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Abstract—The major issues while designing a distributed 

arithmetic (DA) based adaptive filter are high power and area 

delay. In general speed and power are the essential factor in 

VLSI design. So, we have designing a new pipelined architecture 

for efficient distributed arithmetic (DA) based on LMS adaptive 

FIR filter. The conventional adder-based shift accumulation for 

DA-based inner-product computation is replaced by conditional 

signed carry-save accumulation in order to reduce the sampling 

period and area complexity. Reduction of power consumption is 

achieved in the proposed design by using a fast bit clock for 

carry-save accumulation but a much slower clock for all other 

operations. The throughput rate of the proposed design is 

significantly increased by parallel lookup table (LUT) update and 

concurrent implementation of filtering and weight-update 

operations. It involves the same number of multiplexers, smaller 

LUT, and nearly half the number of adders compared to the 

existing DA-based design. From synthesis results, it is found that 

the proposed design consumes less power and less area-delay 

product (ADP). It is done by using Xilinx tool and it is 

implemented using FPGA (Field Programmable Gate Array). 
Index terms -Adaptive filter, circuit optimization, distributed 

arithmetic (DA), least mean square (LMS) algorithm. 

I. INTRODUCTION 

Adaptive filters are widely used in several digital 

signal processing applications. The delay line finite impulse 

response (FIR) filter whose weights are updated by the famous 

Widrows–Hoff least mean square (LMS) algorithm is the most 

popularly used adaptive filter not only due to its simplicity but 

also due to its satisfactory convergence performance [1]. The 

direct form configuration on the forward path of the FIR filter 

results in a long critical path due to an inner-product 

computation to obtain a filter output. Therefore, when the 

input signal has a high sampling rate, it is necessary to reduce 

the critical path of the structure so that the critical path could 

not exceed the sampling period. 

In recent years, the multiplier-less distributed 

arithmetic (DA)-based technique has gained substantial 

popularity for its high-throughput processing capability and 

regularity, which result in cost-effective and area–time 

efficient computing structures. Hardware-efficient DA-based 

design of adaptive filter has been using two separate lookup 

tables (LUTs) for filtering and weight update. To improve the 

design has using one LUT for filtering as well as weight 

updating. However, the structures in [2]–[4] do not support 

high sampling rate since they involve several cycles for LUT 

updates for each new sample. In a recent paper, we have 

proposed an efficient architecture for high-speed DA-based 

adaptive filter with very low adaptation delay [5]. 

This brief proposes a new DA-based architecture for 

low power, low area delay, and high-throughput pipelined 

implementation of adaptive filter with very low adaptation 

delay. The contribution of this brief are as follows. 

 

1) Throughput rate is significantly increased by a 

parallel LUT update. 

2) Further enhancement of throughput is achieved by 

concurrent implementation of filtering and weight 

updating. 

3) Conventional adder-based shift accumulation is 

replaced by a conditional carry-save accumulation of 

signed partial inner products to reduce the sampling 

period, the bit cycle period amounts to memory 

access time plus 1-bit full-adder time by carry-save 

accumulation. The use of the proposed signed carry-

save accumulation also helps to reduce the area 

complexity of the proposed design. 

4) Reduction of power consumption is achieved by 

using a fast bit clock for carry-save accumulation but 

a much slower clock for all other operations. 

5) The existing designs require an auxiliary control unit 

for address generation, which is not required in the 

proposed structure. 

In the next section, we present a brief review of the 

LMS adaptive algorithm, followed by the description of the 

proposed DA-based technique for adaptive filter in Section III. 

The structure of the proposed adaptive filter is described in 

Section IV. We discuss the hardware complexity and synthesis 
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results of the proposed structure in Section V. Conclusions are 

given in Section VI. 

II. REVIEW OF LMS ADAPTIVE ALGORITHM 

 During each cycle, the LMS algorithm computes a 

filter output and an error value that is equal to the difference 

between the current filter output and the desired response. The 

estimated error is then used to update the filter weights in 

every training cycle. The weights of LMS adaptive filter 

during the nth iteration are updated according to the following 

equations: 

W n + 1 = W n + μ ∙ e(n) ∙ X(n)                     (1a) 

Where 

 

e n = d n − 𝒴(n)                             (1b) 

𝒴 n = WqT ( n) ∙ X(n)                          (1c)            

The input vector X n and the weight vector W n  at the 𝑛𝑡ℎ  

training iteration are respectively given by 

𝑋 𝑛 = [𝑥 𝑛 , 𝑥 𝑛 − 1 , . . , 𝑥(𝑛 − 𝑁 + 1) ]𝑇     (2a)     

𝑊 𝑛 = [𝑤0(𝑛)𝑤1(𝑛), . . , 𝑤𝑁−1(𝑛)]𝑇            (2b) 

𝑑(𝑛) is the desired response, and 𝒴(n) is the filter output of 

the 𝑛𝑡ℎ  iteration. 𝑒(𝑛) denotes the error computed during the 

𝑛𝑡ℎ  iteration, which is used to update the weights, 𝜇is the 

convergence factor, and N is the filter length. 

