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Abstract— This paper deals with the optimization of system 

reliability of redundancy allocation problem for complex 

(bridge) system with imprecise parameters. Here the 

impreciseness of each parameter has been represented by 

three different types of representations, viz. fuzzy, stochastic 

and deterministic interval valued representation. For the 

first two cases, the problem has been transformed to 

deterministic interval optimization problem by the nearest 

interval approximation method (in case of fuzzy number 

representation), confidence interval method (in case of 

random variable representation with known distribution). In 

all the cases, the transformed problems are of interval 

optimization problems with interval valued objective and 

interval constraints. Then these problems have been 

converted into unconstrained optimization problems by Big-

M penalty technique. To solve these problems, we have 

proposed real coded elitist genetic algorithm for integer 

variables with interval valued fitness, tournament selection, 

intermediate crossover and one neighborhood mutation. 

Finally, to illustrate the theoretical development and also to 

test the performance of the proposed algorithm redundancy 

allocation problem for five link bridge network system has 

been solved for different representations of parameters and 

the simulation results have been compared. 
Index terms - Reliability-redundancy allocation, Genetic 

Algorithm, Interval number, Interval order relations, Fuzzy 

number, Defuzzification, Confidence interval, Penalty 

function.    

I. INTRODUCTION 

Redundancy allocation is an important criterion in 

design of a reliable system. The corresponding problem is 

known as redundancy allocation problem (RAP). The 

primary objective of this problem is to improve the system 

reliability by increasing the reliability of each subsystem 

so as to arrive a prefixed reliability goal for system as a 

whole, subject to several resource constraints on the 

system/subsystem. As a result, over the last few decades, 

most of reliability engineers/researchers have started 

paying more attention in solving this problem. RAP is 

basically a nonlinear integer/mixed integer programming 

problem. According to Chern [8] RAP is NP- hard and it is 

well studied and summarized by Tillman et al. [39], Kuo 

et al. [20] and Kuo et al. [21]. For solving such 

redundancy allocation problem, several deterministic 

methods, like heuristic methods [19,30], mixed-integer 

nonlinear programming [40], reduced gradient method 

[17], integer programming [27], linear programming 

approach [19], dynamic programming method [21], branch 

and bound method [37] were used in the initial stage of 

development. However, these methods have advantages 

and disadvantages. After the development of evolutionary 

algorithms, researchers gave their attention to use these 

algorithms in solving RAP. These algorithms provide 

more flexibility; require less assumption on the objective 

as well as constraints. These algorithms can also be 

applied irrespective of whether the search space is discrete 

or not. These have motivated the reliability 

planners/designers to solve the RAP with several goals. In 

the existing literature, in almost all the studies referred 

earlier, the design parameters in RAP have usually been 

taken to be precise values. This means that every 

probability involved is perfectly determinable. In this case, 

it is usually assumed that there exist some complete 

information about the system and the component behavior. 

However; in real life situations, there are not sufficient 

statistical data available in most of the cases where either 

the system is new or if exists only as a project. It is not 

always possible to observe the stability from the statistical 

point of view. This means that only some partial 

information about the system components is known. So 

the reliability of a component of a system will be an 

imprecise number which can be represented by different 

approaches like fuzzy, stochastic and interval approaches. 

The bridge network system structure has been used 

in a system design in addition to series as well as parallel 

system structure. Chen [4] applied fuzzy reliability theory 

to analyse the bridge system. Sun et al. [38] proposed a 

method for solving reliability optimization problems 

considering two different bridge optimization problems- 

one is reliability maximization with cost constraints and 

other is cost minimization with system reliability 

constraint goal. Gopal et al. [11] presented redundancy 



International Journal of Advanced Information Science and Technology (IJAIST)          ISSN: 2319:2682 

Vol.4, No.12, December 2015                                                          DOI:10.15693/ijaist/2015.v4i12.20-32                                                                                                                                                                                                                                                                      

 

21 

 

optimization for bridge system as an example of complex 

network which is broken into several simpler and non-

interacting smaller problem of optimization for series 

network. Mahapatra and Roy [23] solved a bridge network 

system considering the reliability of each component as a 

triangular fuzzy number. 

In this paper, we have discussed the optimization of 

system reliability for bridge network system. The 

corresponding problem has been formulated in crisp and 

non-crisp environments. In non-crisp environment, the 

reliability of each component of the system has been 

considered as fuzzy number, stochastic random variable 

with known probability distribution and interval valued 

number. In case of fuzzy number representation, fuzzy 

numbers are converted to the intervals by the nearest 

interval approximation whereas in stochastic case, the 

corresponding parameter values are converted to the 

confidence interval form. As a result, in all the cases, the 

transformed problems are of interval optimization 

problems with interval valued objective and interval 

constraints. The transformed problem has been formulated 

as an unconstrained integer programming problem with 

interval coefficient by Big-M penalty technique. Then to 

solve this problem, we have developed a real coded 

genetic algorithm for integer variables with tournament 

selection, intermediate crossover and one neighborhood 

mutation. To illustrate the theoretical development and 

results, we have solved the redundancy allocation problem 

for five-link bridge network system. 

