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ABSTRACT: Network utilities are software utilities 

designed to analyze and configure various aspects of 

computer networks. The majority of them originated on 

UNIX systems, but several later ports to other 

operating systems exist. It is well known that max-

weight policies based on a queue backlog index can be 

used to stabilize stochastic networks, and that similar 

stability results hold if a delay index is used. Using 

optimization, we extend this analysis to design a utility 

Maximizing algorithm that uses explicit delay 

information from the head-of-line packet at each user. 

The resulting policy is shown to ensure deterministic 

worst-case delay guarantees and to yield a throughput 

utility that differs from the optimally fair value by an 

amount that is inversely proportional to the delay 

guarantee. Our results hold for a general class of 1-hop 

networks, including packet switches and multiuser 

wireless systems with time-varying reliability. 

 
Key Words: Optimization, queueing, 
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I.INTRODUCTION 

 
In the past decade, network utility maximization has 

attracted significant attention ever since the seminal 

framework was introduced. In the framework, network 

Protocols are understood as distributed algorithms that 

maximize aggregate user utility under wired or wireless 

network resource constraints. For the single-path 

unicast scenarios considered, user’s utility function is 

typically assumed to be strictly concave function of 

user rate, and the resource constraints set is  
Linear. Various types of fairness across users can be 

warranted by choosing different utility functions. This 

 

 
Framework not only provides a powerful tool to 

reverse engineering existing protocols such as TC, but 

also Allows systematic design of new protocols for a 

Comprehensive review. This paper considers the 

problem of scheduling for maximum throughput utility 

in a network with random packet arrivals and time-

varying channel reliability. We focus on 1-hop 

networks where each packet requires transmission over 

only one link. At every slot, the network controller 

assesses the condition of its channels and selects a set 

of links for transmission. The success of each 

transmission depends on the collection of links selected 

and their corresponding reliabilities. The goal is to 

maximize a concave and non decreasing function of the 

time-average throughput on each link. Such a function 

represents a utility function that acts as a measure of 

fairness for the achieved throughput vector. In the case 

when traffic is inside the network capacity region, the 

utility-optimal throughput vector is simply the vector 

of arrival rates, and the problem reduces to a network 

stability problem. In this case, it is well known that the 

network can be stabilized by max-weight policies that 

schedule links every slot to maximize a weighted sum 

of transmission rates, where the weights are queue 

backlogs. This is typically shown via a Lyapunov drift 

argument. This technique for stable control of a 

queueing network was first used for link and server 

scheduling and has since become a powerful method to 

treat stability in different contexts, including switches 

and computer networks, wireless systems and ad hoc 

mobile networks with rate and power allocation, and 

systems with probabilistic channel errors. In the case 

when traffic is either inside or outside of the capacity 
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Region, it is known that the max-weight policy can be 

combined with a flow control policy to jointly stabilize 

the network while maximizing throughput utility. Utility 

optimization for the special case of “infinitely 

backlogged” sources and was perhaps first addressed for 

time-varying wireless downlinks without explicit 

queueing. The stability works all use backlog-based 

transmission rules, as do the works, which treat joint 

stability and utility optimization. However, introduces an 

interesting delay-based Lyapunov function for proving 

stability, where the delay of the head-of-line packet is 

used as a weight in the max-weight decision. This 

approach intuitively provides tighter control of the actual 

queueing delays. Indeed, a single head-of-line packet is 

scheduled based on the delay it has experienced, rather 

than on the amount of additional packets that arrived after 

it. This delay-based approach to queue stability, where the 

Modified Largest Weighted Delay First algorithm is 

developed, which uses a delay-based exponential rule. 

However, use delay-based rules only in the context of 

queue stability. To our knowledge, there are no prior 

works that use delay-based scheduling to address the 

important issue of joint stability and utility optimization. 

