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Abstract 

Atomic radii of elements are experimentally obtained from 

crystallographic data. However, this is not a feasible approach 

for some elements with limited number of atoms in existence 

since radii could not beeasily drawn from severaltypes of 

bound in ionic, covalent and metallic crystals.Hence, this work 

employs artificial intelligence approach using support vector 

machine to accurately predict and estimate the atomic radii of 

elements in the periodic table in order to pave way for 

predicting atomic radii of elements that could not be easily 

determined from crystallographicdata. We obtained an 

accuracy of over 99% on the basis of the correlation between 

the experimental and our predicted radii. The simplicity and 

accuracy of this approachdepict an excellent measure of its 

tendency to predict atomic radii of any element whose atomic 

number isknown. 
Index terms: Atomic number, Atomic radii, Coefficient of 

Correlation, Number of electron’s orbit andSupport vector 

machine  

1. Introduction 

It is generally assumed that atom has no fixed radius[1]. 

The radius of an atom depends greatly on its surrounding 

atoms. Atomic radius is usually measured by considering 

the half distance between the nuclei of two touching atoms. 

Atomic radii are defined as covalent radii when the 

concerned nuclei are in covalent boundand estimated as 

metallic radii for two nuclei in metallic crystals. The Van 

der waal radii come into play when we measure the 

minimum half distance between two nuclei of atoms of the 

elements that are not bound to the same molecule. 

Atom of every element has electrons which revolve round 

the nucleus in a particular orbit known as electron shell 

where the Newtonian mechanics is violated[2] The number 

of electrons contained in an atom (i.e. atomic number) of an 

element is a unique property of that element, since no two 

atoms of different elements in their neutral states can have 

the same number of electrons. The trend of atomic radius 

and atomic number in the periodic table is a plausible 

indication thatthere exist a kind of relationship between 

them and one could be obtained from the other.  This 

research work predicts atomic radii of elements using 

atomic number and the number of orbits (which could be 

deducted from atomic number) through which electrons 

revolve.This proposed excellent approach possesses 

optimum assurance of accuracy while applying it to 

elementsthat have no actual experimental radii. 

After the acceptance of the Bohr atomic model[2], 

scientists began to think of the ways to measure the size of 

an atom. The first approach was that of Bragg[3], who 

obtained universal atomic radii of elements using 

crystallographic data drawn from metallic, ionic and 

covalent solids. Bragg’s atomic radii were later 

strengthened by J.C Slater [4]by considering over 1200 

bounds observable in different sort of crystals and 

molecules.This approach adopted by Slater,is not liable to 

be extended to newly discovered elements such as 

Ununoctiumbecause only few atoms have been successfully 

produced. Moreover, the reactivity of these atoms is not 

well known. The new approach of ours caters for this lapse. 

For the purpose of complementing the Bragg and slater’s 

radii, clement et al[5] proposed and presented theoretical 

modelsthat determine atomic radii of some elements using 

minimal basis-set atomic function for the ground-state 

atom. This model obtained atomic radii of all noble gases 

that could not be obtained by slater due to the fact that the 

atoms of noble gases are usually inert(except few, such as 

krypton, xenon and radon)[1], even to other atom of the 

same element.Several theoretical models obtained atomic 

radii using different approaches. Atomic radii  of elements 

were obtained by considering the presence of interaction 

between electrons and neglecting the nature of the 

interaction[6]. Radial density distribution function was also  

adopted to obtain atomic radii[7]. Free electron density is 

another approach through which atomic number could be 

estimated based on hall measurements[8].The uniqueness 

of our approach is that itattains very high accuracy using 

approach that is different from thepopularly knownmethods 

of predicting atomic radii and can be generalized to all 

elements. 

Among setbacks which call for the urgent need of simple 

and accurate models in predicting atomic radii is the fact 
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that some newly discovered elements(such as Ununoctium) 

have limited number of atoms in existence which makes it 

extremely difficult to experimentally determine their 

universal atomic radii from crystallographic data of 

covalent,metallic or ionic bound with other crystals. The 

approach of this work remains simple and accurate in 

predicting atomic radii of these kinds of elements. 