 

II. REPRESENTATION OF FUZZY NUMBERS/ 
STOCHASTIC NUMBER 

 
In the year, 1965, the word fuzzy was first 

introduced by Zadeh in his famous research paper “Fuzzy 
Sets” [42] as a mathematical way of representing 
impreciseness or fuzziness or vagueness. The approach of 
fuzzy set is an extension of classical set theory and it is 
used in fuzzy logic. In classical set theory, the 
membership of each element in relation to a set is assessed 
in binary terms according to a crisp conditions; an element 
either belongs to or does not belong to the set. By contrast, 
a fuzzy set theory permits the gradual assessment of the 
membership of each element in relation to a set; this is 
discussed with the aid of a membership function. Fuzzy 
set is an extension of classical set theory since, for a 
certain universe, a membership function  may act as an 
indicator function, mapping all elements to either 1 or 0, 
as in the classical notation.  He used this word to 
generalize the mathematical concept of the set to one of 
fuzzy set or fuzzy subset, where in a fuzzy set; a 
membership function is defined for each element of the 
referential set.  

Fuzzy Set: A fuzzy set A  in a universe of discourse X is 
defined as the following set of pairs: 

{( , ( )) : }
A

A x x x X 
 , where : [0,1]

A
X  is 

a mapping called the membership function or grade of 

membership of x in A . 

Convex Fuzzy Set: A fuzzy set A is called convex if and 

only if for all 1 2,x x X , 

1 2 1 2( (1 ) ) min{ ( ), ( )}
A A A

x x x x         , where 

[0,1] . 

Support of a Fuzzy Set: The support of fuzzy set A  

denoted by ( )S A  is the crisp set of all x X such that

( ) 0
A

x  . 

 -level Set: The set of elements that belong to the fuzzy 

set A at least to the degree  , is called the  -level set or 

 -cut given by { : ( ) }
A

A x X x    
 . If 

{ : ( ) }
A

A x X x    
 , then it is called strong  -level 

set or strong  -cut. 

Normal Fuzzy Set: A fuzzy set A is called a normal 
fuzzy set if there exists at least one x X such that

( ) 1
A

x  . A fuzzy number is a special case of a fuzzy 

set. Different definitions and properties of fuzzy numbers 
are encountered in the literature but they all agree on that a 
fuzzy number represents the conception of a set of real 
numbers „closer to a ‟ where „ a ‟ is the number being 

fuzzified. 

Fuzzy Number: A fuzzy number is a fuzzy set which is 
both convex and normal. 

Triangular Fuzzy Number (TFN) 

A TFN A is specified by the triplet 1 2 3( , , )a a a  and is 

defined by its continuous membership function 

( ) : [0,1]
A

x X  as follows: 

1
1 2

2 1

2

3
2 3

3 2

if

1 if
( )

if

0 otherwise

A

x a
a x a

a a

x a
x

a x
a x a

a a




  


 

 
  

 



  

 

Parabolic Fuzzy Number (PFN) 

A PFN A is specified by the triplet 1 2 3( , , )a a a  and is 

defined by its continuous membership function 

( ) : [0,1]
A

x X  as follows: 
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2

2
1 2

2 1

2

2

2
2 3

3 2

1 if

1 if
( )

1 if

0 otherwise

A

a x
a x a

a a

x a
x

x a
a x a

a a



  
    

  



 
  
    

 



  

 

The Nearest interval Approximation of a fuzzy 
Number 

Here we want to approximate a fuzzy number by a crisp 

interval number. Let A and B be two fuzzy numbers with 
interval of confidence at the level  are [ ( ), ( )]L RA A   

and [ ( ), ( )]L RB B  . Then according to Grzegorzewski 

[12] the distance between A and B can be defined as 
follows: 

   
1 1

2 2

0 0

( , ) ( ) ( ) ( ) ( )L L R Rd A B A B d A B d          

 

Let ( ) [ , ]d L RC A C C be the nearest crisp interval of the 

fuzzy number A with respect to the distance metric d . 

Since each interval is also a fuzzy number with constant 

 -cut,  ( ) [ , ]d L RC A C C

 for all [0,1]  . Now 

according to the given distance metric d , distance of A

from ( )dC A is ( , ( ))dd A C A  which is given by: 

   
1 1

2 2

0 0

( , ( )) ( ) ( )d L L R Rd A C A A C d A C d          

Therefore, ( )dC A is optimum when ( , ( ))dd A C A  is 

minimum. In order to minimize ( , ( ))dd A C A  , it is 

sufficient to minimize   2
( , ) ( , ( ))L R dD C C d A C A   . 

Now, 

   
1 1

2 2

0 0

( , ) ( ) ( )L R L L R RD C C A C d A C d         

The first order partial derivatives are 

         

 
1

0

1

0

( , )
2 ( )

                  2 ( ) 2

L R
L L

L

L L

D C C
A C d

C

A d C

 

 


  



  





  

and 

    

 
1

0

1

0

( , )
2 ( )

2 ( ) 2                 

L R

R R

R

R R

D C C
A C d

C

A d C

 

 


  



 





 

The second order partial derivatives are 

 

2

2

( , )
2L R

L

D C C

C





,

2

2

( , )
2L R

R

D C C

C





,  

2
( , )

0L R

L R

D C C

C C




 
and 

2
( , )

0L R

R L

D C C

C C




 
. 

