
International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.1, January 2013 DOI:10.15693/ijaist/2013.v2i1.26-31

26

Non-Duplicate Data Extraction in Web Databases by

Combining Tag and Value Similarity

Deepika.J

M.E. CSE
Sethu Institute of Technology

ABSTRACT Web databases generate query result pages

based on a user’s query. Automatically extracting the

data from these query result pages is very important for

many applications, such as data integration, which need

to cooperate with multiple web databases. The novel

data extraction and alignment method called CTVS that

combines both tag and value similarity is enhanced by

using Unsupervised duplicate detection

algorithm(UDD). CTVS automatically extracts data

from query result pages by first identifying and

segmenting the query result records (QRRs) in the

query result pages and then aligning the segmented

QRRs into a table, in which the data values from the

same attribute are put into the same column.

Specifically, new techniques are proposed to handle the

case when the QRRs are not contiguous, which may be

due to the presence of auxiliary information, such as a

comment, recommendation or advertisement, and for

handling any nested structure that may exist in the

QRRs. Also a new record alignment algorithm that

aligns the attributes in a record, first pairwise and then

holistically, by combining the tag and data value

similarity information is designed. Experimental results

show that enhanced CTVS achieves high precision with

duplicate detection and outperforms existing state-of-

the-art data extraction methods.

KEYWORDS
Data extraction, Automatic wrapper generation,

Duplicate detection, Data record alignment, Information

retrieval, Data alignment, Web databases.

1. INTRODUCTION

ONLINE databases, called web databases, comprise the

deep web [6] and [9]. Compared with webpages in the

surface web, which can be accessed by a unique URL,

pages in the deep web are dynamically generated in

response to a user query submitted through the query

interface of a web database. Upon receiving a user’s

query, a web database returns the relevant data, either

structured [10] or semistructured [8], encoded in HTML

pages. Many web applications, such as metaquerying,

data integration and comparison shopping, need the data

from multiple web databases. For these applications to

further utilize the data embedded in HTML pages,

automatic data extraction is necessary. Only when the

data are extracted and organized in a structured [1]

manner, such as tables, can they be compared and

aggregated. Hence, accurate data extraction is vital for

these applications to perform correctly. This paper

focuses on the problem of automatically extracting data

records that are encoded in the query result pages

generated by web databases. In general, a query result

page contains not only the actual data, but also other

information, such as navigational panels,

advertisements, comments, information about hosting

sites, and so on. The goal of web database data

extraction is to remove any irrelevant information from

the query result page, extract the query result records

(referred to as QRRs in this paper) from the page, and

align the extracted QRRs into a table such that the data

values belonging to the same attribute are placed into

the same table column.

 The following two-step method, called Combining T

ag and V alue Similarity (CTVS), to extract the QRRs

from a query result page p is employed.

1 Record extraction identifies the QRRs in p and

involves two substeps: data region

identification and the actual segmentation step.

2 Record alignment aligns the data values of the

QRRs in p into a table so that data values for

the same attribute are aligned into the same

table column.

 CTVS [12] accurately extracts and aligns the QRRs in

query result pages if there are at least two records in the

page. Compared with existing data extraction methods,

CTVS improves data extraction accuracy in three ways.

1. New techniques are proposed to handle the

case when the QRRs are not contiguous in p,

which may be due to the presence of an

auxiliary information, such as a comment,

recommendation, or advertise-ment.

a. An adapted data region identification

method is proposed to identify the

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.1, January 2013 DOI:10.15693/ijaist/2013.v2i1.26-31

27

noncontiguous QRRs that have the

same parents according to their tag

similarities.

b. A merge method is proposed to

combine different data regions that

contain the QRRs into a single data

region. Our experimental results show

that the two techniques are effective

for addressing the noncontiguous data

region problem.

2. A novel method is proposed to align the data

values in the identified QRRs, first pairwise

then holistically, so that they can be put into a

table with the data values belonging to the

same attribute arranged into the same table

column. Both tag structure similarity and data

value similarity are used in the pairwise

alignment.

3. A new nested-structure processing algorithm is

proposed to handle any nested structure in the

QRRs after the holistic alignment. Unlike

existing nested-structure processing algorithms

that rely on only tag information, CTVS uses

both tag and data value similarity information

to improve nested-structure processing

accuracy.

2. QRR EXTRACTION

Fig. 1 shows the framework for QRR extraction. Given

a query result page, the Tag Tree Construction module

first constructs a tag tree for the page rooted in the

<HTML> tag. Each node represents a tag in the HTML

page [3] and its children are tags enclosed inside it.