In the same vein, elements that are classified as noble gases 

have distinct properties, among which is that they do not 

usually react with other elements. To crown it all, an atom 

of noble gas (such as helium)does not come in contact with 

another atom of the same element. This property makes it 

difficult to measure their radii experimentally from 

crystallographic data. Therefore, it is highly necessary to 

adopt a simple approach through which atomic radii of 

these elements can be accurately determined.  

The uniqueness of this work is that it adopts a method (i.e. 

artificial intelligence method using support vector 

regression) that predicts atomic radii of elements above 

99% ofaccuracy on the basis of correlation coefficient using 

properties that is virtually present in all knownelements. 

Artificial intelligence has performed excellently in 

prediction and has been used in several field of study for 

the purpose of prediction and identification.In oil and gas 

industries, It performs excellently in the prediction of 

permeability of carbonates reservoirs[9], in predicting the 

properties of crude oil system[10][11].Artificial intelligence 
has also been widely deployed in medical field through 

identification of skin diseases[12] as well as prostate 

cancers[13],to mention but few. 

Therefore, this work proposed and implemented support 

vector machine to predict atomic radii of the periodic 

element purposely to create room for predicting atomic 

radii of elements that are difficult to determine 

experimentally.  

2.0 Proposed Method 

This research work adopts support vector regression (SVR) 

to predict the atomic radii of elements using their atomic 

number and the number of electron orbit. The approach of 

this work as well as the accuracy achieved(above 99%) 

prove a strong correlation between the atomic number of 

elements as well as its prominence in been adopted as a tool 

for determining atomic radii.  It makes it possible to 

quickly obtain atomic radius of any element characterized 

with atomic number. 

Support vector Regression achieves generalized 

performance by minimizing the generalized error bound 

instead of the observed training error[14] .The goal of SV 

regression as published by Vapnik[15]is to employ kennel 

trick in predicting a function f  with at most,   deviation 

from the actual target y  for all training data set

,[( , ),......( )]i i z zx y x y PxR where   P   represents 

the space of the  input pattern. Let us examine the case of 

linear function for the sole aim of simplicity. We can 

represent the linear functions as  

( ) ,f x w x a   With w P and a R …….. (1) 

The dot product in the space P  of the input pattern is 

represented as  and the flatness is achieved by seeking 

for small w in the equation (1) through minimization of 

Euclidean norm[16]. If we desire to write the problem at 

hand as a convex optimization problem that requires 

minimizing
21
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On the basis that the function f  which approximate all 

pairs of input data ( , )i ix y  with precision , actually 

exist, or we even say that the convex optimization problem 

is feasible. In order to cope with infeasible constraints of 

the optimization which can likely occur, one can introduce 

variable i  and 
*

i  known as slack variables. Therefore, 

we arrive at the formulationproposed by Vapnik[15]. 
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The regularization factorC (which is always greater than 

zero), measures a kind of tradeoff between the flatness of 

the function f and amount to which the deviations from the 

target that are larger than  is tolerated. 

The kernel function is responsible for transforming the data 

set into hyper plane[17][18]. The variables of the kernel 

must be computed accurately since they determine the 

structure of high-dimensional feature space which governs 

the complexity of the final solution. The most commonly 

used kernel functions in the literature are[18][15]: 

Polynomial, Linear, Gaussian, and Sigmoid. Typical kernel 

functions are: 

( , ) ( 1)d

i j i jK x x x x  
   

……………… (6) 

 , ) exp
d

i j i jx x x x  
   

…………….. (7) 

Equation (6) is the polynomial kernel function of degree d 

which will revert to the linear function when d = 1. 

Equation (7) is the Radial Basis Function (RBF) kernel 

with one parameter γ [18][19][20]. 

Other kernel functions are: 

Linear: ( , ) T

i j i jK x x x x   and sigmoid: 

( , ) tanh( )T

i j i jK x x x x r   
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Here , ,  r and d  are kernel parameters.  

Regularization parameter (C) determines the trade-off cost 

between minimizing the training error and minimizing the 

model’s complexity. 

The tube size of the ε-insensitive loss function (ε) is 

equivalent to the approximation accuracy placed on the 

training data. 

Regularization parameters (C) and the tube size of the ε-

insensitive loss function (ε) are constant parameters whose 

values are to be set depending on the problem being 

addressed. 