Solution of 
( , )

0L R

L

D C C

C





and  

( , )
0L R

R

D C C

C





are given by  

1
*

0

( )L LC A d   and 

1
*

0

( )R RC A d    

Now, 

2 * *

2

( , )
2L R

L

D C C

C





, 

2 * *

2

( , )
2L R

R

D C C

C





, 

2 * *
( , )

0L R

L R

D C C

C C




 
and 

2 * *
( , )

0L R

R L

D C C

C C




 
 

Thus, 
2 * * 2 * *

2

* *

2 * * 2 * *

2

( , ) ( , )

2 0
( , ) 4 0

0 2( , ) ( , )

L R L R

L RL

L R

L R L R

R L R

D C C D C C

C CC
H C C

D C C D C C

C C C

 

 
   
 

  

 

So, ( , )L RD C C i.e., ( , ( ))dd A C A  is global minimum at the 

interval
* *

[ , ]L RC C .So, the nearest interval approximation of 

fuzzy the number A with respect to the metric d is
1 1

0 0

( ) ( ) , ( ) .
d L R

C A A d A d   
 
 
 
    

 

The nearest interval approximation of triangular fuzzy 
number 

Let 1 2 3( , , )A a a a is a triangular fuzzy number. The  -

level interval of A is defined as  ( ) ( ), ( )L RA A A   . 



International Journal of Advanced Information Science and Technology (IJAIST)          ISSN: 2319:2682 

Vol.4, No.12, December 2015                                                          DOI:10.15693/ijaist/2015.v4i12.20-32                                                                                                                                                                                                                                                                      

 

23 

 

Now, 1

2 1

( )LA a

a a








 gives 1 2 1( ) ( )LA a a a     and 

3

3 2

( )Ra A

a a








 gives 3 3 2( ) ( )RA a a a    . 

By the nearest interval approximation method, the 
lower limit of the interval is                                 

                             

 
1 1

1 2 1 1 2

0 0

1
( ) ( ) ( )

2
L LC A d a a a d a a            

and the upper limit of the interval is  

                            

 
1 1

3 3 2 2 3

0 0

1
( ) ( ) ( )

2
R RC A d a a a d a a           

Therefore, the interval number considering 1 2 3( , , )A a a a  

as a TFN is 2 31 2 ( )( )
,

2 2

a aa a  
 
 

. 

 

The nearest interval approximation of parabolic fuzzy 
number 

Let 1 2 3( , , )A a a a  be a parabolic fuzzy number. The  -

level interval of A is defined as  ( ) ( ), ( )L RA A A   . 

Now, 

2

2

2 1

( )
1 La A

a a




 
  

 
gives 

2 2 1( ) ( ) 1LA a a a      and 

2

2

3 2

( )
1 RA a

a a




 
  

 

gives 2 3 2( ) ( ) 1RA a a a     . 

By the nearest interval approximation method, the lower 
limit of the interval is     

                           
1 1

2 2 1 1 2

0 0

1
( ) ( ) 1 (2 )

3
L LC A d a a a d a a          

    

and the upper limit of the interval is  

                          
1 1

2 3 2 2 3

0 0

1
( ) ( ) 1 ( 2 )

3
R RC A d a a a d a a          

  

 

Therefore, the interval number considering 1 2 3( , , )A a a a  

as a PFN is 1 2 2 3

1 1
(2 ), ( 2 )

3 3
a a a a

 
  

 
. 

 

Confidence interval 

Let  be the set of all admissible values of an 

unknown parameter  of a population, where ( )F x  is the 

distribution function of the population random variable X . 

Let 1 2( , ,..., )Nx x x be any random sample of size N drawn 

from the population X . Now, for any given number 

(0 1)   , if it is possible to choose two statistics 

1 2( , ,..., )Na f x x x  and 1 2( , ,..., )Nb f x x x  such that, 

( ) 1P A B        , where 

1 2( , ,..., )NA f X X X  and 1 2( , ,..., )NB f X X X  are the 

random variables corresponding to the statistics a and b

then,  ,a b is called the confidence interval for the 

parameter   with the coefficient confidence 1  . 

 

Confidence Interval for the parameter m  (when   is 

known) of a normal ( , )N m  population 

 

The confidence interval for the parameter m is 

,x u x u
N N

 

  
  

 
for suitable choice of the 

statistics 
( )N x m

u



  where, 

1
ix x

N
   and  u is 

obtained from the equation 

                 

2
1

exp 1
2 22

u
u

du
 




  
 
 
 

 . 