Each internal node n of the tag tree has a tag string tsn,

which includes the tags of n and all tags of n’s

descendants, and a tag path tpn, which includes the tags

from the root to n.

Fig. 1. QRR extraction framework.

Next, the Data Region Identification module identifies

all possible data regions, which usually contain

dynamically generated data, top down starting from the

root node. The Record Segmentation module then

segments the identified data regions into data records

according to the tag patterns in the data regions. Given

the segmented data records, the Data Region Merge

module merges the data regions containing similar

records. Finally, the Query Result Section Identification

module selects one of the merged data regions as

the one that contains the QRRs.

3. QRR ALIGNMENT

QRR alignment is performed by a novel three-step data
alignment method that combines tag and value
similarity.

1. Pairwise QRR alignment aligns the data values
in a pair of QRRs to provide the evidence for
how the data values should be aligned among
all QRRs.

2. Holistic alignment aligns the data values in all
the QRRs.

3. Nested structure processing identifies the

nested structures that exist in the QRRs.

3.1 Pairwise QRR Alignment

During the pairwise alignment, it is required that the

data value alignments must satisfy the following three

constraints:

1. Same record path constraint. The record path of
a data value comprises the tag from the root of

the record to the node that contains the data
value in the tag tree of the query result page.
Each pair of matched values should have the
same tag path.

2. Unique constraint. Each data value can be
aligned to at most one data value from the other
QRR.

3. No cross alignment constraint.

3.2 Holistic Alignment

Given the pairwise data value alignments between

every pair of QRRs, the step of holistic alignment

performs the alignment globally among all QRRs to

construct a table in which all data values of the same

attribute are aligned in the same table column.

Intuitively, if we view each data value in the QRRs as a

vertex and each pairwise alignment between two data

values as an edge, the pairwise alignment set can be

viewed as an undirected graph. Thus, our holistic

alignment problem is equivalent to that of finding

connected components in an undirected graph. Each

connected component of the graph represents a table

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.1, January 2013 DOI:10.15693/ijaist/2013.v2i1.26-31

28

column inside which the connected data values from

different records are aligned vertically. While there are

many efficient algorithms for finding connected

components in the Graph Theory literature, we need to

consider two application constraints that are specific to

our holistic alignment problem.

1. Vertices from the same record are not allowed

to be included in the same connected

component as they are considered to come

from two different attributes of the record. If

two vertices from the same record breach this

constraint, a breach path exists between the

two.

2. Connected components are not allowed to
intersect each other. If C1 and C2 are two
connected components, then vertices in C1
should be either all on the left side of C2 or all
on the right side of C2, and vice versa (i.e., no
edge in C1 cuts across C2, and no edge in C2
cuts across C1).

 Accordingly, a 3-step algorithm is designed for the

holistic alignment problem. First, traverse the graph

once by a depth-first search to discover the preliminary

connected components. At the same time mark those

components containing breach paths. Next, traverse the

components containing breach paths to remove some

edges so as to break the breach paths (i.e., enforcing the

first constraint). Finally, use a divide-and-conquer

method to identify and split up the intersecting

components to enforce the second constraint. The

function HolisticAlign enforces the no-intersecting-

components constraint by a divide and conquer strategy

that divides the connected component list into two

sublists. Given the graph representing the QRRs and

their pairwise alignments, first traverse the graph by a

depth-first search algorithm and discover all the

connected compo-nents in the graph. During the

traversal, a color array is used to indicate whether each

vertex has been visited or not. In the Visit function,

when a new vertex is encountered, add it into the

current connected component. Also check whether

other vertices in the same record have been visited or

not. If so, a flag is set to true to signify that this

component contains at least one breach path.

3.3 Nested Structure Processing

Holistic data value alignment constrains a data value in
a QRR to be aligned to at most one data value from
another QRR. If a QRR contains a nested structure such
that an attribute has multiple values, then some of the
values may not be aligned to any other values.
Therefore, nested structure processing identifies the
data values of a QRR that are in the generated by nested

structures (i.e., the repetitive parts of a generating
template). Relying only on HTML tags to identify
nested structures, as is done by almost all existing
methods, may incorrectly identify a plain structure as a
nested one. To overcome this problem, CTVS uses both
the HTML tags and the data values to identify the
nested structures. Given an aligned table, a nested
column comprises at least two ordered sets representing
the data values that are generated by repetitive parts in
the template. A nested column set C is comprised of a
set of nested columns. The nested structure
identification algorithm shown in Fig. 2 first identifies
the nested column set C and then creates a new row for
each combination of a repetitive subpart. Given all
QRRs, the tag tree T for the query result page p and the
QRR’s holistic alignment columns as input, the
procedure nest_processing tries to find and process any
nested structure in p. The nested column set C is
initialized to be an empty set (line 1). For each QRR
with record root node t in T , the procedure
nest_column_identify is invoked to identify any nested
columns in the QRR (lines 2 and 3). After all the nested
columns are identified, a new row is generated (lines 4
and 5) by copying the remaining parts as well as the
repetitive data values. The copy of the repetitive data
values is removed from the original row.

