
International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
Vol.2, No.5, May 2013 DOI:10.15693/ijaist/2013.v2i5.5-12

5

Low Power High Speed Memory Architecture Using Multi

Bit Flip Flops

G.Barathi
1
 , S.Ramesh Kumar

2
 Dr.R.Ganesan

3

 1

 PGScholar, Sethu Institute of technology, Madurai.
2
 Assistant Professor, Sethu Institute of technology , Madurai.

3 Professor/HOD,

Abstract – In modern VLSI designs, power consumed

by clocking has taken a major part of the whole design

especially for those designs using deeply scaled CMOS

technologies. Hence in this paper we propose an

algorithm for reducing the power consumption by

replacing some flip-flops with fewer multi-bit flip-flops

without affecting the performance of the original

circuit. The flip-flop replacement will change the

location of some flip-flops, leading to violation of

timing and placement capacity constraints. To avoid

this problem, several techniques are proposed.

Utilizing the properties of manhattan distance and

coordinate transformation, first we identify those flip-

flops that can be merged and their legal regions. Next,

a combination table is built to enumerate all possible

combinations. Finally, the flip-flops are merged in

hierarchial manner. According to the experimental

results, our algorithm significantly reduces clock

power by 20-30% and besides power reduction

minimizing the total wirelength is also considered.

KEY WORDS – Clock power, multi-bit flip-flop

manhattan distance, merging.

I. INTRODUCTION

 A clock system and a logic part consumes

dominant part of the total chip power. The clock system

itself consumes 20–45% of the chip power. In this clock

system power, 90% is consumed by the flip-flops

themselves and the last branches of the clock distribution

network which directly drives the flip-flops [1]. This is

due to the high switching activity.

 Pclk = Cclk V
2
ddfclk (1)

where Pclk is clock power, fclk is the clock frequency, Vdd is

the supply voltage, and Cclk is the switching capacitance

including the gate capacitance of flip-flops (sequential

elements) controlled by the clock signal, the interconnect

capacitance of the clock network, and the capacitance

associated with the buffers/inverters used in the clock

network. Several methodologies [2], [3] have been

proposed to reduce the power consumption of clocking.

Given a design that the locations of the cells have been

determined, the power consumed by clocking can be

reduced further by replacing several flip-flops with multi-

bit flip-flops. During clock tree synthesis, less number of

flip-flops means less number of clock sinks. Thus, the

resulting clock network would have smaller power

consumption and uses less routing resource.

 Applying MBFFs may have the following advantages:

1) smaller design area due to shared clock drivers and

clock gating cells;

2) less delay and power of the clock network due to fewer

clock sinks and smaller capacitive load on the clock net;

3) controllable clock skew because of common clock and

enable signals for a group of flip-flops and reduced depth

of a clock tree;

4) improved routing resource utilization especially when

considering design for testability. The required routing

resource for a scan chain is greatly reduced because of

fewer cells in a scan chain.

Fig. 1 shows an example of merging two 1-bit flip-flops

into one 2-bit flip-flop. If we replace the two 1-bit flip-

flops as shown in Fig. 1(a) by the 2-bit flip-flop as shown

in Fig. 1(b), the total power consumption can be reduced

because the two 1-bit flip-flops can share the same clock

buffer. However, the locations of some flip-flops would

be changed after this replacement, and thus the

wirelengths of nets connecting pins to a flip-flop are also

changed. To avoid violating the timing constraints, we

restrict that the wirelengths of nets connecting pins to a

flip-flop cannot be longer than specified values after this

process. Besides, to guarantee that a new flipflop can be

placed within the desired region, we also need to consider

the area capacity of the region.

A. Related work

 Chen et al. [4] and Hou et al. [5] leverage on register

banking at logic synthesis and at early physical synthesis,

respectively. However, the subsequent timing and routing

cost of the clustered result may somewhat deviate from

what is expected at such early stages.

 On the other hand, Yan and Chen [7], Chang et al. [8],

and Wang et al. [9] postponed this task to postplacement

to further consider the timing and even routing issues.