 

III. FINITE INTERVAL ARITHMETIC 
 

An interval number A  is defined to be a closed interval 

[ , ]L RA a a ={ : , }L Rx a x a x   , where La , Ra are 

the left and right bounds respectively and   is the set of 

all real numbers. Also, in centre and width form, it can be 

written as [ , ] ,L R c wA a a a a  , where 

  / 2c L Ra a a   and    / 2w R La a a   are 

respectively the centre and the width of the interval  

A. A real number can also be treated as an interval, such as 

for all x , x  can be written as an interval [ , ]x x  

which has zero width. The definitions of arithmetical 

operations like addition, subtraction, multiplication, 

division and integral power of interval numbers and also 

the n-th root as well as the rational powers of interval 

numbers are presented. For detailed discussion, one may 

refer to the works of Moore [28], Hansen and Walster [14] 

and Karmakar et al. [18].  
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Definition 3.1: Let [ , ]
L R

A a a and [ , ]
L R

B b b  be two 

intervals. Then the definitions of addition, scalar 

multiplication, subtraction, multiplication and division of 

interval numbers are as follows: 

 

Addition: [ , ] [ , ] [ , ]
L R L R L L R R

A B a a b b a b a b       

 

Scalar multiplication:  For any a real number  , 

[ , ] if 0
[ , ]

[ , ] if 0

L R

L R

R L

a a
A a a

a a

  
 

  


 







 

 

Subtraction: 

[ , ] [ , ] [ , ] [ , ]

         [ , ]

L R L R L R R L

L R R L

A B a a b b a a b b

a b a b

      

  
 

Multiplication: 

[ , ] [ , ]

[min( , , , ), max( , , , )]

L R L R

L L L R R L R R L L L R R L R R

A B a a b b

a b a b a b a b a b a b a b a b

  


 

Division: 

1 1 1
[ , ] [ , ],provided0 [ , ]L R L R

R L

A
A a a b b

B B b b
      

Definition 3.2: Let [ , ]
L R

A a a be an interval and n be 

any non-negative integer, then 

[1,  1]                    if 0

[ ,  ]               if 0 or if  is odd

[ ,  ]               if 0 and  is even

[0,  max( ,  )] if 0  and ( 0) is even.

n n

L R Ln

n n

R L R

n n

L R L R

n

a a a n
A

a a a n

a a a a n








  









 
 

IV. INTERVAL ORDER RELATIONS 

 

Let [ , ]
L R

A a a and [ , ]
L R

B b b be two interval numbers. 

Then these two intervals may be any one of the following 

types: 

 

Type-1: Two intervals are disjoint.  

Type-2: Two intervals are partially overlapping.  

Type-3: One of the intervals contains the other one.  

 

Several researchers have proposed the definitions of order 

relations between two interval numbers. Recently, Sahoo 

et al. [33] proposed the same modifying the drawbacks of 

existing definitions.                         

 

Definition-4.1: The order relation max  between the 

intervals [ , ] ,L R c wA a a a a   and 

[ , ] ,L R c wB b b b b  ,  then for maximization problems 

(i)  max forType IandType II intervals,c cA B a b    

(ii) maxA B   either  c c w wa b a b    or  

forType III intervals,c c R Ra b a b    

 

According to this definition, the interval A  is accepted for 

maximization case. Clearly, the order relation maxA B  is 

reflexive and transitive but not symmetric. 

 

Definition-4.2: The order relation min  between the 

intervals [ , ] ,L R c wA a a a a   and 

[ , ] ,L R c wB b b b b  , then for minimization problems 

(i) min forType IandType II  intervals,c cA B a b    

(ii)  minA B   either c c w wa b a b    or  

forType III intervals,c c L La b a b    

 

According to this definition, the interval A  is accepted for 

minimization case. Clearly, the order relation minA B  is 

reflexive and transitive but not symmetric. 

 

 

 
V. MATHEMATICAL FORMULATION OF THE 

PROBLEM 
 
 

Let us consider a bridge network with n subsystems. Each 

subsystem is connected partially with identical 

components. The corresponding problem is known as 

redundancy allocation problem. Our objective is to 

maximize the overall system reliability subject to the 

given resource constraints. This can be done by 

determining the number of redundant components in each 

subsystem.  

 

The general form of the redundancy allocation problem in 

crisp form is as follows: 

            Maximize ( )SR x                                         (1) 

            subject to   

                         ( )
i i

g x b , 1, 2, ,i m      

           where,  
1 2

( , , ..., )
n

x x x x , 

1 , is integer, 1,...,
j j j j

l x u x j n    , and 
i

b  is    the 

i-th  available resource, 1, 2, , .i m     

 

Now, if the component reliabilities are imprecise, then the 

reliability of each subsystem and finally the overall system 
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reliability will be imprecise. In this situation, the general 

form of the redundancy allocation problem can be written 

as follows: 

               Maximize ( )
S

R x                                      (2) 

               subject to 

                            ( )
i i

g x b  , 1, 2, ,i m                                                                                

               where,    
1 2

( , , ..., )
n

x x x x , 

1 , is integer, 1,...,
j j j j

l x u x j n     and 
i

b  is   the i-

th available resource which is imprecise, 1, 2, , .i m     

 

To represent the impreciseness of the reliability of each 

component as well as different parameters of resource 

constraints, we have considered three different cases as 

follows: when reliability of each component as well as 

different parameters of resource constraints are 

represented by 

 

(i) fuzzy number 

(ii)  random variable with known probability distribution 

(iii) deterministic interval number. 

