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Abstract – In modern VLSI designs, power consumed 

by clocking has taken a major part of the whole design 

especially for those designs using deeply scaled CMOS 

technologies. Hence in this paper  we propose an 

algorithm for reducing the power consumption by 

replacing some flip-flops with fewer multi-bit flip-flops 

without affecting the performance of the original 

circuit. The flip-flop replacement will change the 

location of some flip-flops, leading to violation of 

timing and placement capacity constraints. To avoid 

this problem, several techniques are proposed. 

Utilizing the properties of manhattan distance and 

coordinate transformation, first we identify those flip-

flops that can be merged and their legal regions. Next, 

a combination table is built to enumerate all possible 

combinations. Finally, the flip-flops are merged in 

hierarchial manner. According to the experimental 

results, our algorithm significantly reduces clock 

power by 20-30% and besides power reduction 

minimizing the total wirelength is also considered. 

 

KEY WORDS – Clock power, multi-bit flip-flop 

manhattan distance, merging. 

I.  INTRODUCTION 

 A clock system and a logic part consumes 

dominant part of the total chip power. The clock system 

itself consumes 20–45% of the chip power. In this clock 

system power, 90% is consumed by the flip-flops 

themselves and the last branches of the clock distribution 

network which directly drives the flip-flops [1]. This is 

due to the high switching activity. 

 

  Pclk  = Cclk V
2
ddfclk  (1) 

 

where Pclk is clock power, fclk is the clock frequency, Vdd is 

the supply voltage, and Cclk is the switching capacitance 

including the gate capacitance of flip-flops (sequential 

elements) controlled by the clock signal, the interconnect 

capacitance of the clock network, and the capacitance 

associated with the buffers/inverters used in the clock 

network. Several methodologies [2], [3] have been 

proposed to reduce the power consumption of clocking. 

Given a design that the locations of the cells have been 

determined, the power consumed by clocking can be 

reduced further by replacing several flip-flops with multi-

bit flip-flops. During clock tree synthesis, less number of 

flip-flops means less number of clock sinks. Thus, the 

resulting clock network would have smaller power 

consumption and uses less routing resource. 

    Applying MBFFs may have the following advantages: 

1) smaller design area due to shared clock drivers and 

clock gating cells; 

2)  less delay and power of the clock network due to fewer 

clock sinks and smaller capacitive load on the clock net; 

3)  controllable clock skew because of common clock and 

enable signals for a group of flip-flops and reduced depth 

of a clock tree; 

4)   improved routing resource utilization especially when 

considering design for testability. The required routing 

resource for a scan chain is greatly reduced because of 

fewer cells in a scan chain. 

Fig. 1 shows an example of merging two 1-bit flip-flops 

into one 2-bit flip-flop. If we replace the two 1-bit flip-

flops as shown in Fig. 1(a) by the 2-bit flip-flop as shown 

in Fig. 1(b), the total power consumption can be reduced 

because the two 1-bit flip-flops can share the same clock 

buffer. However, the locations of some flip-flops would 

be changed after this replacement, and thus the 

wirelengths of nets connecting pins to a flip-flop are also 

changed. To avoid violating the timing constraints, we 

restrict that the wirelengths of nets connecting pins to a 

flip-flop cannot be longer than specified values after this 

process. Besides, to guarantee that a new flipflop can be 

placed within the desired region, we also need to consider 

the area capacity of the region. 

 

A. Related work 

 

  Chen et al. [4] and Hou et al. [5] leverage on register 

banking at logic synthesis and at early physical synthesis, 

respectively. However, the subsequent timing and routing 

cost of the clustered result may somewhat deviate from 

what is expected at such early stages.  

  On the other hand, Yan and Chen [7], Chang et al. [8], 

and Wang et al. [9] postponed this task to postplacement 

to further consider the timing and even routing issues. 

Yan and Chen [7] analyzed the timing-safe region for 

each flipflop and then constructed an intersection graph to 

record the pairwise overlapping of these regions. They 

reduced MBFF clustering to minimum clique partitioning 

and solved it byiteratively merging flip-flops with fewest 

compatible flip-flops. However, they assumed the 

available bit numbers of the given MBFF library are 

contiguous and unlimited. 

  Considering a discrete and finite MBFF library, Chang et 

al. [6] proposed the problem of using multi-bit flip-flops 

to reduce power consumption in the post-placement stage. 