Yan and Chen [7] analyzed the timing-safe region for

each flipflop and then constructed an intersection graph to

record the pairwise overlapping of these regions. They

reduced MBFF clustering to minimum clique partitioning

and solved it byiteratively merging flip-flops with fewest

compatible flip-flops. However, they assumed the

available bit numbers of the given MBFF library are

contiguous and unlimited.

 Considering a discrete and finite MBFF library, Chang et

al. [6] proposed the problem of using multi-bit flip-flops

to reduce power consumption in the post-placement stage.

They use the graph-based approach to deal with this

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
Vol.2, No.5, May 2013 DOI:10.15693/ijaist/2013.v2i5.5-12

6

problem. In a graph, each node represents a flip-flop. If

two flip-flops can be replaced by a new flip-flop without

violating timing and capacity constraints, they build an

edge between the corresponding nodes. After the graph is

built, the problem of replacement of flip-flops can be

solved by finding an m-clique in the graph. The flip-flops

corresponding to the nodes in an m-clique can be replaced

by an m-bit flipflop. They use the branch-and-bound and

backtracking algorithm [8] to find all m-cliques in a

graph. Because one node (flip-flop) may belong to

Fig. 1. Replacing two traditional FFs by a 2-bit MBFF

several m-cliques (m-bit flip-flop), they use greedy

heuristic algorithm to find the maximum independent set

of cliques, which every node only belongs to one clique,

while finding m-cliques groups. However, if some nodes

correspond to k-bit flip-flops that k>=1, the bit width

summation of flip-flops corresponding to nodes in an m-

clique, j , may not equal m. If the type of a j -bit flip-flop

is not supported by the library, it may be time-wasting in

finding impossible combinations of flip-flops.

 II. OUR ALGORITHM

Our design flow can be roughly divided into three stages.

Please see Fig. 5 for our flow. In the beginning, we have

to identify a legal placement region for each flip-flop fi .

First, the feasible placement region of a flip-flop

associated with different pins are found based on the

timing constraints defined on the pins. Then, the legal

placement region of the flip-flop fi can be obtained by the

Identify mergeable flip-flops

Build a combination table

Merge flip-flops

END

START

Fig. 2. Flow chart of our algorithm

overlapped area of these regions. However, because these

regions are in the diamond shape, it is not easy to identify

the overlapped area. Therefore, the overlapped area can be

identified more easily if we can transform the coordinate

system of cells to get rectangular regions. In the second

stage, we would like to build a combination table, which

defines all possible combinations of flip-flops in order to

get a new multi-bit flip-flop provided by the library. The

flip-flops can be merged with the help of the table. After

the legal placement regions of flip-flops are found and the

combination table is built, we can use them to merge flip-

flops. To speed up our program, we will divide a chip into

several bins and merge flip-flops in a local bin. However,

the flip-flops in different bins may be mergeable. Thus,

we have to combine several bins into a larger bin and

repeat this step until no flip-flop can be merged anymore.

A. Transformation of placement space

The replacement of some flip-flops with multi-bit flip-

flops would would change the routing length of the nets

that connect to a flip-flop, it inevitably changes timing of

some paths. To avoid that timing is affected after the

replacement, the Manhattan distance between pin pi and

flip-flop fjcannot be longer than the given constraint S(pi)

defined on the pin pi [i.e., M(pi , f j) ≤ S(pi)]. Since there

may exist several pins connecting to f i , the legal

placement region of f i are the overlapping area of several

regions. As shown in Fig. 3(a), there are two pins p1 and

p2 connecting to a flip-flop f1, and the feasible placement

regions for the two pins are enclosed by dotted lines,

which are denoted by Rp(p1) and Rp(p2), respectively.

Thus, the legal placement region R(f1) for f1 is the

overlapping part of these regions. In Fig. 3(b), R(f1) and

R(f2) represent the legal placement regions of f1 and f2.

Because R(f1) and R(f2) overlap, we can replace f1 and

f2 by a new flip-flop f3 without violating the timing

constraint, as shown in Fig. 3(c).

