
International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.1, January 2013 DOI:10.15693/ijaist/2013.v2i1.17-20

17

Implementation of File Sharing in Unstructured
Peer to Peer Networks

 P.Vignesh, K.Priyadharshini,

Post Graduate Student Assistant Professor,

Department of Computer and Communication Engineering, Department of Computer Science Engineering,

Sethu Institute of Technology Sethu Institute of Technology

Virudhunagar – 626115, Tamilnadu, India Virudhunagar – 626115, Tamilnadu, India

Abstract- Peer-to-peer (P2P) streaming has been widely deployed

over the Internet. A streaming system usually has multiple

channels, and peers may form multiple groups for content

distribution. In this project, we propose a distributed overlay

framework (called SMesh) for dynamic groups to make content

distribution with switched timing fashion. P2P overlay network,

hosts are responsible for packets replication and forwarding. A

P2P network only uses unicast and does not need multicast

capable routers. The existing networking infrastructure are

multicast capable. Emerging commercial video transport and

distribution networks heavily make use of IP multicasting.

However, there are many operational issues that limit the use of

IP multicasting into individual autonomous networks.

Furthermore, only trusted hosts are allowed to be multicast

sources. Thus, while it is highly efficient, IP multicasting is still

not an option for P2P streaming at the user level. In this project,

we use SMesh (Stable Mesh) first builds a relatively stable mesh

consisting of all hosts for control messaging. The mesh supports

dynamic host joining and leaving, and will guide the construction

of delivery trees. In this project, we consider building a data

delivery tree for each group. To reduce tree construction and

maintenance costs, we build a single shared overlay mesh. The

mesh is formed by all peers in the system and is, hence,

independent of joining and leaving events in any group. This

relatively stable mesh is used for control messaging and guiding

the construction of overlay trees. With the help of the mesh, trees

can be efficiently constructed with no need of loop detection and

elimination. Since an overlay tree serves only a subset of peers in

the network, we term this framework Subset-Mesh, or SMesh.

Keywords- Unstructured P2P networks, Cluster.

I. INTRODUCTION

 A computer network, often simply referred to as a network, is a

collection of computers and devices interconnected by

communication channels that facilitate communications among users

and allows users to share resources. Networks may be classified

according to a wide variety of characteristics. A computer network

allows sharing of resources and information among interconnected

devices.

 Peer-to-peer (P2P) computing or networking is a distributed

application architecture that partitions tasks or workloads between

peers. Peers are equally privileged, equipotent participants in the

application. They are said to form a peer-to-peer network of nodes.

 Peers make a portion of their resources, such as processing power,

disk storage or network bandwidth directly available to other network

participants, without the need for central coordination by servers or

stable hosts. Peers are both suppliers and consumers of resources, in

contrast to the traditional client–server model where only servers

supply, and clients consume.

 The peer-to-peer application structure was popularized by file

sharing systems like Napster. The concept has inspired new structures

and philosophies in many areas of human interaction. Peer-to-peer

networking is not restricted to technology, but covers also social

processes with a peer-to-peer dynamic. In such context, social peer-

to-peer processes are currently emerging throughout society.

 In computer science, a thread of execution is the smallest unit of

processing that can be scheduled by an operating system. It generally

results from a fork of a computer program into two or more

concurrently running tasks. The implementation of threads and

processes differs from one operating system to another, but in most

cases, a thread is contained inside a process. Multiple threads can

exist within the same process and share resources such as memory,

while different processes do not share these resources. In particular,

the thread of a process share the latter‟s instructions and its context.

To give an analogy, multiple threads in a process are like multiple

cooks reading off the same cook book and following its instructions,

not necessarily from the same page.

 On a single processor, multithreading generally occurs by time-

division multiplexing the processor switches between different

threads. This context switching generally happens frequently enough

that the user perceives the threads or tasks as running at the same

time. On a multiprocessor or multi-core system, the threads or tasks

will actually run at the same time, with each processor or core

running a particular thread or task.

 File sharing is the practice of distributing or providing access to

digitally stored information, such as computer programs, multimedia

(audio, images, & video), documents, or electronic books. It may be

implemented through a variety of ways. Storage, transmission, and

distribution models are common methods of file sharing that

incorporate manual sharing using removable media, centralized

computer file server installations on computer networks, World Wide

Web-based hyperlinked documents, and the use of distributed peer-

to-peer networking.