They use the graph-based approach to deal with this 
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problem. In a graph, each node represents a flip-flop. If 

two flip-flops can be replaced by a new flip-flop without 

violating timing and capacity constraints, they build an 

edge between the corresponding nodes. After the graph is 

built, the problem of replacement of flip-flops can be 

solved by finding an m-clique in the graph. The flip-flops 

corresponding to the nodes in an m-clique can be replaced 

by an m-bit flipflop. They use the branch-and-bound and 

backtracking algorithm [8] to find all m-cliques in a 

graph. Because one  node (flip-flop) may belong to  

 

Fig. 1. Replacing two traditional FFs by a 2-bit MBFF  

several m-cliques (m-bit flip-flop), they use greedy 

heuristic algorithm to find the maximum independent set 

of cliques, which every node only belongs to one clique, 

while finding m-cliques groups. However, if some nodes 

correspond to k-bit flip-flops that k>=1, the bit width 

summation of flip-flops corresponding to nodes in an m-

clique, j , may not equal m. If the type of a j -bit flip-flop 

is not supported by the library, it may be time-wasting in 

finding impossible combinations of flip-flops. 

 

  II. OUR ALGORITHM 

Our design flow can be roughly divided into three stages. 

Please see Fig. 5 for our flow. In the beginning, we have 

to identify a legal placement region for each flip-flop fi . 

First, the feasible placement region of a flip-flop 

associated with different pins are found based on the 

timing constraints defined on the pins. Then, the legal 

placement region of the flip-flop fi can be obtained by the 

 

                  

Identify mergeable flip-flops

Build a combination table

Merge flip-flops

END

START

 
              

Fig. 2. Flow chart of our algorithm 

 

overlapped area of these regions. However, because these 

regions are in the diamond shape, it is not easy to identify 

the overlapped area. Therefore, the overlapped area can be 

identified more easily if we can transform the coordinate 

system of cells to get rectangular regions. In the second 

stage, we would like to build a combination table, which 

defines all possible combinations of flip-flops in order to 

get a new multi-bit flip-flop provided by the library. The 

flip-flops can be merged with the help of the table. After 

the legal placement regions of flip-flops are found and the 

combination table is built, we can use them to merge flip-

flops. To speed up our program, we will divide a chip into 

several bins and merge flip-flops in a local bin. However, 

the flip-flops in different bins may be mergeable. Thus, 

we have to combine several bins into a larger bin and 

repeat this step until no flip-flop can be merged anymore. 

 

A. Transformation of placement space 

The replacement of some flip-flops with multi-bit flip-

flops would would change the routing length of the nets 

that connect to a flip-flop, it inevitably changes timing of 

some paths. To avoid that timing is affected after the 

replacement, the Manhattan distance between pin pi and 

flip-flop fjcannot be longer than the given constraint S(pi ) 

defined on the pin pi [i.e., M(pi , f j ) ≤ S(pi )]. Since there 

may exist several pins connecting to f i , the legal 

placement region of f i are the overlapping area of several 

regions. As shown in Fig. 3(a), there are two pins p1 and 

p2 connecting to a flip-flop f1, and the feasible placement 

regions for the two pins are enclosed by dotted lines, 

which are denoted by Rp(p1) and Rp(p2), respectively. 

Thus, the legal placement region R( f1) for f1 is the 

overlapping part of these regions. In Fig. 3(b), R( f1) and 

R( f2) represent the legal placement regions of f1 and f2. 

Because R( f1) and R( f2) overlap, we can replace f1 and 

f2 by a new flip-flop f3 without violating the timing 

constraint, as shown in Fig. 3(c). 
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Fig. 3. (a) Feasible regionsRp (p1) and Rp(p2) for pins p1 

and p2 which are enclosed by dotted lines, and the legal 

region R( f1) for f1 which is enclosed by solid lines. (b) 

Legal placement regions R( f1) and R( f2) for f1 and f2, 

and the feasible area R3 which is the overlap region of R( 

f1) and R( f2). (c) New flip-flop f3 that can be used to 

replace f1 and f2 without violating timing constraints for 

all pins p1, p2, p3, and p4. 

However, it is not easy to identify and record 

feasibleplacement regions if their shapes are diamond. 

Moreover, four coordinates are required to record an 

overlapping region [see Fig. 4(a)]. Thus, if we can rotate 

each segment 45°, the shapes of all regions would become 

rectangular, which makes identification of overlapping 

regions become very simple. For example, the legal 

placement region, enclosed by dotted lines in Fig. 4(a), 

can be identified more easily if we change its original 

coordinate system [see Fig. 4(b)]. In such condition, we 

only need two coordinates, which are the left-bottom 

corner and right-top corner of a rectangle, as shown in 

Fig. 4(b), to record the overlapped area instead of using 

four coordinates. 