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
Vol.2, No.5, May 2013 DOI:10.15693/ijaist/2013.v2i5.5-12

7

Fig. 3. (a) Feasible regionsRp (p1) and Rp(p2) for pins p1

and p2 which are enclosed by dotted lines, and the legal

region R(f1) for f1 which is enclosed by solid lines. (b)

Legal placement regions R(f1) and R(f2) for f1 and f2,

and the feasible area R3 which is the overlap region of R(

f1) and R(f2). (c) New flip-flop f3 that can be used to

replace f1 and f2 without violating timing constraints for

all pins p1, p2, p3, and p4.

However, it is not easy to identify and record

feasibleplacement regions if their shapes are diamond.

Moreover, four coordinates are required to record an

overlapping region [see Fig. 4(a)]. Thus, if we can rotate

each segment 45°, the shapes of all regions would become

rectangular, which makes identification of overlapping

regions become very simple. For example, the legal

placement region, enclosed by dotted lines in Fig. 4(a),

can be identified more easily if we change its original

coordinate system [see Fig. 4(b)]. In such condition, we

only need two coordinates, which are the left-bottom

corner and right-top corner of a rectangle, as shown in

Fig. 4(b), to record the overlapped area instead of using

four coordinates.

Fig. 4.(a) Overlapping region of two diamond shapes. (b)

Rectangular shapes obtained by rotating the diamond

shapes in (a) by 45°.

The equations used to transform coordinate system are

shown in (1) and (2).

Fig. 5(a)Overlapping region of two diamond shapes.

 (b)Rectangular shapes obtained by rotating the

 diamond shapes in (a) by 45°.

Then, we can find which flip-flops are mergeable

according to whether their feasible regions overlap or not.

Since the feasible placement region of each flip-flop can

be easily identified after the coordinate transformation, we

simply use (3) and (4) to determine whether two flip-flops

overlap or not.

where W(f1) and H(f1) [W(f2) and H(f2)] denote the

width and height of R(f1) [R(f2)], respectively, in Fig. 8,

and the function DIS_X(f1, f2) and (DIS_Y(f1, f2))

calculates the distance between centers of R(f1) and R(f2)

in x-direction (y-direction).

B. Build a Combination table

If we want to replace several flip-flops by a new flip-flop

fi’(note that the bit width of fi’ should equal to the

summation of bit widths of these flip-flops), we have to

make sure that the new flip-flop fi’ is provided by the

library L when the feasible regions of these flip-flops

overlap. Now a combination table is to be built, which

records all possible combinations of flip-flops to get

feasible flip-flops before replacements. Thus, we can

gradually replace flip-flops according to the order of the

combinations of flip-flops in this table.

 Library L

Type 1

1 bit

Type 2

4 bit

Combinational table

 n1

 1 bit

 n2

 4 bit

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
Vol.2, No.5, May 2013 DOI:10.15693/ijaist/2013.v2i5.5-12

8

Fig.6(a)Initialize the library L and the combination table T

.

Fig.6(b) Pseudo types are added into L, and the

corresponding binary tree is also build for each

combination in T.

For example, consider a library L that provides two types

of flip-flops, whose bit widths are 1 and 4 (i.e., bmin = 1

and bmax = 4), in Fig. 6(a). We first initialize two

combinations n1 and n2 to represent these two types of

flip-flops in the table T [see Fig. 6(a)]. Next, the function

InsertPseudoType is performed to check whether the

flip-flop types with bit widths between 1 and 4 exist or

not. Thus, two kinds of flip-flop types whose bit widths

are 2 and 3 are added into L, and all types of flip-flops in

L are sorted according to their bit widths [see Fig. 6(b)].

Now, for each combination in T, we would build a binary

tree with 0-level, and the root of the binary tree denotes

he combination. Next, we try to build new legal

combinations according to the present combinations. By

combing two1-bit flip-flops in the first combination,a new

 Combination Table T

 n1

 1 bit

 n2

 4 bit

 n3

 2 bit

n1

 +

n1

Fig. 6(c) New combination n3 is obtained from combining

two n1s.

Combination n3 can be obtained [see Fig. 6(c)]. Similarly,

we can get a new combination n4 (n5) by combining n1

and n3(two n3’s) [see Fig. 6(d)].