 Users can use software that connects in to a peer-to-peer network

to search for shared files on the computers of other users connected to

the network. Files of interest can then be downloaded directly from

other users on the network. Typically, large files are broken down

into smaller chunks, which may be obtained from multiple peers and

then reassembled by the downloader. This is done while the peer is

simultaneously uploading the chunks it already has to other peers.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.1, January 2013 DOI:10.15693/ijaist/2013.v2i1.17-20

18

II.EXISTING METHODS

 E.Cohen et.al (2003) [4] developed a new class of decentralized

P2P architectures. Their design is based on unstructured architectures

such as gnutella and fast track, and retains many of their appealing

properties including support for partial match queries, and relative

resilience to peer failures. Yet, they obtain orders of magnitude

improvement in the efficiency of locating rare items. Their approach

exploits associations inherent in human selections to steer the search

process to peers that are more likely to have an answer to the query.

They demonstrate the potential of associative search using models,

analysis, and simulations.

 K. Sripanidkulchai et.al (2003) [5] explored how to retain the

simplicity of Gnutella, while addressing its inherent weakness:

scalability. They proposed a content location solution in which peers

loosely organize themselves into an interest-based structure on top of

the existing Gnutella network. Their approach exploits a simple, yet

powerful principle called interest-based locality, which posits that if a

peer has a particular piece of content that one is interested in, it is

very likely that it will have other items that one is interested in as

well. When using their algorithm, called interest-based shortcuts, a

significant amount of flooding can be avoided, making Gnutella a

more competitive solution. In addition, shortcuts are modular and can

be used to improve the performance of other content location

mechanisms including distributed hash table schemes. They

demonstrate the existence of interest-based locality in five diverse

traces of content distribution applications, two of which are traces of

popular peer-to-peer file-sharing applications. Simulation results

show that interest-based shortcuts often resolve queries quickly in

one peer-to-peer hop, while reducing the total load in the system by a

factor of 3 to 7.

 I. Stoica et.al (2003) [6] suggested a fundamental problem that

confronts peer-to-peer applications is the efficient location of the

node that stores a desired data item. This paper presents Chord, a

distributed lookup protocol that addresses this problem. Chord

provides support for just one operation: given a key, it maps the key

onto a node. Data location can be easily implemented on top of

Chord by associating a key with each data item, and storing the

key/data pair at the node to which the key maps. Chord adapts

efficiently as nodes join and leave the system, and can answer queries

even if the system is continuously changing. Results from theoretical

analysis and simulations show that Chord is scalable: communication

cost and the state maintained by each node scale logarithmically with

the number of Chord nodes.

 B. Yang et.al (2002) [7] presented three techniques for efficient

search in P2P systems. They present the design of these techniques,

and then evaluate them using a combination of experiments over

Gnutella, the largest open P2P system in operation, and analysis.

While their techniques maintain the same quality of results as

currently used techniques, our techniques use up to 5 times fewer

resources. In addition, they designed their techniques to be simple in

design and implementation, so that they can be easily incorporated

into existing systems for immediate impact.

 A. Rowstron et.al (2001) [8] presented the design and evaluation of

Pastry, a scalable, distributed object location and routing substrate for

wide-area peer-to-peer applications. Pastry performs application-level

routing and object location in a potentially very large overlay

network of nodes connected via the Internet. It can be used to support

a variety of peer-to-peer applications, including global data storage,

data sharing, group communication and naming. Pastry is completely

decentralized, scalable, and self-organizing; it automatically adapts to

the arrival, departure and failure of nodes. Experimental results

obtained with a prototype implementation on an emulated network of

up to 100,000 nodes confirm Pastry‟s scalability and efficiency, its

ability to self-organize and adapt to node failures, and its good

network locality properties.

 M.E.J.Newman et.al (2000) proposed the small-world network

model, which mimics the transition between regular-lattice and

random-lattice behavior in social networks of increasing size is

studied. They contend that the model displays a critical point with a

divergent characteristic length as the degree of randomness tends to

zero. They proposed a real-space renormalization group

transformation for the model and demonstrate that the transformation

is exact in the limit of large system size. This result is used to

calculate the exact value of the single critical exponent for the

system, and to derive the scaling form for the average number of

„degrees of separation‟ between two nodes on the network as a

function of the three independent variables. They confirm their

results by extensive numerical simulation.

III.OVERVIEW

3.1. Description

 This paper describes the peer to peer streaming by means of file

sharing from the source peer to the group peer under the control of

control peer. The source peer activates the group peer after the

successful standard login verification. Once it is verified, the control

peer stores that group peer entry in the vector table. The file is to be

shared to the group peer from the source peer. Threads are

responsible to upload data chunks to Peers using timing fashion

method. If a group peer is in active state, then its details are stored in

the report which is produced in the control peer. After the content

distribution, if the group peers wish to leave the network, it leaves by

intimate to the control peer. The control peer enters that group peer

detail in the leave peer report.