 

 
 

Fig. 4.(a) Overlapping region of two diamond shapes. (b) 

Rectangular shapes obtained by rotating the diamond 

shapes in (a) by 45°. 

 

The equations used to transform coordinate system are 

shown in (1) and (2). 

 

 

 

 
 
Fig. 5(a)Overlapping region of two diamond shapes.  

          (b)Rectangular shapes obtained by rotating the 

 diamond shapes in (a) by 45°. 

 

Then, we can find which flip-flops are mergeable 

according to whether their feasible regions overlap or not. 

Since the feasible placement region of each flip-flop can 

be easily identified after the coordinate transformation, we 

simply use (3) and (4) to determine whether two flip-flops 

overlap or not. 
 

 
 

where W( f1) and H( f1) [W( f2) and H( f2)] denote the 

width and height of R( f1) [R( f2)], respectively, in Fig. 8, 

and the function DIS_X( f1, f2) and (DIS_Y( f1, f2)) 

calculates the distance between centers of R( f1) and R( f2) 

in x-direction (y-direction). 

                       

B. Build a Combination table 

 

If we want to replace several flip-flops by a new flip-flop 

fi’(note that the bit width of fi’ should equal to the 

summation of bit widths of these flip-flops), we have to 

make sure that the new flip-flop fi’ is provided by the 

library L when the feasible regions of these flip-flops 

overlap. Now a combination table is to be built, which 

records all possible combinations of flip-flops to get 

feasible flip-flops before replacements. Thus, we can 

gradually replace flip-flops according to the order of the 

combinations of flip-flops in this table. 

                                                                                                        

          

   
  

     Library L   

Type 1 

1 bit  

Type 2 

4 bit  

Combinational table  

   n1 

  1 bit  

    n2 

  4 bit  
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Fig.6(a)Initialize the library L and the combination table T 

.                                                                        

                                                                                                    

              

     

Fig.6(b) Pseudo types are added into L, and the 

corresponding binary tree is also build for each 

combination in T.               

 

For example, consider a library L that provides two types 

of flip-flops, whose bit widths are 1 and 4 (i.e., bmin = 1 

and bmax = 4), in Fig. 6(a). We first initialize two 

combinations n1 and n2 to represent these two types of 

flip-flops in the table T [see Fig. 6(a)]. Next, the function 

InsertPseudoType is performed to check whether the 

flip-flop types with bit widths between 1 and 4 exist or 

not. Thus, two kinds of flip-flop types whose bit widths 

are 2 and 3 are added into L, and all types of flip-flops in 

L are sorted according to their bit widths [see Fig. 6(b)]. 

Now, for each combination in T, we would build a binary 

tree with 0-level, and the root of the binary tree denotes  

he combination. Next, we try to build new legal 

combinations according to the present combinations. By 

combing two1-bit flip-flops in the first combination,a new 

 

       Combination Table T  

   n1  

 1 bit  

     n2 

   4 bit  

   n3 

  2 bit 

     

n1 

    + 

n1 

 

 

 

 

   
Fig. 6(c) New combination n3 is obtained from combining 

two n1s. 

 

Combination n3 can be obtained [see Fig. 6(c)]. Similarly, 

we can get a new combination n4 (n5) by combining n1 

and n3(two n3’s) [see Fig. 6(d)]. 

Finally, n6 is obtained by combing n1 and n4. 

 

 

 

   

Fig. 6(d) New combination n4 is obtained from combining 

n1 and n3, and the combination n5 is obtained from 

combining two n3s. 

 

All possible combinations of flip-flops are shown in 

Fig.6(e). Among these combinations, n5 and n6 are 

duplicated since they both represent the same condition, 

which replaces four 1-bit flip-flops by a 4-bit flip-flop. To 

speed up the process, n6 is deleted from T rather than n5 

because its height is larger. After this procedure, n4 

becomes an unused combination [see Fig. 6(e)] since the 

root of binary tree of n4 corresponds to the pseudo type, 

type3, in L and it is only included in n6. After deleting n6, 

n4 is also need to be deleted. The last combination table T 

is shown in Fig. 6(f). 

 

                        Combination Table T 

  n1 

1 bit 

 n2 

4 bit 

   n3 

(2 bit) 

 n1 

    + 

  n1 

 

    n4 

  (3 bit) 

  n1 

    + 

  n3 

 

    n5 

(4 bit) 

 n3 

     + 

 n3 

 

    n6 

(4 bit) 

 n1 

     + 

  n4 

 

 

Fig. 6(e) New combination n6 is obtained from combining 

n1 and n4. 