 

In the first case, the values of fuzzy parameters are 

converted to the intervals by the nearest interval 

approximation method whereas in the second case, the 

values of stochastic parameters are converted to the 

confidence interval form. Hence in all the cases, the 

transformed problems are of interval optimization 

problems with interval valued objective function and 

interval constraints. Hence, the general form of the 

transformed problem is as follows: 

 

Maximize ( ) [ ( ), ( )]
S SL SR

R x R x R x                  (3)                                                              

 subject to 

[ ( ), ( )] [ , ]
iL iR iL iR

g x g x b b , 1,2, ,i m                                                                              

  where, 
1 2

( , , ..., )
n

x x x x , 

1 , is integer, 1,...,
j j j j

l x u x j n     and [ , ]
iL iR

b b  is 

the i-th available resource which is interval valued, 

1, 2, , .i m     

 

Here, the symbol ' '  means either the inequality symbol 

min' ' of interval order relation or equality (' ') . The 

problem (3) is a constrained optimization problem with 

interval valued objective function and interval constraints. 

 

 

 

 

A. CONSTRAINT SATISFACTION RULE 

 

In this section, we shall discuss the constraint satisfaction 

rule i.e. under what conditions the constraints will be 

satisfied. It is to be noted that both the sides of the 

constraints are in the interval form. For any solution x  of 

(3), the  i-th constraint  i iG B , where  

[ ( ), ( )] and i iL iRG g x g x [ , ]i iL iRB b b   1, 2, ,i m     will 

be satisfied if any one of the following is satisfied: 

(a) ( )
iL iL

g x b  and ( )
iR iR

g x b  (when both the 

intervals  ( )
i

G x &
i

B  are equal) 

(b) 
min

[ ( ), ( )] [ , ]
iL iR iL iR

g x g x b b  (when  ( )
i

G x  is 

less than iB ). 

Again, the condition 
min

[ ( ), ( )] [ , ]
iL iR iL iR

g x g x b b  will 

be satisfied if any one of the following is satisfied: 

 

(i) ( )
iR iL

g x b  (when ( )
i

G x &
i

B    are Type-I 

intervals). 

(ii) ( )
iL iL

g x b , ( )
iR iL

g x b  and ( )
iR iR

g x b  

(when ( )
i

G x &
i

B   are Type-II 

intervals). 

(iii) either ( ) ( )
iL iR iL iR

g x g x b b    and 

( ) ( )
iR iL iR iL

g x g x b b      or, 

                                            ( ) ( )
iL iR iL iR

g x g x b b    and ( )
iL iL

g x b  

                        (when ( )
i

G x &
i

B are Type-III intervals). 

 

 

VI. SOLUTION METHODOLOGY 
 

As the problem (3) is a constrained optimization problem, 

so we can solve the same by penalty function technique. In 

this technique, the constrained optimization problem is 

converted into unconstrained optimization problem. Here 

we have used the Big-M penalty technique [13]. Hence, 

the unconstrained optimization problem corresponding to 

the problem (3) is as follows: 

 

Maximize
[ ( ), ( )] when

[ ( ), ( )]
[ , ] when

SL SR

SL SR

R x R x x S
R x R x

M M x S




  





                                                

                                                                                   (4) 

where, { : [ ( ), ( )] [ , ], 1, 2, ,
iL iR iL iR

S x g x g x b b i m     

and 1 ,
j j j

l x u   is integer, 1,..., }.
j

x j n  

 

The above problem cannot be solved by any classical 

optimization technique as the objective function and also 

the constraints are interval valued. However, the problem 

can be solved by any evolutionary algorithm with the help 

of interval order relations. In this work, we have 

developed real coded advanced genetic algorithm with 
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interval valued fitness function for solving the above-

mentioned problem. 

 

A. GENETIC ALGORITHM 

 

Genetic algorithm (GA) is a familiar stochastic search 

iterative method based on the evolutionary theory of 

Charles Darwin “survival of the fittest” and natural 

genetics [9, 24]. The most elementary inspiration of 

Genetic Algorithm is to reproduce the natural evolution 

process artificially in which populations go through 

continuous changes through genetic operators, like 

crossover, mutation and selection. In particular, it is very 

handy for solving complicated optimization problems 

which cannot be solved easily by direct or gradient based 

mathematical techniques. It is very efficient to knob large-

scale, real-life, discrete and continuous optimization 

problems without making unrealistic assumptions and 

approximations. This algorithm starts with an initial 

population of possible solutions, called individuals, to a 

given problem where every individual is represented by 

means of different form of coding as a chromosome. 

These chromosomes are evaluated for their fitness. Based 

on their fitness, chromosomes in the population are to be 

chosen for two known genetic operations, like crossover 

and mutation. The crossover operation is applied to 

generate offspring from two or more selected 

chromosomes. The mutation operation is used for a minor 

adjustment to reproduce the offspring. The repeated 

application of the genetic operators to the comparatively 

fit chromosomes consequences increase in the average 

fitness of the population over generation and also the 

recognition of improved solutions to the problem under 

investigation. This process is applied iteratively until the 

termination criterion is fulfilled. 

