
International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.3, No.2, February 2014 DOI:10.15693/ijaist/2014.v3i2.99-104

99

Low-Power Pipelined Realization of Adaptive Filter

Based on Distributed Arithmetic

Rajesh.R

PG Student/Department of ECE

CKCET, Cuddalore, India

Dhanabal.S

PG Student/Department of ECE

CKCET, Cuddalore, India

Rameshprabu.R

PG Student/Department of ECE

CKCET, Cuddalore, India

Ram Kumar.R

PG Student/Department of IT

SMVEC, Pondicherry, India

Abstract—The major issues while designing a distributed

arithmetic (DA) based adaptive filter are high power and area

delay. In general speed and power are the essential factor in

VLSI design. So, we have designing a new pipelined architecture

for efficient distributed arithmetic (DA) based on LMS adaptive

FIR filter. The conventional adder-based shift accumulation for

DA-based inner-product computation is replaced by conditional

signed carry-save accumulation in order to reduce the sampling

period and area complexity. Reduction of power consumption is

achieved in the proposed design by using a fast bit clock for

carry-save accumulation but a much slower clock for all other

operations. The throughput rate of the proposed design is

significantly increased by parallel lookup table (LUT) update and

concurrent implementation of filtering and weight-update

operations. It involves the same number of multiplexers, smaller

LUT, and nearly half the number of adders compared to the

existing DA-based design. From synthesis results, it is found that

the proposed design consumes less power and less area-delay

product (ADP). It is done by using Xilinx tool and it is

implemented using FPGA (Field Programmable Gate Array).
Index terms -Adaptive filter, circuit optimization, distributed

arithmetic (DA), least mean square (LMS) algorithm.

I. INTRODUCTION

Adaptive filters are widely used in several digital

signal processing applications. The delay line finite impulse

response (FIR) filter whose weights are updated by the famous

Widrows–Hoff least mean square (LMS) algorithm is the most

popularly used adaptive filter not only due to its simplicity but

also due to its satisfactory convergence performance [1]. The

direct form configuration on the forward path of the FIR filter

results in a long critical path due to an inner-product

computation to obtain a filter output. Therefore, when the

input signal has a high sampling rate, it is necessary to reduce

the critical path of the structure so that the critical path could

not exceed the sampling period.

In recent years, the multiplier-less distributed

arithmetic (DA)-based technique has gained substantial

popularity for its high-throughput processing capability and

regularity, which result in cost-effective and area–time

efficient computing structures. Hardware-efficient DA-based

design of adaptive filter has been using two separate lookup

tables (LUTs) for filtering and weight update. To improve the

design has using one LUT for filtering as well as weight

updating. However, the structures in [2]–[4] do not support

high sampling rate since they involve several cycles for LUT

updates for each new sample. In a recent paper, we have

proposed an efficient architecture for high-speed DA-based

adaptive filter with very low adaptation delay [5].

This brief proposes a new DA-based architecture for

low power, low area delay, and high-throughput pipelined

implementation of adaptive filter with very low adaptation

delay. The contribution of this brief are as follows.

1) Throughput rate is significantly increased by a

parallel LUT update.

2) Further enhancement of throughput is achieved by

concurrent implementation of filtering and weight

updating.

3) Conventional adder-based shift accumulation is

replaced by a conditional carry-save accumulation of

signed partial inner products to reduce the sampling

period, the bit cycle period amounts to memory

access time plus 1-bit full-adder time by carry-save

accumulation. The use of the proposed signed carry-

save accumulation also helps to reduce the area

complexity of the proposed design.

4) Reduction of power consumption is achieved by

using a fast bit clock for carry-save accumulation but

a much slower clock for all other operations.

5) The existing designs require an auxiliary control unit

for address generation, which is not required in the

proposed structure.

In the next section, we present a brief review of the

LMS adaptive algorithm, followed by the description of the

proposed DA-based technique for adaptive filter in Section III.

The structure of the proposed adaptive filter is described in

Section IV. We discuss the hardware complexity and synthesis

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.3, No.2, February 2014 DOI:10.15693/ijaist/2014.v3i2.99-104

100

results of the proposed structure in Section V. Conclusions are

given in Section VI.