3.0 Empirical Study 

3.1 Data Set Description 
The data set employed in this research work is a set of 

atomic radii drawn from over 1200 bounds observable in 

different kind of crystals and molecules  as published by 

J.C Slater[4]. Seventy-eight of these radii with their atomic 

numbers and the number of electron’s orbits in each atom 

were randomly selected across the periodic table and 

presented in Table 3.1.0Withthe aid ofMicrosoft excel 

sheet, we obtained the statistical parameters of the data 

such as mean, median,standard deviation and the 

coefficient ofcorrelation between atomic radii and atomic 

number. The statistical results are tabulated in table 3.1.1 

and 3.1.2 

Table 3.1:0 Atomic number (AN), Number of electron orbit 

(EO), and Atomic radii (AR) of all the data set 

Element EO AN AR(Pico 

meter) 

H 1 1 25 

Li 1 3 145 

B 2 5 85 

C 2 6 70 

N 2 7 65 

O 2 8 60 

F 2 9 50 

Mg 3 12 150 

Al 3 13 125 

Si 3 14 110 

P 3 15 100 

Cl 3 17 100 

Ca 4 20 180 

Sc 4 21 160 

Ti 4 22 140 

V 4 23 135 

Cr 4 24 140 

Mn 4 25 140 

Fe 4 26 140 

Co 5 27 135 

Ni 5 28 135 

Cu 5 29 135 

Zn 5 30 135 

Ga 5 31 130 

Ge 5 32 125 

As 5 33 115 

Zr 6 40 155 

W 10 74 135 

Re 11 75 135 

Os 11 76 130 

Ir 11 77 135 

Pt 11 78 135 

Au 11 79 135 

Ti 11 81 190 

Pb 11 82 180 

Bi 12 83 160 

Po 12 84 190 

Ra 12 88 215 

La 8 57 195 

Ce 8 58 185 

Nb 6 41 145 

Mo 6 42 145 

Tc 7 43 135 

Ru 7 44 130 

Rh 7 45 135 

Pd 7 46 140 

Ag 7 47 160 

Cd 7 48 155 

In 7 49 155 

Sn 7 50 145 

Sb 8 51 145 

Te 8 52 140 

Cs 8 55 260 

Ba 8 56 215 

Hf 10 72 155 

Ta 10 73 145 

Th 12 90 180 

Pa 13 91 180 

U 13 92 175 

Np 13 93 175 

Pu 13 94 175 

Am 13 95 175 
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Se 5 34 115 

Br 6 35 115 

Rb 6 37 235 

Sr 6 38 200 

Eu 9 63 185 

Gd 9 64 180 

Tb 9 65 175 

Dy 9 66 175 

Ho 10 67 175 

Er 10 68 175 

Tm 10 69 175 

Yb 10 70 175 

Lu 10 71 175 

Pr 9 59 185 

Nd 9 60 185 

Pm 9 61 185 

Sm 9 62 185 

 

 

 
Table 3.1:1 Statistical results of the data set 

 Mean   STDEV Median 

Atomic radii 150.2 39.61 145 

Atomic 

number 

49 26.41 49 

Number of 

Electron 

Orbit 

7.30 3.35 7 

 
Table 3.1:2 Statistical results of the dataset 

 Atomic 

radii and 

Atomic 

Number 

Atomic radii and 

number of electron’s 

orbit  

Correlation of 

coefficient 
0.618 0.617 

 

 
3.2.0Description of the experiment 

All the programing work in this research work was done 

using MATLABenvironment. The data were first shuffled 
randomly before dividing them into training and testing 
sets in ratio 9 to 1 respectively. They were then normalized 
to keep them within same range and facilitate efficient 
computation. The training datasets were then used in 
training SVM model used in the atomic radii prediction. 
3.2.1Working Principle of Support vector regression 

system as used in this research work 

Support vector regression system is a leaning environment 

where the predictor parameters are related to the desired 

target output through a function generated by the system. 