The procedural algorithm of the working principle of GA 

is as follows:  

 

Algorithm genetic; 

begin 

 t ← 0; [ t represents the number of current generation] 

    Compute initial population P(t); 

    Evaluate the fitness function of P(t); 

    Obtain the best found result from P(t); 

    while termination criterion not fulfilled do 

             t ← t + 1; 

 Select P(t) from P(t − 1) by selection process; 

             Alter P(t) by crossover and mutation; 

             Evaluate the fitness function of P(t); 

             Obtain the best found result from P(t) and 

compare with P(t-1); 

             Replace the worst result of P(t) by the best found 

result of P(t-1) if it is better than that of P(t); 

     end while 

     Store the best found result; 

end 

 

The following basic components are to be considered to 

put the GA into operation:  

 

 GA parameters (population size, 

maximum number of generation, 

crossover rate and mutation rate)  

 Chromosome representation  

 Initialization of population 

 Evaluation of fitness function  

 Selection process  

 Genetic operators (crossover, mutation, 

elitism)  

 

There are a number of GA parameters, viz. population size 

(p_size), maximum number of generation (max_gen), 

crossover rate i.e., the probability of crossover (p_cross) 

and mutation rate i.e., the probability of mutation 

(p_mute). There is no hard and fast rule for selecting the 

population size for GA, how large it should be.  The 

population size is problem reliant and is increased with the 

dimension of the problem.  About the maximum number 

of generations, there is no clear clue for considering this 

value. It varies from problem to problem and depends 

upon the number of genes (variables) of a chromosome. It 

is prescribed as the stopping/termination criterion of the 

algorithm. From natural genetics, it is obvious that the rate 

of crossover is always greater than that of mutation. 

Usually, the crossover rate varies from 0.60 to 0.95 

whereas the mutation rate varies from 0.05 to 0.20. 

Sometimes mutation rate is considered as 1 n
 
where n  is 

the number of genes (variables) of the chromosome. 

 

Representation of a suitable chromosome is a significant 

concern in the application of GA for solving the 

optimization problem. There are different types of 

representations, like binary, real, octal, hexadecimal 

coding, offered in the existing literature. Among these 

representations, real coding representation is exceptionally 

accepted. In this representation, a chromosome is coded in 

the form of vector/matrix of integer/ floating point or   

combination of the both numbers. Every component of 

that chromosome represents the value of a decision 

variable of the problem. In this representation, each 

chromosome is encoded as a vector of integer numbers as 

the decision variables of the problem to be solved in this 

paper are of integer type. This type of representation is 

accurate and more efficient as it is closed to the real 

design space. Moreover, the string length of each 

chromosome is the number of decision variables. In this 

representation, for a given problem with n decision 

variables, a n-component vector 

1 2
{ , , ..., , ..., }

k k k ki kn
v v v v v ( 1, 2,..., _ )k p size

 
is used 

as a chromosome to represent a solution to the problem. 
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After representation of chromosome, the next step is to 

initialize the chromosome that will take part in the 

artificial genetics. To initialize the population, first of all 

we have to find the independent variables and their bounds 

for the given problem. In the initialization process, every 

component for each chromosome is randomly generated 

within the bounds of the respective decision variable. 

There are several procedures for selecting a random 

number of integer type. In this work, we have used the 

following algorithm for selecting of an integer random 

number. 

An integer random number between a and b can be 

generated as either x a g   or, x b g   where, g  is a 

random integer between 1 and .a b  

 

Evaluation/fitness function plays an important role in GA. 

This is same for natural evolution process in the biological 

and physical environments. Subsequent to initialization of 

chromosomes of potential solutions, we need to make out 

how relatively good they are. Therefore, we have to 

compute the fitness value for each chromosome. In our 

work, the value of objective function of the reduced 

unconstrained optimization problems corresponding to the 

chromosome is considered as the fitness value of that 

chromosome. 

 

The selection operator which is the first operator in 

artificial genetics performs a remarkable task in GA. This 

selection process is based on the Darwin‟s principle on 

natural evolution “survival of the fittest”. The primary 

objective of this process is to select the above average 

individuals/chromosomes from the population according 

to the fitness value of each chromosome and eliminate the 

rest of the individuals/chromosomes. There are several 

methods for implementing the selection process. In this 

work, we have used the well known tournament selection 

with size two.  

 

Following the selection process, other genetic operators 

like crossover and mutation are applied to the resulting 

chromosomes which have survived. Crossover is an 

operator that creates new individuals/chromosomes 

(offspring) by combining the features of parent solutions.  

It operates on two or more parent solutions at a time and 

produces offspring for next generation. In this work, we 

have used intermediate crossover for integer variables. 

 

The aim of mutation operator is to introduce the random 

variations into the population and is used to avert the 

search process from converging to the local optima. This 

operator helps to regain the information lost in earlier 

generations and is responsible for fine tuning capabilities 

of the system and is applied to a single individual only. 

Usually, its rate is very low. In this work, we have used 

one-neighborhood mutation for integer variables. 

 

VII. NUMERICAL EXAMPLES 
 

For numerical illustration, we have considered the 

redundancy allocation problem for five-link bridge 

network system (see Figure 1). This five-link bridge 

network system [21] works successfully as long as one of 

the paths, (subsystems (1,2)) or (subsystems (3,4)), is 

active independently of subsystem-5. However, if the pair 

of subsystems (1, 4) or (2, 3) fails, then subsystem-5 plays 

an important role in the system operation. In each 

subsystem- i , ( 1, 2,..., 5)i   there is a parallel 

configuration consisting of ix  identical components 

having reliability
i

r . If 
i

R  be the reliability of subsystem-

i , then 1 (1 ) ,ix

i i
R r   1, 2,...,5i  . The system reliability 

of this five-link bridge system is given by 

 
1 2 2 3 4 1 2 3 4 1 2 3 4 5

1 2 3 4 5
           ,

S
R x R R Q R R Q R R R R Q Q R R

Q R R Q R

   


  

where, 1
i i

R Q  ,  1, 2,..., 5i  . 