II. REVIEW OF LMS ADAPTIVE ALGORITHM

 During each cycle, the LMS algorithm computes a

filter output and an error value that is equal to the difference

between the current filter output and the desired response. The

estimated error is then used to update the filter weights in

every training cycle. The weights of LMS adaptive filter

during the nth iteration are updated according to the following

equations:

W n + 1 = W n + μ ∙ e(n) ∙ X(n) (1a)

Where

e n = d n − 𝒴(n) (1b)

𝒴 n = WqT (n) ∙ X(n) (1c)

The input vector X n and the weight vector W n at the 𝑛𝑡ℎ

training iteration are respectively given by

𝑋 𝑛 = [𝑥 𝑛 , 𝑥 𝑛 − 1 , . . , 𝑥(𝑛 − 𝑁 + 1)]𝑇 (2a)

𝑊 𝑛 = [𝑤0(𝑛)𝑤1(𝑛), . . , 𝑤𝑁−1(𝑛)]𝑇 (2b)

𝑑(𝑛) is the desired response, and 𝒴(n) is the filter output of

the 𝑛𝑡ℎ iteration. 𝑒(𝑛) denotes the error computed during the

𝑛𝑡ℎ iteration, which is used to update the weights, 𝜇is the

convergence factor, and N is the filter length.

In the case of pipelined designs, the feedback error

𝑒(𝑛) becomes available after certain number of cycles, called

the “adaptation delay.” The pipelined architectures therefore

use the delayed error 𝑒(𝑛 − 𝑚) for updating the current

weight instead of the most recent error, where m is the

adaptation delay. The weight-update equation of such delayed

LMS adaptive filter is given by

W n + 1 = W n + μ ∙ e n − m ∙ X n − m (3)

III. PROPOSED DA BASED APPROACH FOR INNER

PRODUCT COMPUTATION

The LMS adaptive filter, in each cycle, needs to

perform an inner-product computation which contributes to

the most of the critical path. For simplicity of presentation, let

the inner product of (1c) be given by

𝒴 = 𝓌𝑘 ∙ 𝑥𝑘

𝑁−1

𝐾=0

(4)

where𝓌𝑘and𝑥𝑘 for 0 ≤ 𝑘 ≤ 𝑁 − 1 fromthe N point vectors

corresponding the current weights and most recent 𝑁 − 1

input, respectively. Assuming L to be the bit width of the

weight, each component of the weight vector may be

expressed in two’s complement representation

𝓌𝑘 = −𝓌𝑘0 + 𝓌𝑘𝑙 ⋅ 2−𝑙

𝐿−1

𝑙=0

 (5)

Where 𝓌𝑘𝑙 denotes the 𝑙𝑡ℎ bit of𝓌𝑘 . Substituting (5), we can

write (4) in an expanded form

𝒴 = − 𝑥𝑘 ∙ 𝓌𝑘0

𝑁−1

𝑘=0

+ 𝑥𝑘 ∙ 𝓌𝑘𝑙 ∙ 2−𝑙

𝐿−1

𝑙=0

𝑁−1

𝑘=0

 (6)

To convert the sum-of-products form of (4) into a distributed

form, the order of summations over the indices k and l in (6)

can be interchanged to have

𝒴 = − 𝑥𝑘 ∙ 𝓌𝑘0

𝑁−1

𝑘=0

+ 2−𝑙 ∙ 𝑥𝑘 ∙ 𝓌𝑘𝑙

𝑁−1

𝑘=0

𝐿−1

𝑙=1

 (7)

and the inner product given by (7) can be computed as

𝒴 = 2−l ∙ 𝒴l

L−1

l=1

 − 𝒴0 ,

where𝒴𝑙 = 𝑥𝑘 ∙ 𝓌𝑘𝑙

𝑁−1

𝑘=0

 (8)