In the case of pipelined designs, the feedback error 

𝑒(𝑛) becomes available after certain number of cycles, called 

the “adaptation delay.” The pipelined architectures therefore 

use the delayed error 𝑒(𝑛 − 𝑚) for updating the current 

weight instead of the most recent error, where m is the 

adaptation delay. The weight-update equation of such delayed 

LMS adaptive filter is given by 

 

W n + 1 = W n + μ ∙ e n − m ∙ X n − m   (3)              

 

III. PROPOSED DA BASED APPROACH FOR INNER 

PRODUCT COMPUTATION 

The LMS adaptive filter, in each cycle, needs to 

perform an inner-product computation which contributes to 

the most of the critical path. For simplicity of presentation, let 

the inner product of (1c) be given by 

𝒴 =  𝓌𝑘 ∙ 𝑥𝑘

𝑁−1

𝐾=0

(4) 

where𝓌𝑘and𝑥𝑘 for 0 ≤ 𝑘 ≤ 𝑁 − 1 fromthe N point vectors 

corresponding the current weights and most recent 𝑁 − 1 

input, respectively. Assuming L to be the bit width of the 

weight, each component of the weight vector may be 

expressed in two’s complement representation 

𝓌𝑘 = −𝓌𝑘0 +  𝓌𝑘𝑙 ⋅ 2−𝑙

𝐿−1

𝑙=0

                        (5) 

Where 𝓌𝑘𝑙 denotes the 𝑙𝑡ℎ  bit of𝓌𝑘 . Substituting (5), we can 

write (4) in an expanded form 

𝒴 = −  𝑥𝑘 ∙ 𝓌𝑘0

𝑁−1

𝑘=0

+  𝑥𝑘 ∙   𝓌𝑘𝑙 ∙ 2−𝑙

𝐿−1

𝑙=0

 

𝑁−1

𝑘=0

 (6) 

 

To convert the sum-of-products form of (4) into a distributed 

form, the order of summations over the indices k and l in (6) 

can be interchanged to have 

𝒴 = −  𝑥𝑘 ∙ 𝓌𝑘0

𝑁−1

𝑘=0

+  2−𝑙 ∙   𝑥𝑘 ∙ 𝓌𝑘𝑙

𝑁−1

𝑘=0

 

𝐿−1

𝑙=1

 (7) 

and the inner product given by (7) can be computed as 

𝒴 =   2−l ∙ 𝒴l

L−1

l=1

 − 𝒴0 ,  

where𝒴𝑙 =  𝑥𝑘 ∙ 𝓌𝑘𝑙

𝑁−1

𝑘=0

 (8) 

Fig 1 Conventional DA-based implementation of four-point inner product 

Fig 2 Carry-save implementation of shift accumulation 

Since any element of the N-point bit sequence  𝓌𝑘𝑙 for 0 ≤
𝑘 ≤ 𝑁 − 1 can either be zero or one,the partial sum  𝒴𝑙  for 
𝑙 = 0,1, … , 𝐿 − 1 can have 2𝑁possible values. If all the 
2𝑁possible values of 𝒴𝑙are pre computed and stored in a LUT, 
the partial sums𝒴𝑙can be read out from the LUT using the bit 
sequence  𝓌𝑘𝑙  as address bits for computing the inner 
product. 
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Fig 3 DA table for generation of possible sums of input samples 

 