Finally, n6 is obtained by combing n1 and n4.

Fig. 6(d) New combination n4 is obtained from combining

n1 and n3, and the combination n5 is obtained from

combining two n3s.

All possible combinations of flip-flops are shown in

Fig.6(e). Among these combinations, n5 and n6 are

duplicated since they both represent the same condition,

which replaces four 1-bit flip-flops by a 4-bit flip-flop. To

speed up the process, n6 is deleted from T rather than n5

because its height is larger. After this procedure, n4

becomes an unused combination [see Fig. 6(e)] since the

root of binary tree of n4 corresponds to the pseudo type,

type3, in L and it is only included in n6. After deleting n6,

n4 is also need to be deleted. The last combination table T

is shown in Fig. 6(f).

 Combination Table T

 n1

1 bit

 n2

4 bit

 n3

(2 bit)

 n1

 +

 n1

 n4

 (3 bit)

 n1

 +

 n3

 n5

(4 bit)

 n3

 +

 n3

 n6

(4 bit)

 n1

 +

 n4

Fig. 6(e) New combination n6 is obtained from combining

n1 and n4.

 Library L

Type 1

 1 bit

Type 2

 2 bit

(pseudo)

 Type 3

 3 bit

(pseudo)

Type 4

 4 bit

Combination Table

 n1

 1 bit

 n2

 4 bit Combination Table T

 n1

 1 bit

 n2

 4 bit

 n3

 2 bit

 n1

 +

 n1

 n4

 3 bit

 n1

 +

 n3

 n5

 4 bit

 n3

 +

 n3

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
Vol.2, No.5, May 2013 DOI:10.15693/ijaist/2013.v2i5.5-12

9

Fig.6(f) Last combination table is obtained after deleting

the unused combination in (e).

C. Merge Flip-Flops.

After the combination table is built the combination of

flip-flops are used for merging and replacing. To reduce

the complexity the whole placement region is divided into

several sub regions. Then, several subregions are

combined into a larger subregion and the flip-flops are

replaced again so that those flip-flops in the neighboring

subregions can be replaced further. Finally, those flip-

flops with pseudo types are deleted in the last stage

because they are not provided by the supported library.

 1) Region Partition: To speed up our problem,

we divide the whole chip into several subregions. By

suitable partition, the computation complexity of merging

flip-flops can be reduced significantly. As shown in Fig.

11, we divide the region into several subregions, and each

subregion contains six bins, where a bin is the smallest

unit of a subregion.

Fig. 7 Example of region partition with six bins in one

subregion.

2) Replacement of Flip-flops in Each Subregion: Before

illustrating the procedure to merge flip-flops, first an

equation is given to measure the quality if two flip-flops

are going to be replaced by a new flip-flop as follows:

cost = routing_length − α ×√(available_area) (6)

where routing_length denotes the total routing length

between the new flip-flop and the pins connected to it, and

available_ area represents the available area in the feasible

region for placing the new flip-flop. α is a weighting

factor.The cost function includes the term routing_length

to favor a replacement that induces shorter wirelength.

Besides, if the region has larger available space to place a

new flip-flop, it implies that it has higher opportunities to

combine with other flip-flops in the future and more

power reduction. Thus, we will give it a smaller cost.

Once the flip-flops cannot be merged to a higher-bit type

we ignore the available_area in the cost function, and

hence α is set to 0. First the flip-flops are linked below the

combinations corresponding totheir types in the library.

Then, for each combination n in T, we serially merge the

flip-flops linked below the left child and the right child of

n from leaves to root. Based on the binary tree, we can

find the combinations associated with the left child and

right child of the root. Based on the binary tree, we can

find the combinations associated with the left child and

right child of the root. Hence, the flip-flops in the lists

named lleft and lright, linked below the combinations of

its left child and its right child are checked. Then, for each

flip-flop f i in lleft, the best flip-flop fbest in lright, which is

the flip-flop that can be merged with f i with the smallest

cost recorded in Cbest, is picked. For each pair of flip-flops

in the respective list, the combination cost is computed if

they can be merged and the pair with the smallest cost is

chosen. Finally, we add a new flip-flop f ’ in the list of the

combination n and remove the picked flip-flops which

constitutes the f ’.