Fig 1 Conventional DA-based implementation of four-point inner product

Fig 2 Carry-save implementation of shift accumulation

Since any element of the N-point bit sequence 𝓌𝑘𝑙 for 0 ≤
𝑘 ≤ 𝑁 − 1 can either be zero or one,the partial sum 𝒴𝑙 for
𝑙 = 0,1, … , 𝐿 − 1 can have 2𝑁possible values. If all the
2𝑁possible values of 𝒴𝑙are pre computed and stored in a LUT,
the partial sums𝒴𝑙can be read out from the LUT using the bit
sequence 𝓌𝑘𝑙 as address bits for computing the inner
product.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.3, No.2, February 2014 DOI:10.15693/ijaist/2014.v3i2.99-104

101

Fig 3 DA table for generation of possible sums of input samples

The inner product of (8) can therefore be calculated
in L cycles of shift accumulation, followed by LUT-read
operations corresponding to L number of bit slices 𝓌𝑘𝑙 for
0 ≤ 𝑙 ≤ 𝐿 − 1, as shown in Fig. 1. Since the shift
accumulation in Fig. 1 involves significant critical path, we
perform the shift accumulation using carry-save accumulator,
as shown in Fig 2. The bit slices of vector Ware fed one after
the next in the least significant bit (LSB) to the most
significant bit (MSB) order to the carry-save accumulator.
However, the negative (two’s complement) of the LUT output
needs to be accumulated in case of MSB slices. Therefore, all
the bits of LUT output are passed through XOR gates with a
sign-control input which is set to one only when the MSB slice
appears as address. The XOR gates thus produce the one’s
complement of the LUT output corresponding to the MSB
slice but do not affect the output for other bit slices. Finally,
the sum and carry words obtained after L clock cycles are
required to be added by a final adder (not shown in the figure),
and the input carry of the final adder is required to be set to
one to account for the two’s complement operation of the LUT
output corresponding to the MSB slice.

The content of the 𝑘𝑡ℎ LUT location can be expressed
as

𝑐𝑘 = 𝑥𝑗 ∙ 𝑘𝑗

𝑁−1

𝑗=0

 (9)

Where𝑘𝑗 is the (𝑗 + 1)𝑡ℎ bit of N-bit binary representation of

integer k for 0 ≤ 𝑘 ≤ 2𝑁 − 1. Note that 𝑐𝑘 for 0 ≤ 𝑘 ≤ 2𝑁 − 1
can be pre computed and stored in RAM-based LUT of

2𝑁words. However, instead of storing 2𝑁words in LUT, we
store (2𝑁 − 1)words in a DA table of 2𝑁 − 1registers.

IV. PROPOSEDDA-BASED ADAPTIVE FILTER

STRUCTURE
The proposed structure of DA-based adaptive filter is

shown in Fig. 4. It consists of a four-point inner product block
and a weight-increment block along with additional circuits
for the computation of error value 𝑒(𝑛) and control word t for
the barrel shifters.

Fig 4 Proposed structure of DA-based LMS adaptive filter of filter length N =

4.

The four-point inner-product block shown in Fig. 5

includes a DA table consisting of an array of 15 registers

which stores the partial inner products 𝒴𝑙 for 0 < 𝑙 ≤ 15 and a

16 : 1 multiplexor (MUX) to select the content of one of those

registers. Bit slices of weights 𝐴 = 𝓌3𝑙𝓌2𝑙𝓌1𝑙𝓌0𝑙 for

0 ≤ 𝑙 ≤ 𝐿 − 1 are fed to the MUX as control in LSB-to- MSB

order, and the output of the MUX is fed to the carry-save

accumulator (shown in Fig. 2). After L bit cycles, the carry-

save accumulator shift accumulates all the partial inner

products and generates a sum word and a carry word of size (L

+ 2) bit each. The carry and sum words are shifted added with

an input carry “1” to generate filter output which is

subsequently subtracted from the desired output d n to obtain

the error e(n). All the bits of the error except the most

significant one are ignored, such that multiplication of input

𝑥𝑘by the error is implemented by a right shift through the

number of locations given by the number of leading zeros in

the magnitude of the error.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.3, No.2, February 2014 DOI:10.15693/ijaist/2014.v3i2.99-104

102

Fig 5 Structure of the four-point inner-product block

Fig 6 Structure of the weight-increment block

The magnitude of the computed error is decoded to
generate the control word t for the barrel shifter. The logic
used for the generation of control word t to be used for the
barrel shifter. The convergence factor 𝜇is usually taken to
be𝑂(1 𝑁). We have taken𝜇 = 1 𝑁 . However, one can take

𝜇as 2−𝑖 𝑁 , where 𝑖is a small integer. The number of shifts t in
that case is increased by𝑖, and the input to the barrel shifters is
pre shifted by 𝑖locations accordingly to reduce the hardware
complexity.

