Bangalore for providing such an 

environment where we were able to complete our 

project. We would like to thank our ADE Project Guide 

Ms. Asha Garg (Sc-„G‟, Head, Software Engineering 

Division – Light Combat Aircraft) for her guidance on 

this project. We would also like to thank all those 

scientists and engineers of ADE, Bangalore who 

constantly provided us their help regarding the project, in 

understanding the working environment and some terms 

and techniques of testing. 

 

8. REFERENCE 

[1] Srinivasan Desikan, Gopalaswamy Ramesh - 

Software Testing: Principles & Practices, Pearson 

Publication, Sixth Impression 2006 

[2]  Boris Beizer - Software Testing Techniques, 

DreamTech Press, Second Edition (2009) 

[3] Richard Riehle - Ada Distilled: An Introduction to 

Ada Programming for Experienced Computer 

Programmers, AdaWorks Software Engineering, 

July 2003 

[4] Steven R Rakitin - Software Verification and 

Validation – A Practitioner’s Guide, Artech House 

(1997) 

[5] Y. V. Jeppu, K. Karunakar, P. S. Subramanyam 

“Testing Safety Critical Ada Code Using Non Real 

Time Testing” - Lecture Notes in Computer Science 

Volume 2655, 2003, pp 382-393, ISBN - 978-3-540-

40376-0 

 