In this case, the corresponding problem is as follows: 

 

Problem-1: 

Maximize
 

1 2 2 3 4 1 2 3 4 1 2 3 4 5

1 2 3 4 5
          

S
R x R R Q R R Q R R R R Q Q R R

Q R R Q R

   

  

subject to 

  

5
2

1

i i

i

v x V


                             

5

1

1
exp

4
i i i

i

c x x C


 
  

    
                              

5

1

1
exp

4
i i i

i

w x x W



  

    
  

where,  1 1 i
x

i i
R r   , 1 ,  1, 2,..., 5.

i i
Q R i     

 

The values of different parameters of the above problem 

are given in Table 1.  

 

If the reliability  
i

r  of each component of i-th subsystem is 

imprecise, then the reliability of i-th subsystem will be 

imprecise and it is denoted by
i

R . Clearly, 

1 (1 ) ,ix

i i
R r     1, 2,...,5i  . 

Then, the system reliability of the network bridge system 

is given by  

  1 2 3 4 2 3 42 1

1 4 5 2 3 52 3 1 4
          

sR x R R Q R R Q R R R

R Q Q R R Q R R Q R

  

 

         

         
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In this case, the corresponding problem is as follows: 

 

Problem-2: 

Maximize
  1 2 3 4 2 3 42 1

1 4 5 2 3 52 3 1 4
              

sR x R R Q R R Q R R R

R Q Q R R Q R R Q R

   



         

         
  

subject to 
5

2

1

i i

i

v x V


              

5

1

1
exp

4
i i i

i

c x x C


 
  

    
                 

5

1

1
exp

4
i i i

i

w x x W



  

    
   

where,  1 1 i
x

i i
R r    , 1 ,  1, 2,..., 5.

i i
Q R i   

 
 

  

 

 
 

Figure 1: Five link bridge network system 

 

 

The values of different parameters of fuzzy numbers and 

random variable representation are given in Tables 2 and 

3, whereas the interval valued parameters are given in 

Table 4. For solving Problem-2, we have considered the 

different representations of imprecise parameters as 

follows: 

 

(i) Triangular Fuzzy Number (TFN) 

(ii) Parabolic Fuzzy Number (PFN) 

(iii) Stochastic Random Variables having Normal 

Distribution 

(iv) Interval Numbers 

 

Table 1: Data for crisp problem (Problem-1) 

 

i  ir  iv  ic  iw  

1 0.80 1 7 7 

2 0.85 2 7 8 

3 0.93 3 5 8 
4 0.65 4 9 6 

5 0.75 2 4 9 

V=110, C=175, W=200 

 
 
 

Table 2: Numerical data for fuzzy parameters values (TFN & PFN) 

              (Problem-2) 
 

i 
ir  iv  ic  


iw  

1 (0.79, 0.80, 0.82) (0.8, 1, 1.2) (6.1, 7, 7.5) (6.6, 7, 7.9) 

2 (0.84, 0.85, 0.87) (1.5, 2, 2.5) (6.5, 7, 7.8) (7.5, 8, 8.4) 
3 (0.89, 0.93, 0.95) (2.8, 3, 3.4) (4.5, 5, 5.3) (7.9, 8, 8.8) 

4 (0.61, 0.65, 0.67) (3.7, 4, 4.8) (8.6, 9, 9.5) (5.8, 6, 6.9) 

5 (0.73, 0.75, 0.78) (1.7, 2, 2.2) (3.4, 4, 4.8) (8.3, 9, 9.7) 

 (100, 110, 115)V  ,  (160, 175, 195)C  ,  (185, 200, 210)W   

Table 3: Numerical data for stochastic parameters value (Problem-2) 

 

i 
ir  iv  ic  


iw  

1 N(0.80, 0.1) N(1, 0.1) N(7, 1) N(7, 2) 

2 N(0.85, 0.2) N(2, 0.5) N(7, 2) N(8, 1) 
3 N(0.93, 0.3) N(3, 0.8) N(5, 1) N(8, 3) 

4 N(0.65, 0.2) N(4, 0.6) N(9, 2.5) N(6, 1) 

5 N(0.75, 0.4) N(2, 0.6) N(4, 1.5) N(9, 2) 

  N(110, 5), N(175, 6), N(200, 4)V C W    

 
Table 4: Numerical data for interval parameters values (Problem-2) 

 

i ,iL iR INT
r r  

 

,iL iR INT
v v  

 

,iL iR INT
c c  

 

,iL iR INT
w w  

 

1 [0.79, 0.81] [0.1, 2] [6, 8] [6, 8] 

2 [0.84, 0.86] [1, 3] [6, 8] [7, 9] 

3 [0.92, 0.94] [2, 4] [4,  6] [7, 9] 
4 [0.64, 0.66] [3, 5] [8, 10] [5, 7] 