3.2 Existing System

 System uses random walks to send queries across the overlay.

When a peer receives the query, it sends a list of all the content

matching the query to the originating peer. There is no control of

joining and leaving nodes through control peer. Each peer maintains

a small routing table (neighboring peers Node IDs and IP addresses).

System is composed of peers joining the network with some loose

rules, without any prior knowledge of the topology. Network uses

flooding as the mechanism to send queries across the overlay with a

limited scope. During the lookup process, any node encountered

along the path is checked for availability and can be selected as a

servant for the querying user.

3.3. Proposed System

 A streaming system usually has multiple channels, and peers may

form multiple groups for content distribution. In this paper, we

propose a distributed overlay framework (called SMesh) for dynamic

groups to make content distribution with switched timing fashion.

SMesh (Stable Mesh) first builds a relatively stable mesh consisting

of all hosts for control messaging. The mesh supports dynamic host

joining and leaving, and will guide the construction of delivery trees.

In this paper, we consider building a data delivery tree for each

group. To reduce tree construction and maintenance costs, we build a

single shared overlay mesh. The mesh is formed by all peers in the

system and is, hence, independent of joining and leaving events in

any group. This relatively stable mesh is used for control messaging

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.1, January 2013 DOI:10.15693/ijaist/2013.v2i1.17-20

19

and guiding the construction of overlay trees. With the help of mesh,

trees can be effectively constructed without the need of loop

detection and elimination.

3.4 Algorithm

The Proposed Method algorithm as follows,

1.Group peers detection at CP

2.Peer finder at source

3.Peer communicative tasks

4.If (groupfound)

 Add in NodeMap

 End IF

5.Distribution using switched process to the nodes of NodeMap

FIG 1. Proposed system design

3.5Algorithm Description

 Control peer, source peer and group peer are formed.

Group peers are detected at control peer. Peers are found near the

source. Then peer communication tasks are performed. Check

whether the particular group is foung. If the group is found add it in

NodeMap. Atlast distribution using switched process to the nodes of

NodeMap is done.

IV.IMPLEMENTATION AND METHODOLOGY

4.1 DATA FLOW DIAGRAM

FIG 2. Peer to peer process

4.2 MODULE DESCRIPTION:

4.2.1 Process Level Validation
Control Peer, Source Peer, Group Peers are the three layer of the

system. The Layers are started after the successful standard login

verification. Control Peer has to do the authentication task to get the

Control Peer Home, and then Source peer and Group peer get the

home task after the successful validation. The default validation tasks

are performed in this scenario. Project relevant information is

managed in this module to describe the synopsis, developer

information. Three layers are executed in three different process

levels. It means the layers are executed in different machines. Control

Peer gets one process, Source peer gets a process and Group Peers

can be started in different process levels.

FIG 3. Process level validation in different layers.

4.2.2 Group peer messaging

 Group Peer is the application level process and the process can be

started in wired environment system. After Starting GPA (Group Peer

Application), the GPASI (Group Peer Application System Identifier)

is the process to transfer GP status (IP Address Object) to Control

Peer. It is the joined status. The GPASI indicates the Control Peer

about leaving the GP from the Group. Based on the GPASI the CP

indicates the Source Peer to define the data transferring task. All the

messaging is performed automatically without doing any manual

process. The CP listens the GPASI to manage the GPV (Group Peer

Vector). The GPV is the collection of GPE (Group Peer Elements).

The number of elements can be varied depending upon the joining or

leaving process. Finally Control Peer dynamically manages the list to

assist the Source Peer.

FIG 4. Group peer message formation

4.2.3 Group peer vector formation

 Source Peer maintains the GPV based on Control peer messaging

to define the task preparation list. The task preparation list defines the

uploaded data to various systems with parallel approach. GPV is the

dynamic collection maintained in SP which has the IPO (IP Object of

peers). By using IPOE (IP Object Element) information the Source

peer starts the uploaded process. When one peer joined or leaved the

IPO is modified and tasks are remapped.

FIG 5. Source peer GPV based on control peer messaging.