The inner product of (8) can therefore be calculated 
in L cycles of shift accumulation, followed by LUT-read 
operations corresponding to L number of bit slices  𝓌𝑘𝑙   for 
0 ≤ 𝑙 ≤ 𝐿 − 1, as shown in Fig. 1. Since the shift 
accumulation in Fig. 1 involves significant critical path, we 
perform the shift accumulation using carry-save accumulator, 
as shown in Fig 2. The bit slices of vector Ware fed one after 
the next in the least significant bit (LSB) to the most 
significant bit (MSB) order to the carry-save accumulator. 
However, the negative (two’s complement) of the LUT output 
needs to be accumulated in case of MSB slices. Therefore, all 
the bits of LUT output are passed through XOR gates with a 
sign-control input which is set to one only when the MSB slice 
appears as address. The XOR gates thus produce the one’s 
complement of the LUT output corresponding to the MSB 
slice but do not affect the output for other bit slices. Finally, 
the sum and carry words obtained after L clock cycles are 
required to be added by a final adder (not shown in the figure), 
and the input carry of the final adder is required to be set to 
one to account for the two’s complement operation of the LUT 
output corresponding to the MSB slice. 

The content of the 𝑘𝑡ℎ  LUT location can be expressed 
as 

𝑐𝑘 =  𝑥𝑗 ∙ 𝑘𝑗

𝑁−1

𝑗=0

           (9) 

Where𝑘𝑗 is the (𝑗 + 1)𝑡ℎ  bit of N-bit binary representation of 

integer k for 0 ≤ 𝑘 ≤ 2𝑁 − 1. Note that 𝑐𝑘 for 0 ≤ 𝑘 ≤ 2𝑁 − 1 
can be pre computed and stored in RAM-based LUT of 

2𝑁words. However, instead of storing 2𝑁words in LUT, we 
store (2𝑁 − 1)words in a DA table of 2𝑁 − 1registers. 

IV. PROPOSEDDA-BASED ADAPTIVE FILTER 

STRUCTURE 
The proposed structure of DA-based adaptive filter is 

shown in Fig. 4. It consists of a four-point inner product block 
and a weight-increment block along with additional circuits 
for the computation of error value 𝑒(𝑛) and control word t for 
the barrel shifters. 

Fig 4 Proposed structure of DA-based LMS adaptive filter of filter length N = 

4. 

The four-point inner-product block shown in Fig. 5 

includes a DA table consisting of an array of 15 registers 

which stores the partial inner products 𝒴𝑙 for 0 < 𝑙 ≤ 15 and a 

16 : 1 multiplexor (MUX) to select the content of one of those 

registers. Bit slices of weights 𝐴 =  𝓌3𝑙𝓌2𝑙𝓌1𝑙𝓌0𝑙 for 

0 ≤ 𝑙 ≤ 𝐿 − 1 are fed to the MUX as control in LSB-to- MSB 

order, and the output of the MUX is fed to the carry-save 

accumulator (shown in Fig. 2). After L bit cycles, the carry-

save accumulator shift accumulates all the partial inner 

products and generates a sum word and a carry word of size (L 

+ 2) bit each. The carry and sum words are shifted added with 

an input carry “1” to generate filter output which is 

subsequently subtracted from the desired output d n  to obtain 

the error e(n). All the bits of the error except the most 

significant one are ignored, such that multiplication of input 

𝑥𝑘by the error is implemented by a right shift through the 

number of locations given by the number of leading zeros in 

the magnitude of the error.  



International Journal of Advanced Information Science and Technology (IJAIST)         ISSN: 2319:268 

Vol.3, No.2, February 2014                                                            DOI:10.15693/ijaist/2014.v3i2.99-104 

 

102 

 

Fig 5 Structure of the four-point inner-product block 

 
Fig 6 Structure of the weight-increment block 

 

The magnitude of the computed error is decoded to 
generate the control word t for the barrel shifter. The logic 
used for the generation of control word t to be used for the 
barrel shifter. The convergence factor 𝜇is usually taken to 
be𝑂(1 𝑁 ). We have taken𝜇 = 1 𝑁 . However, one can take 

𝜇as 2−𝑖 𝑁 , where 𝑖is a small integer. The number of shifts t in 
that case is increased by𝑖, and the input to the barrel shifters is 
pre shifted by 𝑖locations accordingly to reduce the hardware 
complexity. 

The weight-increment unit shown in Fig. 6 consists 
of four barrel shifters and four adder/sub-tractor cells. The 
barrel shifter shifts the different input values 𝑥𝑘 for 𝑘 =
0,1, … , 𝑁 − 1 by appropriate number of locations. The barrel 
shifter yields the desired increments to be added with or 
subtracted from the current weights. The sign bit of the error is 
used as the control for adder/sub-tractor cells such that, when 

sign bit is zero or one, the barrel-shifter output is respectively 
added with or subtracted from the content of the 
corresponding current value in the weight register. 