 Given a node t in tag tree T , the holistic alignment

columns and the nested column set C as input, the

procedure nest_column_identify identifies all repetitive

parts under t in T . This procedure is called recursively

until it reaches a node that contains only one data value

(lines 6-8). Hence, nested column identification is

performed from leaf nodes of T to the root. For each

node, we identify the repetitive tag pattern in its

children (line 9). Suppose there is a repetitive tag

pattern found in t’s children, each of which contains a

data value of the record. For each tag repetition p that

contains data value f1; . . . ; fn, cp is defined to be the

columns in the holistic alignment that contain f1; . . . ;

fn. We now need to decide, according to the data value

similarity in the columns cp, whether the repetitive tag

is generated from a nested structure or it is actually a

flat structure (lines 10-12). If it is generated by a nested

structure, cp is added to the nested column set C.

 Given columns cp in a holistic alignment and a

similarity threshold Snest as input, the procedure nested

decides, using the similarities of the data values in cp,

whether cp contains a repetitive tag pattern that is

formed by a nested structure. It is assumed that two

columns are generated by the same attribute if there is a

large data value similarity between these two columns.

Given a column c1, which contains m data values,

define the intracolumn similarity simintra to be the

average data value similarity within each column in c1.

For cp, its intracolumn similarity is the average of the

intracolumn similarity of all columns in cp (line 13).

For two columns c1 and c2, which have m and n data

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.1, January 2013 DOI:10.15693/ijaist/2013.v2i1.26-31

29

values, respectively, the intercolumn similarity siminter

is defined to be the average data value similarity of

every pair of data values in c1 and c2 (line 14).

After siminter and simintra are calculated for identified
columns cp, if siminter=simintra > Snest, where Snest
is a threshold that is set to 0.5, cp is assumed to be a
nested column set, which means that the data values in
it are generated from a nested structure. Given data
columns cp and the nested column set C as input, the
procedure add_nested_column adds the nested columns
cp to C. If there is a nested column ci in C that has
overlap with cp (line 19), which means that the
repetitive part has been identified in a previous QRR,
then ci in C is replaced with cp [ci (line 20). Otherwise,
cp is simply added as a new element into C (line 22).
Given n records with a maximum of m data values and
a maximum tag string length of l, the time complexity

of the nested structure processing algorithm is O(nl
2
m

2
).

Procedure nest_processing (QRRs, T, holistic_align)

1. C  Ø

2. for each QRR with record root t

3. nest_column_identify(t, T, holistic_align, C)

4. for each column pattern cp in C do

5. create a new row for each repeated subpart

Procedure nest_processing (QRRs, T, holistic_align)

6. If(t contains more than one data value) then

7. for each child ti of t do

8. nest_columun_identify(ti, T, holistic_align, C)

9. for each repetition p of any consecutive maximum

repetitive tag pattern found in t’s children

10. Cp = data columns for p in holistic_align

11. If cp Є C and nested(cp, Snest) then

12. add_nested_column(cp, C)

Function boolean nested(cp, Snest)

13. simintra  intra-column similarity within cp

14. Siminter  inter-column similarity within cp

15. if(Siminter / Simintra > Snest) then

16. return true

17. else return false

Procedure add_nested_column(cp, C)

18. for each element ci in C do

19. if(cp ∩ ci ≠ Ø) then

20. C  C - ci + cp U ci

21. break

22. If no element in C shares a common column with

cp then C  C + cp

Fig. 2. Nested structure identification algorithm

Compared with the nested structure processing methods

in DeLa [5] and NET [2] , the nested structure
processing method in CTVS has the following

advantages.

1. CTVS processes the nested structures after

the data records are aligned rather than before

as is the case in DeLa and NET. Processing the

nested structure before the records are aligned

makes them vulner-able to optional attributes

since the optional attri-butes make the tag

structure irregular. This problem does not

occur in CTVS.