 

 

 

 

                         Library L  

Type 1 

 1 bit  

Type 2 

 2 bit 

(pseudo)  

 Type 3 

  3 bit 

(pseudo)  

Type 4  

 4 bit  

Combination Table  

    n1 

   1 bit  

       n2 

     4 bit                         Combination Table T  

    n1 

  1 bit  

   n2 

  4 bit  

    n3 

  2 bit  

 

  n1 

 

     +  

 

  n1 
 

   n4 

  3 bit 

      

  n1 

 

     + 

 

  n3 

  

     n5 

   4 bit 

      

  n3 

 

     + 

 

   n3 
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Fig.6(f) Last combination table is obtained after deleting 

the unused combination in (e). 

 

C. Merge Flip-Flops. 

After the combination table is built the combination of 

flip-flops are used for merging and replacing. To reduce 

the complexity the whole placement region is divided into 

several sub regions. Then, several subregions are 

combined into a larger subregion and the flip-flops are 

replaced again so that those flip-flops in the neighboring 

subregions can be replaced further. Finally, those flip-

flops with pseudo types are deleted in the last stage 

because they are not provided by the supported library. 

 1) Region Partition: To speed up our problem, 

we divide the whole chip into several subregions. By 

suitable partition, the computation complexity of merging 

flip-flops can be reduced significantly. As shown in Fig. 

11, we divide the region into several subregions, and each 

subregion contains six bins, where a bin is the smallest 

unit of a subregion. 

 

Fig. 7 Example of region partition with six bins in one 

subregion. 

2) Replacement of Flip-flops in Each Subregion: Before 

illustrating the procedure to merge flip-flops, first an 

equation is given to measure the quality if two flip-flops 

are going to be replaced by a new flip-flop as follows: 

 

cost = routing_length − α ×√(available_area)  (6) 

 

where routing_length denotes the total routing length 

between the new flip-flop and the pins connected to it, and 

available_ area represents the available area in the feasible 

region for placing the new flip-flop. α is a weighting 

factor.The cost function includes the term routing_length 

to favor a replacement that induces shorter wirelength. 

Besides, if the region has larger available space to place a 

new flip-flop, it implies that it has higher opportunities to 

combine with other flip-flops in the future and more 

power reduction. Thus, we will give it a smaller cost. 

Once the flip-flops cannot be merged to a higher-bit type 

we ignore the available_area in the cost function, and 

hence α is set to 0. First the flip-flops are linked below the 

combinations corresponding totheir types in the library. 

Then, for each combination n in T, we serially merge the 

flip-flops linked below the left child and the right child of 

n from leaves to root. Based on the binary tree, we can 

find the combinations associated with the left child and 

right child of the root. Based on the binary tree, we can 

find the combinations associated with the left child and 

right child of the root. Hence, the flip-flops in the lists 

named lleft and lright, linked below the combinations of 

its left child and its right child are checked. Then, for each 

flip-flop f i in lleft, the best flip-flop fbest in lright, which is 

the flip-flop that can be merged with f i with the smallest 

cost recorded in Cbest, is picked. For each pair of flip-flops 

in the respective list, the combination cost is computed if 

they can be merged and the pair with the smallest cost is 

chosen. Finally, we add a new flip-flop f ’ in the list of the 

combination n and remove the picked flip-flops which 

constitutes the f ’. 

 For example, given a library containing three 

types of flipflops (1-, 2-, and 4-bit), we first build a 

combination table T as shown in Fig. 8(a). In the 

beginning, the flip-flops with various types are, 

respectively, linked below n1, n2, and n3 in T according 

to their types. Suppose we want to form a flipflop in n4, 

which needs two 1-bit flip-flops according to the 

combination table. Each pair of flip-flops in n1 are  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

selected and checked to see if they can be combined If 

there are several possible choices, the pair with the 

smallest cost value is chosen to break the tie. In Fig. 8(a), 

f1 and f2 are chosen because their combination gains the 

smallest cost. Thus, we add a new node f3 in the list below 

n4, and then delete f1 and f2 from their original list [see 

Fig. 8(b)].  

               Combination Table T  

        n1 

      1 bit  

     n2 

    4 bit  

     n3 

    2 bit 

n1 

      + 

n1 

   

    n4 

   4 bit 

   n3 

      + 

   n3 
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Fig. 8(a) Sets of flip-flops before merging. 