This paper fills that gap. We use a delay-based Lyapunov 

function and extend the analysis to treat joint stability and 

performance optimization via the Lyapunov optimization 

technique from our prior work. The extension is not 

obvious. Indeed, the flow control decisions in the prior 

work are made immediately when a new packet arrives, 

which directly affects the drift of backlog-based 

Lyapunov functions. However, such decisions do not 

directly affect the delay value of the head-of-line packets, 

and hence do not directly affect the drift of delay-based 

Lyapunov functions. We overcome this challenge with a 

novel flow control policy that queues all Arriving data, 

but makes packet dropping decisions just before 

advancing 
 
a new packet to the head-of-line. This policy is 

structurally different from the utility optimization 

works. This new structure leads to deterministic 

guarantees on the worst-case delay of any non dropped 

packet and provides throughput utility that can be 

pushed arbitrarily close to optimal. Specifically, for 

any integer, we can construct an algorithm that ensures 

all non dropped packets have delay less than or equal 

to slots, with total throughput utility that differs from 

optimal by . The deterministic delay guarantee is 

particularly challenging to establish, and for this we 

 

introduce a new technique of concavely extending a 

utility function. We further show via simulation that 

our algorithms maintain good performance when the 

i.i.d. arrivals are replaced by ergodic but temporally 

correlated “bursty” arrivals with the same rates. 

However, the worst-case delay required to achieve the 

same utility performance is increased in this case. This 

is not surprising if we compare to known results for 

backlog-based Lyapunov algorithms. Backlog-based 

algorithms were first developed under i.i.d. 

assumptions, but with increased delay—for non-i.i.d. 

case. Thus, while we limit our analytical proofs to the 

i.i.d. setting, we expect the algorithm to approach 

optimal utility in more general cases, as supported by 

our simulations. While our algorithm can be used to 

enforce any desired delay guarantee, it is important to 

emphasize that it does not maximize throughput utility 

subject to this guarantee. Such a problem can be 

addressed with Markov decision theory, which brings 

with it the curse of dimensionality (see structural 

results and approximations and weighted stochastic 

shortest-path approaches). In this paper, we claim only 

that the achieved utility is within of the largest possible 

utility of any stabilizing algorithm. However,because 

(for large ) our utility is close to this ideal utility value, 

it is even closer to the maximum utility that can be 

achieved subject to the worst-case delay constraint. 

That is because a basic stability constraint is less 

stringent than a worst case delay constraint, and so the 

optimal utility under a stability constraint is greater 

than or equal to the optimal utility under a worst-case 

delay constraint. Furthermore, our approach offers the 

low-complexity advantages associated with Lyapunov 

drift and Lyapunov Specifically, the policy makes real-

time transmission decisions based only on the The flow 

control decisions here can also be implemented in a 

distributed fashion at each 

 

II. NETWORK MODEL 

 

A)  COMPUTER NETWORKING 

 

A hop is one portion of the path between source and 

destination. Data packets pass through routers and 

gateways on the way. Each time packets are passed to 

the next device, a hop occurs. To see how many hops it 

takes to get from one host to another ping or 

traceroute/tracepath commands can be used. Consider a 

1-hop network that operates in discrete time with 
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normalized time-slots. There are links, and packets arrive 

randomly every slot and are queued separately for 

transmission over each link. Current system state and does 

not require a priori knowledge of the channel-state 

probabilities. Transmission decisions based only on the 

flow control decisions here can also be implemented in a 

distributed fashion at each link, as is the case with most 

other Lyapunov based utility optimization algorithms. 

link,asis the case with most other Lyapunov-based utility 

optimization algorithms. It is known that average queue 

congestion and delay is convex in the arrival rate if traffic 

from an arbitrary arrival process is probabilistically split, 

this is not necessarily true (or relevant) for dynamically 

controlled networks, particularly when the control 

depends on the queue backlogs and delays themselves. 