V. COMPLEXITY 

We have estimated the hardware and time 

complexities of the proposed design in Table I. The proposed 

design uses two clocks, namely, the bit clock and the byte 

clock. The duration of the byte clock is the same as the 

sampling period. The bit clock is used in carry-save 

accumulation units and word parallel bit-serial converters, 

while the byte clock is used in the rest of the circuit. The 

duration of bit clock is given by 𝑇𝐵𝐶 = 4𝑇𝑀 + 𝑇𝐹𝐴 + 𝑇𝑋𝑂𝑅 +
𝑇𝐷 , where 𝑇𝑀 , 𝑇𝐹𝐴 , 𝑇𝑋𝑂𝑅  and 𝑇𝐷are the delays of a 2 ∶ 1 MUX, 

a full adder, an XOR gate, and a D flip-flop, respectively, and 

L is the bit width of inputs as well as coefficients.  4𝑇𝑀 is the 

delay of a 16 ∶ 1 MUX, since it consists of four stages of B 

2 ∶ 1 MUXes. The duration of the sample period (byte clock) 

of proposed design is𝐿 × 𝑇𝐵𝐶 . 

The proposed design involves 9 adders/sub -tractor, 4 

logarithmic barrel shifters (of three stages each), and 31 

registers. The design in [5] on the other hand involves 25 

adders, 15 shifters, and 33 registers. The proposed design has 

an adaptation delay of two clocks, one of which is after the 

addition of carry and sum words in the inner-product 

computation blocks and the other is after the error calculation, 

whereas the designs in [4] and [5] have no such adaptation 

delay. The adaptation delay of two cycles, however, does not 

make noticeable degradation of the convergence performance. 

The RTL (Register Transfer Level) schematic view DA 

based adaptive filter architecture is shown in Figure 7.  

 

 
 

Fig 7 RTL schematic 

 

.
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Design 

 

Throughput 

Hardware elements 

Adders Register Shifter LUT Extra 

Allred et al [2] 𝑇𝑅 + 3𝑇𝑀 + 𝑇𝐴 4 7 1 2 Control unit 

Guo et al [3] 𝐿(4𝑇𝑀 + 𝑇𝐹𝐴) 13 10 4 2 Control unit 

Meher et al [5] 𝐿(4𝑇𝑀 + 𝑇𝐹𝐴) 25 33 15 - 16:1MUX 

Proposed 𝐿(4𝑇𝑀 + 𝑇𝐹𝐴 + 𝑇𝑋𝑂𝑅 + 𝑇𝐷) 9 31 3 - 16:1MUX 

 
 

The comparative output of conventional design and 

proposed architecture complexity is shown in Table 1. From 

synthesis results, it is found that the proposed design 

consumes less power and less area-delay product (ADP) for 

DA-based adaptive filter shown in Table 2. 
 

 

Logic Utilization 

 

Used 

 

Available 

 

Utilization 

Number of slice Flip 

Flops 

291 1920 15% 

Number of 4 inputs LUTs 394 1920 20% 

Number of occupied 

slices 

259 960 26% 

Number of slices related 

logic 

259 960 26% 

Number of slices 

unrelated logic 

0 259 0% 

Total number of 4 input 

LUTs 

400 1920 20% 

Number of bounded IOBs 32 66 48% 

Number of GCLKs 1 24 4% 

DELAY 6.404ns 

Power 33.59 mW 

The simulated output of the DA based adaptive filter 

architecture is shown in Figure 8. The simulation is done by 

Xilinx Simulator and the result is verified. Finally the delay 

will be minimized to 6.404 ns and power consumption can be 

brought to 33.59 mW. This will be obtained by the 

implementation of adaptive filter technique using Distributed 

arithmetic. 

VI. CONCLUSION 

An efficient pipelined architecture for low-power and 

low-area delay implementation of DA-based adaptive filter is 

proposed. A carry-save accumulation scheme of signed partial 

inner products for the computation of filter output was 

constructed. Also throughput rate is significantly enhanced by 

parallel LUT update and concurrent processing of filtering 

operation and weight-update operation.  

From the synthesis results, it has been found that the 

proposed design consumes less power and less ADP. Offset 

binary coding is popularly used to reduce the LUT size, for 

obtaining minimized area delay, to half for area-efficient 

implementation of DA [5], which can be applied to our design 

as well. 

 

 

 
Fig 8 Output of DA based adaptive filter 
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