2. In CTVS the data value similarity information

effectively prevents a flat structure from being

identified as a nested structure. Because it

shares similar tag structures, a flat structure

with several columns having the same tag

structure, might be mistakenly identified as a

nested structure in DeLa and NET.

4. DUPLICATE DETECTION

In this section, the assumptions on which UDD

algorithm shown in Fig. 3 (Unsupervised Duplicate

Detection) is based are made as follows:

1. A global schema for the specific type of result

records is predefined and each database’s

individual query result schema has been

matched to the global schema.

2. Record extractors, i.e., wrappers, are available

for each source to extract the result data from

HTML pages and insert them into a relational

database according to the global schema.

 In UDD the weights are adjusted dynamically and it

uses two classifiers [11], WCSS (Weighted Component

Similarity Summing) and SVM (Support Vector

Machine), that cooperatively can prevent the problem of

classifying the results of previous iteration to the next

iteration which are vulnerable to false data’s. UDD’S

performance is not very sensitive to the false negative

cases, i.e., actual duplicates from the same data source.

UDD is faster than PEBL and Christen’s method which

require more iterations than UDD to identify all

duplicates. UDD tackles a slightly different

classification problem, online duplicate record detection

for multiple Web databases. In this scenario, the

assumption that most records from the same data source

are non-duplicates usually holds, i.e., negative examples

are assumed without human labeling, which helps UDD

overcome from giving only the positive set of training

examples.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.1, January 2013 DOI:10.15693/ijaist/2013.v2i1.26-31

30

5. EXPERIMENTS

The experimental results for CTVS over five data sets is

presented here and then compare CTVS with ViNTs,

DeLa , and ViPER. ViNTs and DeLa are chosen to

compare with CTVS because both have been shown to

perform very accurate data extraction and

implementations of both are available to us.

5.1 Data Sets

Five data sets are used to compare the performance of

CTVS, ViNTs, and DeLa. Data set 1 (PROFUSION) is

obtained from ViNTs’testbed, which contains 100

websites collected from profusion.com. Twenty of the

100 websites return relational records, such as jobs and

entertainment records, and 80 return documents. For

each of the 100 websites, 10 queries are submitted and

the first 10 result pages are manually collected. A no-

result page is also collected for each website by

submitting a nonexistent term as a query to the website.

For each website, its no-result page and five randomly

selected result pages from the 10 result pages are used

to build a wrapper, which is used to extract the QRRs

from the remaining five result pages. Data set 2 (E-

COMM) contains 100 E-commerce deep websites in six

popular domains: book, hotel, job, movie, musicRecord,

and automobile. Data set 3 is the TestBed for

information extraction from Deep web (TBDW) version

1.02, which is available at http:// daisen.cc.kyushu-

u.ac.jp/TBDW/.

Input:

Potential duplicate vector set P

Non-duplicate vector set N

Output:

Duplicate vector set D

Algorithm:

1. D = φ

2. Set the parameters W of C1 according to N

3. Use C1 to get a set of duplicate vector pairs d1 from

P

4. Use C1 to get a set of duplicate vector pairs f from N

5. P= P- d1

6. While | d1 | ≠ 0

7. N’ = N – f

8. D = D + d1 + f

9. Train C2 using D and N’

10. Classify P using C2 and get a set of newly identified

duplicate vector pairs d2

11. P = P - d2

12. D = D + d2

13. Adjust the parameters W of C1 according to N’ and

D

14. Use C1 to get a new set of duplicate vector pairs d1

from p

15. Use C1 to get a new set of duplicate vector pairs f

from N

16. N = N’

17. Return D

Fig.3. Unsupervised duplicate detection algorithm

It includes 51 online databases from which five query

result pages are created for each database. For CTVS,

we directly use the first page in each database as the test

page. Data set 4 (AUXI) focuses on webpages in which

the QRRs are segmented into different data regions due

to auxiliary information. Query result pages from 80

websites were collected, whose query result records

have at least one auxiliary node. Data set 5 (NESTED)

focuses on the query result pages that include nested

structure.

5.2 Results and Discussions

The performance of the data extraction methods is

compared in three different ways.

Table 1. Data extraction methods comparison

General data set evaluation presents the performance on

the first three data sets, which exhibit a variety of

properties and have been used in previous work by

others. The other two evaluations focus on specific

properties of the query result pages. Noncontiguous

[13] QRR evaluation compares the performance for

query result pages in which the QRRs are contiguous

and noncontiguous. Previous works on Non-contiguous

data extraction are based on MDR(Mining Data

Records in web pages) algorithm. Existing automatic

techniques are not satisfactory because of their poor

accuracies. Nested-structure evaluation compares the

performance for query result pages with and without a

nested structure.