Actual network delay problems involve not only 

optimization of rate based utility functions, but 

engineering of the Lagrange multipliers (which are related 

to queue backlogs) associated with those utility functions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

For simplicity, assume that each link can transmit at 

most one packet per slot, so that for all links and all n 

slots. It is useful to assume a link can transmit even if it 

does not have a packet, in which case a null packet is 

transmitted. a link condition vector for slot , which 

determines the probability of successful transmission 

on each slot. Specifically, given particular and vectors, 

the probability of successful transmission on link is 

given by a reliability function The reliability function 

for each is general and is assumed only to take real 

values between 0 and 1 (representing probabilities), 

and to have the property that whenever . The channel 

condition vector is assumed to be i.i.d. over slots and 

independent of the process. Assume it takes values in a 

set of arbitrary cardinality. The vector is known to the 

network controller at the beginning of each slot. In 

practice, is the result of a 
 
channel measurement or estimation that is done every 

slot? The estimate might be in exact, in which case the 

 

reliability function represents the probability that the 

actual network channels on slot are sufficient to support 

the attempted transmission over link (given and the 

estimate for slot ). We assume the reliability function is 

known. Recent online techniques for estimation of packet 

error rates are considered in. In the context, a number of 

other decision parameters to be chosen on each slot also 

affect reliability, such as modulation, power levels, sub 

band selection, coding type, etc. These choices can be 

represented as a parameter spac . In this case, the 

reliability function can be extended to include the 

parameter choice made every slot: . This does not change 

our mathematical analysis although for simplicity we 

focus on the reliability function structure of (2). We 

assume that ACK/NACK information is given at the end 

of the slot to inform each link if its transmission was 

successful or not. Packets that are not successful do not 

leave the queue (unless they are dropped in a packet drop 

decision). With this model of link success, the 

transmission variable in (1) is given by where is an 

indicator variable that is 1 if the transmission over link is 

successful, and 0 otherwise. That is with probability with 

probability The successes/failures over each link on slot 

are assumed to be independent of past events given the 

current and values. The successes/failures might be 

correlated over each link. This is not captured in the 

functions alone and can only be fully described by a joint 

success distribution function for all possible 

success/failure outcomes for a given and However, it turns 

out that the network capacity region, and hence the 

associated maximum utility point, is independent of such 

interlink success correlations [12]. Hence, it suffices to 

use only the marginal distribution functions for each. 

 

 

B. EXAMPLES OF PACKET SWITCHES AND 

WIRELESS NETWORKS 

 

The above model applies to a wide class of 1-hop 

networks. For example, it applies to the packet switch 

models of [5] and [7] by defining to be a null vector (so 

that there is no notion of channel variation) and by 

defining as the set of all link transmission vectors that 

satisfy permutation constraints (see Section VI-A). For 

wireless networks with interference but without time-

varying channels, the set can be defined as all link 

activations that do not interfere with each other (i.e., 

that do not produce collisions), as in [3]. The reliability 

function can be used to extend the model to treat cases 
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where interfering links result in probabilistic reception. 

Furthermore, the opportunistic scheduling systems of with 

time-varying ON/OFF channels can be modeled with 

being the vector of ON/OFF channel states on each slot, 

and with the function taking the value 1 whenever and , 

and 0 otherwise. Finally, the model supports probabilistic 

reception in the case when the link reliability can vary 

from slot to slot. A simple example is when represents the 

current probability that a link transmission would be 

successful, so that if this example has the success 

probability over link a pure function of and, and hence 

implicitly assumes that the set limits all simultaneous link 

transmissions to orthogonal channels. More complex 

inters channel interference models can be described by 

more complex functions. 

 

III. DELAY-BASED FLOW CONTROL 

 

Let be the vector of arrival rates, so that is the arrival 

rate to link (in units of packets/slot). The network 

capacity region is defined as the closure of the set of all 

long-term throughput vectors that the system can 

support. The set is known to be the same as the closure 

of the set of all arrival rate vectors for which there 

exists a stabilizing scheduling algorithm, subject to the 

constraint that the flow controllers are turned off. 

Specifically, it is shown that the set is given by the set 

of all time-average transmission rates that can be 

achieved by stationary and randomized algorithms, 

called -only algorithms, that observe every slot and 

choose a (possibly random) transmission vector 

according to a probability distribution that depends 

only on the observed channel state . Thus, for every 

vector, there is an -only algorithm, with a 

corresponding random service vector that yields for 

each where the expectation in is with respect to the 

distribution of and the distribution of given. 

Optimization Objective Let be a continuous and 

concave utility function of the - dimensional vector, 

where is used to represent the time-average throughput 

on each link (in units of packets/slot). The function can 

take positive or negative values and is assumed to be 

defined over the hypercube, where inequality is taken 

 

Entry wise, and are vectors with all entries equal to 0 

and 1, respectively. 