5 [0.74, 0.76] [1, 3] [3, 5] [8, 10] 

, [90, 150], , [100, 210],

, [150, 225]

INT INT
L R L R

L R INT

V V C C

W W

       

  

 

 

 

Table 5: Converted data from fuzzy parameter values (TFN) to interval 
form 

 

i ,iL iR TFN
r r  

 

,iL iR TFN
v v  

 

,iL iR TFN
c c  

 

,iL iR TFN
w w  

 

1 [0.80, 0.81] [0.90, 1.10] [6.50, 7.25] [6.80, 7.45] 

2 [0.85, 0.86] [1.75, 2.25] [6.75, 7.40] [7.75, 8.20] 

3 [0.91, 0.94] [2.90, 3.20] [4.75, 5.15] [7.95, 8.40] 
4 [0.63, 0.66] [3.85, 4.40] [8.80, 9.25] [5.90, 6.45] 

5 [0.74, 0.77] [1.85, 2.10] [3.70, 4.40] [8.65, 9.35] 

, [105.00, 112.50], , [167.50, 185.00],

, [192.50, 205.00]

L R L RTFN TFN

L R TFN

V V C C

W W

       

  

 

 

Table 6: Converted data from fuzzy parameter values (PFN) to interval 
form 
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i ,
PFNiL iRr r    ,

PFNiL iRv v    ,
PFNiL iRc c    ,

PFNiL iRw w    

1 [0.79, 0.81] [0.87, 1.13] [6.33, 7.33] [6.73, 7.60] 
2 [0.84, 0.86] [1.67, 2.33] [6.67, 7.53] [7.67, 8.27] 

3 [0.90, 0.94] [2.87, 3.27] [4.67, 5.20] [7.93, 8.53] 

4 [0.62, 0.66] [3.80, 4.53] [8.73, 9.33] [5.87, 6.60] 
5 [0.74, 0.77] [1.80, 2.13] [3.60, 4.53] [8.53, 9.47] 

, [103.33, 113.33], , [165.00, 188.33],

, [190.00, 206.67]

L R L RPFN PFN

L R PFN

V V C C

W W

       

  

 

 

In all the cases, we have solved the problem by real coded 

advanced genetic algorithm with the help of interval 

mathematics and interval order relations. In this algorithm, 

we have used tournament selection, intermediate crossover 

and one neighborhood mutation as genetic operators. For 

this purpose, we have prepared the code for this algorithm 

in C Programming language.  The corresponding 

computational work has been done on a PC with Intel 

Core-2 duo processor in LINUX environment. For each 

problem, 20 independent runs have been performed to 

determine the best found system reliability which is 

nothing but the optimal value of system reliability. In this 

computation, the values of genetic parameters, like p_size, 

max_gen, p_cross and p_mute have been taken as 100, 

100, 0.85 and 0.15 respectively. The computational results 

have been shown in Table 8 for different parametric 

values.  
 

 
Table 7: Data for stochastic parameters values converted into interval 

form (95% confidence interval) 

 

i ,r riL iR STC
    ,v viL iR STC

    ,c ciL iR STC
    ,w wiL iR STC

    

1 [0.79, 0.81] [0.99, 1.01] [6.91, 7.09] [6.82, 7.18] 
2 [0.83, 0.87] [1.96, 2.04] [6.82, 7.18] [7.91, 8.09] 

3 [0.90, 0.96] [2.93, 3.07] [4.91, 5.09] [7.74, 8.26] 

4 [0.63, 0.67] [3.95, 4.05] [8.78, 9.22] [5.91, 6.09] 
5 [0.71, 0.79] [1.95, 2.05] [3.87, 4.13] [8.82, 9.18] 

, [109.56, 110.44], , [174.47, 175.53],

, [199.65, 200.35]

L R L RSTC STC

L R STC

V V C C

W W

       

  

 

 

Table 8: Computational results for different types of data 

 

Parameters 
Type  

Redundancy 
vector (x) 

Obj. fucn. 

,SL SRR R    
Centre 
value 

Crisp (3,3,2,4,1) [0.99987635, 
0.99987635] 

0.00000000 

Interval (3,2,2,1,3) [0.98435189, 

0.99979923] 

0.99207556 

TFN (2,2,2,1,3) [0.98443260, 

0.99998979] 

0.99221120 

PFN (3,2,3,1,3) [0.98388824, 
0.99998302] 

0.99193563 

Stochastic 
case 

(2,1,2,1,4) [0.90300998, 
0.99321678] 

0.94811338 

 

 

VIII. CONCLUSION 
 

Due to several reasons mentioned in „Introduction‟, the 

reliability of a component may not be precise. It must be 

imprecise. This impreciseness may be represented by 

diverse ways. In this paper, for the first time, we have 

represented this by fuzzy number, stochastic number and 

interval number. Then the problem has been converted 

into interval nonlinear programming problem in which the 

objective function as well as the left hand side of all the 

constraints are interval valued. For constraints satisfaction, 

we have proposed a constraint satisfaction rule using 

interval order relations. For further research, one may 

apply other heuristic methods, like, DE, SA, PSO, etc. for 

solving the problem discussed in this paper. Also, the 

proposed technique may be applied in solving the realistic 

engineering and other optimization problems.  
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