 

 

 
 

Fig. 8(b) Two 1-bit flip-flops, f1 and f2, are replaced by 

the 2-bit flip-flop f3. 

Similarly, f4 and f5 are combined to obtain a new flip-flop 

f6, and the result is shown in Fig. 8(c). After all flip-flops 

in the combinations of 1-level trees (n4 and n5) are 

obtained as shown in Fig. 8(d), we start to form the flip-

flops in the combinations of 2-level trees (n6, and n7).  

 

 
Fig. 8(c) Two 1-bit flip-flops, f4 and f5, are replaced by 

the 2-bit flip-flop f6. 

 

In Fig. 8(e), there exist some flip-flops in the lists below 

n2 and n4, and we will merge them to get flip-flops in n6 

and n7, respectively. Suppose there is no overlap region 

between the couple of flipflops in n2 and n4. It fails to 

form a 4-bit flip-flop in n6. Since the 2-bit flip-flops f3 and 

f6 are mergeable, we can combine them to obtain a 4-bit 

flip-flop f10 in n7. Finally, because there exists no couple 

of flip-flops that can be combined further, the procedure 

finishes as shown in Fig. 8(f). 

 

 
Fig. 8(d) Two 2-bit flip-flops, f7 and f8, are replaced by 

the 4-bit flip-flop f9. 

 

 
Fig.8(e) Two 2-bit flip-flops, f3 and f6, are replaced by the 

4-bit flip-flop f10. 

 

 
Fig.8(f) Sets of flip-flops after merging. 

 

 If the available overlap region of two flip-flops 

exists, we can assign a new one to replace those flip-flops. 

Once there is sufficient space to place the new flip-flop in 

the available region, the algorithm will perform the 

replacement, and the new generated flip-flop will be 

placed in the grid that makes the wirelength between the 

flip-flop and its connected pins smallest. If the capacity 

constraint of the bin, Bk, which the grid belongs to will be 

violated after the new flip-flop is placed on that grid, we 

will search the bins near Bk to find a new available grid 
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for the new flip-flop. If none of bins which are overlapped 

with the available region of new flip-flop can satisfy the 

capacity constraint after the placement of new flip-flop, 

the program will stop the replacement of the two flip-

flops. 

 

 

III. RESULTS AND DISCUSSIONS 

 

In this algorithm, there exist two values which would 

affect our results: the first one is the dimension of a 

subregion since we would partition a chip into several 

subregions. The second one is the parameter used in the 

cost function of (6). Thus, we first do some experiments 

to explore better values for these two parameters. 

 

1) Influence of Region Size on Performance: In this part, 

we first determine a suitable size for each subregion 

during partitioning. Since the execution time is actually 

dominated by the average number of flip-flops included in 

a subregion, we use the number of flip-flops in a single 

subregion to represent the size of a subregion, which can 

be obtained from multiplying the number of bins in a 

subregion by the average number of flip-flops in a bin. 

We sweep the number of flip-flops included in a 

subregion to observe its effect on power consumption and 

execution. While a subregion gets larger, the execution 

time becomes longer. However, the power consumption 

does not decrease proportionally. On the contrary, if the 

subregion size becomes very small, the power 

consumption will increase significantly. 

To balance execution time and power consumption, we 

select 600 as the number of flip-flops in a single 

subregion (the normalized power and execution time are 

about 83% and 0.8% if the number of flip-flops in a single 

subregion is 600. 

 

2) Influence of Weighting Factor α on Performance: Since 

the parameter α used by (6) would affect our results, it is 

necessary to find a suitable value for getting better results. 

In this experiment, we sweep α from 0 to 3 to get the data 

of power consumption and wirelength. While the value of 

α becomes larger, the power reduction ratio gets larger. 

 

IV. SIMULATION RESULTS AND DISCUSSIONS 

 

Fig. 9. Power consumed by the algorithm. 

 

Fig. 10 Area Usage of the algorithm 

 

Fig. 10. Simulation result of the algorithm 

V.  CONCLUSION 

This paper has proposed an algorithm for flip-flop 

replacement for power reduction in digital integrated 

circuit design. The procedure of flip-flop replacements is 

depending on the combination table, which records the 

relationships among the flip-flop types. The concept of 

pseudo type is introduced to help to enumerate all possible 

combinations in the combination table. By the guidelines 

of replacements from the combination table, the 

impossible combinations of flip-flops will not be 

considered that decreases execution time. The 

experimental results show that our algorithm can achieve 

Area usage 
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a balance between power reduction and wirelength 

reduction. Besides power reduction, the objective of 

minimizing the total wirelength is also  considered. 
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