 For example, given a library containing three

types of flipflops (1-, 2-, and 4-bit), we first build a

combination table T as shown in Fig. 8(a). In the

beginning, the flip-flops with various types are,

respectively, linked below n1, n2, and n3 in T according

to their types. Suppose we want to form a flipflop in n4,

which needs two 1-bit flip-flops according to the

combination table. Each pair of flip-flops in n1 are

selected and checked to see if they can be combined If

there are several possible choices, the pair with the

smallest cost value is chosen to break the tie. In Fig. 8(a),

f1 and f2 are chosen because their combination gains the

smallest cost. Thus, we add a new node f3 in the list below

n4, and then delete f1 and f2 from their original list [see

Fig. 8(b)].

 Combination Table T

 n1

 1 bit

 n2

 4 bit

 n3

 2 bit

n1

 +

n1

 n4

 4 bit

 n3

 +

 n3

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
Vol.2, No.5, May 2013 DOI:10.15693/ijaist/2013.v2i5.5-12

10

Fig. 8(a) Sets of flip-flops before merging.

Fig. 8(b) Two 1-bit flip-flops, f1 and f2, are replaced by

the 2-bit flip-flop f3.

Similarly, f4 and f5 are combined to obtain a new flip-flop

f6, and the result is shown in Fig. 8(c). After all flip-flops

in the combinations of 1-level trees (n4 and n5) are

obtained as shown in Fig. 8(d), we start to form the flip-

flops in the combinations of 2-level trees (n6, and n7).

Fig. 8(c) Two 1-bit flip-flops, f4 and f5, are replaced by

the 2-bit flip-flop f6.

In Fig. 8(e), there exist some flip-flops in the lists below

n2 and n4, and we will merge them to get flip-flops in n6

and n7, respectively. Suppose there is no overlap region

between the couple of flipflops in n2 and n4. It fails to

form a 4-bit flip-flop in n6. Since the 2-bit flip-flops f3 and

f6 are mergeable, we can combine them to obtain a 4-bit

flip-flop f10 in n7. Finally, because there exists no couple

of flip-flops that can be combined further, the procedure

finishes as shown in Fig. 8(f).

Fig. 8(d) Two 2-bit flip-flops, f7 and f8, are replaced by

the 4-bit flip-flop f9.

Fig.8(e) Two 2-bit flip-flops, f3 and f6, are replaced by the

4-bit flip-flop f10.

Fig.8(f) Sets of flip-flops after merging.

 If the available overlap region of two flip-flops

exists, we can assign a new one to replace those flip-flops.

Once there is sufficient space to place the new flip-flop in

the available region, the algorithm will perform the

replacement, and the new generated flip-flop will be

placed in the grid that makes the wirelength between the

flip-flop and its connected pins smallest. If the capacity

constraint of the bin, Bk, which the grid belongs to will be

violated after the new flip-flop is placed on that grid, we

will search the bins near Bk to find a new available grid

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
Vol.2, No.5, May 2013 DOI:10.15693/ijaist/2013.v2i5.5-12

11

for the new flip-flop. If none of bins which are overlapped

with the available region of new flip-flop can satisfy the

capacity constraint after the placement of new flip-flop,

the program will stop the replacement of the two flip-

flops.

III. RESULTS AND DISCUSSIONS

In this algorithm, there exist two values which would

affect our results: the first one is the dimension of a

subregion since we would partition a chip into several

subregions. The second one is the parameter used in the

cost function of (6). Thus, we first do some experiments

to explore better values for these two parameters.

1) Influence of Region Size on Performance: In this part,

we first determine a suitable size for each subregion

during partitioning. Since the execution time is actually

dominated by the average number of flip-flops included in

a subregion, we use the number of flip-flops in a single

subregion to represent the size of a subregion, which can

be obtained from multiplying the number of bins in a

subregion by the average number of flip-flops in a bin.