4.2.4 Data transferring process

 Based on the GPV (collection of IPO. IPOE is the object element

indicates the peer), the Source peer starts different process to upload

the data to different peers. P1, P2…Pn are peers. The T1 connects

with P1, T2 connects with P2, Tn connects with Pn. T1 consists T1a,

T1b, T1c. Here T1 is the thread process and T1a is the child thread of

T1 and so on. T1a, T1b, Tnn are the threads responsible to upload

data chunks to Peers using timing fashion method. The each thread

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:268

Vol.2, No.1, January 2013 DOI:10.15693/ijaist/2013.v2i1.17-20

20

will be connected with peers for defined time for example 0.05

seconds to transfer the data to Group peer. After the time out next

child threads starts the same process and continue the task of

previous thread. If previous thread gets failure, the next thread

continues the same work of previous thread. So the system assures

the data loss prevention.

FIG 6. Parallel data transferring to different group peers

4.2.5 Peer Assembler

 The assembler assembles the uploaded content from various

processes. Assembler creates the container to put the various data

chunks in order. To successful data assembling the assembler gets the

data about uploaded data before starting the uploading task. After

receiving the uploaded finished signal from the source peer, the data

is assembled. Then the assembled content will be managed in group

peer system.

FIG 7.Peer assembler

V.RESULTS AND DISCUSSIONS

In existing system context switching is used and repeatable

data are sent. But in proposed method, we use multithreading

technique to transmit data and non repeatable data are sent to

the selected peers.

VI.CONCLUSION AND FUTURE ENHANCEMENTS

 The Group peer register before it startup. The startup and leaving

processes are monitored by the control peer. The state changes of

Group Peers are intimated to Source Peer. SP manages the Group

Peer map and the map reflects with CP state changes. The merit of

this system is that, the active nodes in the networks are dynamically

updated in the vector table maintained by the control peer, without

any manual updating. The RMI is used to develop the network

environment and GUI is designed using Swing and AWT techniques.

Oracle is the backend used to manage the persistence mechanism.

Datas are sent in Multi threaded fashion (multicast to more than one

group peer).

 The system builds the self informative group peer cluster with source

peer which is controlled by control peer. Control Peer controls the

joining and leaving nodes, T and T1. Tn processes, Gp1.Gpn peer

counts. Dynamic messages generated by the control peer will control

the source peer reaction to the situations like starting and stopping

processes. Each node must have the knowledge of neighbors. This

protects the system from untrusted nodes. Resource discovery has

also been overcome.

 Number of source peer can be increased in a stable network. If the

source peer gets failed, then automatically other source peer acts as

next available server. A group peer can have many child peers. The

main group peer receives the data from source peer and sends data to

child peers. It increases the source peer‟s task environment. Control

peer indicates the source peer about its system stability.

REFERENCES
[1] Zhen Zhang, “Approach to Construct Cluster in

Unstructured P2P Networks Based on Small World

Theory” IEEE, 2011.

[2] Gnutella development page, http://gnutella.wego. com,

2005.

[3] Kazaa home page, http://www.kazaa.com, 2005.

[4] E. Cohen, A. Fiat, and H. Kaplan, “Associative Search in

Peer-to-Peer Networks: Harnessing Latent Semantics,”

Proc. IEEE INFOCOM, 2003.

[5] K. Sripanidkulchai, B. Maggs, and H. Zhang, “Efficient

Content Location Using Interest-Based Locality in Peer-to-

Peer Systems,” Proc. IEEE INFOCOM, 2003.

[6] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F.

Kaashoek, F. Dabek, and H. Balakrishnan, “Chord: A

Scalable Peer-to-Peer Lookup Protocol for Internet

Applications,” IEEE/ACM Trans. Networking, vol. 11, no.

1, pp. 17-32, 2003.

[7] B. Yang and H. Garcia-Monlina, “Efficient Search in Peer-

to-Peer Networks,” Proc. 22nd IEEE Int‟l Conf. Distributed

Computing Systems (ICDCS), 2002.

[8] A. Rowstron and P. Druschel, “Pastry: Scalable,

Distributed Object Location and Routing for Large-Scale

Peer-to-Peer Systems,” Proc. IFIP/ACM Int‟l Conf.

Distributed Systems Platforms (Middleware), 2001.

[9] Freenet home page, http://www.freenet.sourceforge. com,

2005.

[10] D.J. Watts, S.H.Strogatz, Collective dynamics of „small-

world‟ networks, Nature 393(1998) 440-442.

 Author Profile

Vignesh.P received his B.tech

degree in Information Technology

from P.S.N.A College of Engineering

and Technology, India, in 2010. He is

Currently pursuing his M.E. in computer

and communication engineering from

Sethu Institute of Technology, India. His research

interests include networking,

Cryptography, Data Mining and Artificial Intelligence.