Table. 1 summarizes some characteristics of the data

extraction methods [4],[5],[7] and [12] compared in this

paper . CTVS has better performance than ViNTs,

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.1, January 2013 DOI:10.15693/ijaist/2013.v2i1.26-31

31

ViPER and DeLa in both nonnested and nested pages.

CTVS achieves high record-level precision and record-

level recall than ViNTs and DeLa in the data sets used

for information extraction. The single page result

column indicates whether a single query result page

from a data source is sufficient to extract data.

6. CONCLUSION

A novel data extraction method, CTVS, to

automatically extract QRRs from a query result page is

presented in this paper. CTVS employs two steps for

this task. The first step identifies and segments the

QRRs. Existing techniques are improved by allowing

the QRRs in a data region to be noncontiguous. The

second step aligns the data values among the QRRs. A

novel alignment method is proposed in which the

alignment is performed in three consecutive steps:

pairwise alignment, holistic alignment, and nested

structure processing. Experi-ments on five data sets

show that CTVS is generally more accurate than current

state-of-the-art methods.

7. ACKNOWLEGEMENT

Thanks to the experts who have contributed towards the

development of this material.

8. REFERENCES

[1] Arasu and H. Garcia-Molina, “Extracting Structured Data

from Web Pages,” Proc. ACM SIGMOD Int’l Conf.

Management of Data, pp. 337-348, 2003.

[2] B. Liu and Y. Zhai, “NET - A System for Extracting Web

Data from Flat and Nested Data Records,” Proc. Sixth

Int’l Conf. Web Information Systems Eng., pp. 487-495,

2005.

[3] D. Buttler, L. Liu, and C. Pu, “A Fully Automated Object

Extraction System for the World Wide Web,” Proc. 21st Int’l

Conf. Distributed Computing Systems, pp. 361-370, 2001.

[4] H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu,

“Fully Automatic Wrapper Generation for Search Engines,”

Proc. 14th World Wide Web Conf., pp. 66-75, 2005.

[5] J. Wang and F.H. Lochovsky, “Data Extraction and

Label Assignment for Web Databases,” Proc. 12th World

Wide Web Conf., pp. 187-196, 2003.

[6] K.C.-C. Chang, B. He, C. Li, M. Patel, and Z. Zhang,

“Structured Databases on the Web: Observations and

Implications,” SIGMOD Record, vol. 33, no. 3, pp. 61-70,

2004.

[7] K. Simon and G. Lausen, “ViPER: Augmenting

Automatic Information Extraction with Visual Perceptions,”

Proc. 14th ACM Int’l Conf. Information and Knowledge

Management, pp. 381-388, 2005.

[8] L. Chen, H.M. Jamil, and N. Wang, “Automatic

Composite Wrapper Generation for Semi-Structured

Biological Data Based on Table Structure Identification,”

SIGMOD Record, vol. 33, no. 2, 58-64, 2004.

[9] M.K. Bergman, “The Deep Web: Surfacing Hidden

Value,” White Paper, BrightPlanet Corporation,

http://www.brightplanet.com/resources/details/deepweb.html,

2001.

[10] W. Cohen and L. Jensen, “A Structured Wrapper

Induction System for Extracting Information from Semi-

Structured Documents,”Proc. IJCAI Workshop Adaptive Text

Extraction and Mining, 2001.

[11] Weifeng Su, Jiying Wang, and Fredrick H.Lochovsky,

“Record Matching Over Query Results from Multiple Web

Databases”, IEEE Trans. Knowledge and Data Eng., vol. 22,

no. 4, April 2010.

[12] Weifeng Su, Jiying Wang, and Fredrick H.Lochovsky,

“Combining Tag and Value Similarity for Data extraction and

Alignment”, IEEE Trans. Knowledge and Data Eng., vol. 24,

no. 7, July 2012.

[13] Y. Zhai, R. Grossman and B. Liu, “ Mining Web Pages

for Data Records”, IEEE, Intelligent Systems, vol. 19, no. 6,

2005.

Author Profile

J. Deepika received her B.E
degree in computer science and
engineering from K.L.N. College of
Engineering, Sivagangai, India, in
2011. She is currently pursuing her
M.E. in computer science and
engineering from Sethu Institute
of Technology, Virudhunagar, India.

Her research interests include web search, web
information extraction, the deep web, data
Integration, and information retrieval.