We sweep the number of flip-flops included in a

subregion to observe its effect on power consumption and

execution. While a subregion gets larger, the execution

time becomes longer. However, the power consumption

does not decrease proportionally. On the contrary, if the

subregion size becomes very small, the power

consumption will increase significantly.

To balance execution time and power consumption, we

select 600 as the number of flip-flops in a single

subregion (the normalized power and execution time are

about 83% and 0.8% if the number of flip-flops in a single

subregion is 600.

2) Influence of Weighting Factor α on Performance: Since

the parameter α used by (6) would affect our results, it is

necessary to find a suitable value for getting better results.

In this experiment, we sweep α from 0 to 3 to get the data

of power consumption and wirelength. While the value of

α becomes larger, the power reduction ratio gets larger.

IV. SIMULATION RESULTS AND DISCUSSIONS

Fig. 9. Power consumed by the algorithm.

Fig. 10 Area Usage of the algorithm

Fig. 10. Simulation result of the algorithm

V. CONCLUSION

This paper has proposed an algorithm for flip-flop

replacement for power reduction in digital integrated

circuit design. The procedure of flip-flop replacements is

depending on the combination table, which records the

relationships among the flip-flop types. The concept of

pseudo type is introduced to help to enumerate all possible

combinations in the combination table. By the guidelines

of replacements from the combination table, the

impossible combinations of flip-flops will not be

considered that decreases execution time. The

experimental results show that our algorithm can achieve

Area usage

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268
Vol.2, No.5, May 2013 DOI:10.15693/ijaist/2013.v2i5.5-12

12

a balance between power reduction and wirelength

reduction. Besides power reduction, the objective of

minimizing the total wirelength is also considered.

References

[1] L.-T. Wang, Y.-W. Chang, and K.-T. Cheng,

Eds., Electronic Design Automation: Synthesis,

Verification, and Test. Burlington, MA: Elsevier/ Morgan

Kaufmann, 2009.

[2] D. Duarte, V. Narayanan, and M. J. Irwin,

“Impact of technology scaling in the clock power,” in

Proc. IEEE VLSI Comput. Soc. Annu. Symp., Pittsburgh,

PA, Apr. 2002, pp. 52–57.

[3] P. Gronowski, W. J. Bowhill, R. P. Preston, M.

K. Gowan, and R. L. Allmon, “High-performance

microprocessor design,” IEEE J. Solid-State Circuits, vol.

33, no. 5, pp. 676–686, May 1998.

[4] L. Chen, A. Hung, H.-M. Chen, E. Y.-W. Tsai, S.-H.

Chen, M.-H. Ku, and C.-C. Chen, “Using multi-bit flip-

flop for clock power saving by DesignCompiler,” in Proc.

Synopsys User Group (SNUG), 2010

[Online].Available:http://www.synopsys.com.cn/informati

on/snug/2010/ using-multi-bit-flip-flop-for-clock-power-

saving-by-designcompiler.

[5] W. Hou, D. Liu, and P.-H. Ho, “Automatic register

banking for lowpower clock trees,” in Proc. ISQED,

2009, pp. 647–652.

[6] Y.-T. Chang, C.-C. Hsu, P.-H. Lin, Y.-W. Tsai, and

S.-F. Chen, “Post-placement power optimization with

multi-bit flip-flops,” in Proc. EEE/ACM Comput.-Aided

Design Int. Conf., San Jose, CA, Nov. 2010, pp. 218–223.

[7] J.-T. Yan and Z.-W. Chen, “Construction of

constrained multi-bit flipflops for clock power reduction,”

in Proc. ICGCS, 2010, pp. 675–678.

[8] Y.-T. Chang, C.-C. Hsu, M. P.-H. Lin, Y.-W. Tsai,

and S.-F. Chen, “Postplacement power optimization with

multi-bit flip-flops,” in Proc. ICCAD, 2010, pp. 218–223.

[9] S.-H. Wang, Y.-Y. Liang, T.-Y. Kuo, and W.-K. Mak,

“Power-driven flip-flop merging and relocation,” in Proc.

ISPD, 2011, pp. 107–114.