The weight-increment unit shown in Fig. 6 consists
of four barrel shifters and four adder/sub-tractor cells. The
barrel shifter shifts the different input values 𝑥𝑘 for 𝑘 =
0,1, … , 𝑁 − 1 by appropriate number of locations. The barrel
shifter yields the desired increments to be added with or
subtracted from the current weights. The sign bit of the error is
used as the control for adder/sub-tractor cells such that, when

sign bit is zero or one, the barrel-shifter output is respectively
added with or subtracted from the content of the
corresponding current value in the weight register.

V. COMPLEXITY

We have estimated the hardware and time

complexities of the proposed design in Table I. The proposed

design uses two clocks, namely, the bit clock and the byte

clock. The duration of the byte clock is the same as the

sampling period. The bit clock is used in carry-save

accumulation units and word parallel bit-serial converters,

while the byte clock is used in the rest of the circuit. The

duration of bit clock is given by 𝑇𝐵𝐶 = 4𝑇𝑀 + 𝑇𝐹𝐴 + 𝑇𝑋𝑂𝑅 +
𝑇𝐷 , where 𝑇𝑀 , 𝑇𝐹𝐴 , 𝑇𝑋𝑂𝑅 and 𝑇𝐷are the delays of a 2 ∶ 1 MUX,

a full adder, an XOR gate, and a D flip-flop, respectively, and

L is the bit width of inputs as well as coefficients. 4𝑇𝑀 is the

delay of a 16 ∶ 1 MUX, since it consists of four stages of B

2 ∶ 1 MUXes. The duration of the sample period (byte clock)

of proposed design is𝐿 × 𝑇𝐵𝐶 .

The proposed design involves 9 adders/sub -tractor, 4

logarithmic barrel shifters (of three stages each), and 31

registers. The design in [5] on the other hand involves 25

adders, 15 shifters, and 33 registers. The proposed design has

an adaptation delay of two clocks, one of which is after the

addition of carry and sum words in the inner-product

computation blocks and the other is after the error calculation,

whereas the designs in [4] and [5] have no such adaptation

delay. The adaptation delay of two cycles, however, does not

make noticeable degradation of the convergence performance.

The RTL (Register Transfer Level) schematic view DA

based adaptive filter architecture is shown in Figure 7.

Fig 7 RTL schematic

.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.3, No.2, February 2014 DOI:10.15693/ijaist/2014.v3i2.99-104

103

Design

Throughput

Hardware elements

Adders Register Shifter LUT Extra

Allred et al [2] 𝑇𝑅 + 3𝑇𝑀 + 𝑇𝐴 4 7 1 2 Control unit

Guo et al [3] 𝐿(4𝑇𝑀 + 𝑇𝐹𝐴) 13 10 4 2 Control unit

Meher et al [5] 𝐿(4𝑇𝑀 + 𝑇𝐹𝐴) 25 33 15 - 16:1MUX

Proposed 𝐿(4𝑇𝑀 + 𝑇𝐹𝐴 + 𝑇𝑋𝑂𝑅 + 𝑇𝐷) 9 31 3 - 16:1MUX

The comparative output of conventional design and

proposed architecture complexity is shown in Table 1. From

synthesis results, it is found that the proposed design

consumes less power and less area-delay product (ADP) for

DA-based adaptive filter shown in Table 2.