 

C. PROBLEM TRANSFORMATION WITH 

VIRTUAL QUEUES 

 

It is not difficult to show that the stochastic network 

optimization problem can be transformed using a 

vector of auxiliary variables that are chosen every slot 

according to the constraints. The transformed problem 

is Maximize Subject to for all and are achievable on 

the network we say that a nonnegative discrete-time 

stochastic process is strongly stable if .This. 

 

IV. SCHEDULING FOR A 3 BY 

3 PACKET SWITCH 

 
Here, we consider a crossbar constrained 3 by 3 packet 

switches, having three input ports and three output ports. 

There are nine queues, representing packets that arrived to 

input port that must be delivered to output port, for, 

Scheduling matrices are chosen every slot within the set 

of six permutation matrices, so that at most one packet is 

served per input and per output on a given slot. Arrival 

processes to each queue are independent Bernoulli 

processes, i.i.d. over slots with rates .We simulate the 

modified delay-based utility maximization algorithm of 

Section V, which does not require knowledge of the 

arrival rates . All simulations are over 1 million slots. The 

utility function of achieved throughput is where denotes 

the natural logarithm. We choose as a positive integer, so 

that the algorithm guarantees a worst-case delay of slots. 

We first consider a switch with feasible input rates, The 

rates are chosen so that all input ports and output ports 

have a loading of 0.95. For example, the loading of input 

port 1 is, being the sum of the rates in the first row of the 

matrix. Because input rates are inside the capacity region 

of the switch. Simulation of a 3 switch with overloaded 

traffic. The arrival rates are given. Each process is i.i.d. 

over slots. (a) Performance for overloaded switch. (b) 

Performance for overloaded switch. (c) Performance for 

overloaded switch. The utility optimal throughput matrix 

is. Thus, the algorithm 
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should learn to drop as few packets as possible.We use, 

which guarantees a worst-case delay of slots. 
 
V. OPPORTUNISTIC SCHEDULING FOR 

A TWO-USER WIRELESS DOWNLINK 

 

Here, we consider a two-user wireless downlink with 

ON/OFF channels. The channel state processes are 

independent and i.i.d. over slots with and Arrivals are 

independent Bernoulli processes, i.i.d. over slots with 

rates and Every slot, the network controller observes 

the channel states and chooses a single queue to serve, 

transmitting exactly one packet over a served channel 

that is ON and no packets over a channel that is not 

served or that is OFF. The capacity region is shown. 

We simulate the delay-based algorithm of Section III-

F, which uses knowledge of the arrival rates. We use a 

utility function and use, which yields near-optimal 

utility. All simulations run for 4 million slots. We 

create 50 different simulation runs, for arrival rates that 

scale linearly toward the point (0.5, 1.0). The resulting 

achieved throughput vectors are shown in the right 

panel. The example arrival rate points in the left panel 

of Fig. 6 are all inside the capacity region, and hence 

the achieved throughputs should be the same. This is 

indeed the case, as shown by the corresponding 

example points on the right panel. panel is outside of 

the capacity region, and its optimal achieved 

throughput is shown on the boundary point in the right 

panel. Note that once the arrival rates exceed the point 

in the left panel, the achieved throughput is the same 

and is very close to (0.4, 0.4) (shown as in the right 

panel).While these achieved throughputs are for the 

delay-based algorithm with known arrival rates, we 

note that we also simulated the modified delay-based 

algorithm with unknown arrival rates, as well as the 

queue-based algorithm of (version CLC2 in ). The 

achieved throughputs for all of these algorithms are 

nearly identical, and the picture in the right panel. 

 

VII. CONCLUSION 

 

We have established a delay-based policy for joint 

stability and utility optimization. The policy provides 

deterministic worst-case delay bounds, with total 

throughput utility that is inversely proportional to the 

delay guarantee. The Lyapunov optimization approach 

for this delay-based problem is significantly different 

from that of back log based policies. We believe these 

 

results add significantly to our understanding of 

network delay and delay efficient control laws. 
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