Logic Utilization

Used

Available

Utilization

Number of slice Flip

Flops

291 1920 15%

Number of 4 inputs LUTs 394 1920 20%

Number of occupied

slices

259 960 26%

Number of slices related

logic

259 960 26%

Number of slices

unrelated logic

0 259 0%

Total number of 4 input

LUTs

400 1920 20%

Number of bounded IOBs 32 66 48%

Number of GCLKs 1 24 4%

DELAY 6.404ns

Power 33.59 mW

The simulated output of the DA based adaptive filter

architecture is shown in Figure 8. The simulation is done by

Xilinx Simulator and the result is verified. Finally the delay

will be minimized to 6.404 ns and power consumption can be

brought to 33.59 mW. This will be obtained by the

implementation of adaptive filter technique using Distributed

arithmetic.

VI. CONCLUSION

An efficient pipelined architecture for low-power and

low-area delay implementation of DA-based adaptive filter is

proposed. A carry-save accumulation scheme of signed partial

inner products for the computation of filter output was

constructed. Also throughput rate is significantly enhanced by

parallel LUT update and concurrent processing of filtering

operation and weight-update operation.

From the synthesis results, it has been found that the

proposed design consumes less power and less ADP. Offset

binary coding is popularly used to reduce the LUT size, for

obtaining minimized area delay, to half for area-efficient

implementation of DA [5], which can be applied to our design

as well.

Fig 8 Output of DA based adaptive filter

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.1, No.2, May 2012

104

REFERENCES

[1]. S. Haykin and B. Widrow, Least-Mean-Square Adaptive
Filters Hoboken, NJ, USA: Wiley, 2003.

[2]. [2] D. J. Allred, H. Yoo, V. Krishnan, W. Huang, and D. V.
Anderson, “LMS adaptive filters using distributed arithmetic
for high throughput,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 52, no. 7, pp. 1327–1337, Jul. 2005.

[3]. [3] R. Guo and L. S. DeBrunner, “Two high-performance
adaptive filter implementation schemes using distributed
arithmetic,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.
58, no. 9, pp. 600–604, Sep. 2011.

[4]. [4] R. Guo and L. S. DeBrunner, “A novel adaptive filter
implementation scheme using distributed arithmetic” in
Proc. Asilomar Conf. Signals, Syst., Comput., Nov. 2011,
pp. 160–164.

[5]. [5] P. K. Meher and S. Y. Park, “High-throughput pipelined
realization of adaptive FIR filter based on distributed
arithmetic,” in VLSI Symp. Tech. Dig., Oct. 2011, pp. 428–
433.

Authors Profile

R.Rajesh received the B.E. degree in
electronics and communication
engineering from the St.Joseph’s College
of Engineering and Technology,
Thanjavur, Anna University, Chennai,
India, in 2012.Currently doing M.E. in
electronics and communication

engineering (Applied Electronics) from the C K College of
Engineering and Technology, Cuddalore, Anna University,
Chennai, India. His research interest includes VLSI, Digital
signal processing, Embedded System, wireless
communication.

R.Rameshprabu received the B.E. degree
in electronics and communication
engineering from the Adhiparasakthi
Engineering College, Melmaruvathur,
Anna University, Chennai, India, in
2010.Currently doing M.E. in electronics
and communication engineering (Applied

electronics) from the C K College of Engineering and
Technology, Cuddalore, Anna University , Chennai, India. His
research interest includes wireless Network, wireless
communication (WiFi,WiMax), VLSI, Mobile
Communication.

S.Dhanabal received the B.E. degree in
electronics and communication
engineering from the Arunai Engineering
College, Thiruvannamalai, Anna
University, Chennai, India, in
2010.Currently doing M.E. in electronics
and communication engineering (Applied

electronics) from the C K College of Engineering and
Technology, Cuddalore, Anna University, Chennai, India. His

research interest includes wireless communication
(WiFi,WiMax), Mobile Communication, VLSI.

R.Ram Kumar received the B.Tech.
degree in information technology from the
St.Joseph’s College of Engineering and
Technology, Thanjavur, Anna University,
Chennai, India, in 2012. Currently doing
M.Tech. in information technology
(Networking) from the Sri Manakula

vinayagar engineering college, Pondicherry University,
Pondicherry, India. His research interest includes wireless
communication, VLSI, wireless network, networking, Cloud
computing.