Two kinds of data set are employed in this kind of 

environment, the training and testing data set. The 

generated predicted target output is compared with the 

desired target so as to determine how they are correlated 

and modify the function until highly correlated results are 

obtained. Meanwhile, a well-trained system is characterized 

bypredictions with high correlation coefficient between the 

actual and predicted values, low root mean square error as 

well aslow absolute error. The second set of data is used to 

test the efficiency and the accuracy of the trained system. In 

this case, the trained system generates output targets with 

the predictordata (atomic number and number of electron’s 

orbits). The correlation of these results is also computed. 

High accuracy in both training and testing data indicates 

high prediction ability of the trained system, although, high 

accuracy on the testing data set is highly desired. 
3.2.2 Optimal parameter search strategy 

Parameter search was carried out purposely to determine 

the support vector regression parameters that give 

maximum performance of the system. The high accuracy 

attained in our predicted values is largely dependent on the 

value of the regularization factor C, the trend of which is 

depicted in the fig 3.1. From the graph, at a small value of 

C (keeping lambda, epsilon, kernel option   at constant 

value of 1e-7, 0.2 and 0.3 respectively and using Gaussian 

as our kernel), the coefficient of correlation between the 

actual and the predicted radii is small and starts to increase 

as the value of C increases.  The maximum performance for 

both testing and training occur when the value of C 

becomes 130 and remain constant therefrom.  

Figure 3.1: The trend of the variation of regularisation factor with the coeficient of correlation

 while keeping other parameters constant
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To ensure accurate utilization of this support vector 

machine, we vary another parameter (i.e. lambda) at the 

optimalvalue of C (i.e.130) in order to show the effect of 

lambda on the Performance of the proposed support vector 

regression. Our result (as can be seen in the fig 3.2) shows 
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that the lambda has no influence in increasing or decreasing 

the performance of the system but rather maintains it at 

constant value. 

Figure 3.2:The trend of the variation of lambda with the coeficient of correlation

 while keeping other parameters constant
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Another parameter that determines the performance of the 

proposed system which was also examined is the epsilon. 

The effect of epsilon, that is, the maximum tolerable 

deviation from the actual radii, is shown in the fig 3.3.  

Using the values of C and Lambda (130 and 0.0000001 

respectively) at which the highest performance was 

observed in the previous graphs, while varying the value of 

epsilon,the coefficient of correlation maintains constant 

value for both testing and training data set up to a value of 

1.4 after which the testing begins to increase and later 

follows another pattern which shows a decrement. In the 

case of the coefficients of correlation for the training data 

set, it decreases after reaching its maximum value. The 

optimal value that yields excellent performance in our 

trained system occurs at a value of 1.4. 

 

 

 

Figure 3.3: The trend of the variation of epsilon with the coefficient of correlation,

keeping other parameters constant
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By varying any one of the search parameters (using C, 

lambda, epsilon and kernel option that determine the 

accuracy of the machine) one after the others, while 

keeping others constant, the coefficients of correlation 

between the experimental atomic radii and the predicted 

atomic radii attain maximum value at the parameters 

indicated in the table 3.2. 
Table3.2: Optimum parameters for SVM 

C 130 

Lambda 1.00E-07 

Epsilon( ) 0.2 

Kernel option 1.4 

 

Kernel Gaussian 

 
3.3Performance quality measures 

The excellent prediction performance of our approach is 

measured by low absolute error (Ea), low root mean square 

error (rmse) and high coefficient of correlation between the 

actual atomic radii and the predicted radii. These prediction 

performance factors are obtained from the following 

equations. 

𝑐𝑐 = 1 −    
𝑅𝑒𝑥𝑝 −𝑅𝑐𝑎𝑙

𝑅𝑒𝑥𝑝
2  

2
𝑛
1  ….……… (3) 

𝑟𝑚𝑠𝑒 =  
1

𝑛
   

𝑅𝑒𝑥𝑝 −𝑅𝑐𝑎𝑙

𝑅𝑒𝑥𝑝
2  

2
𝑛
1  …..….. (4) 

𝐸𝑎 =   
𝑅𝑒𝑥𝑝 −𝑅𝑐𝑎𝑙

𝑛
 
2

𝑛
1 ……………. (5) 
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Where
expR  , calR and n represent the experimental 

atomic radii, the predicted radii and the number of data 
set respectively. 

4.0 Result and Discussion 

We compare the actual (experimentally obtained) 

atomicradii with the predicted radii by the trained   support 

vector regression systemfor the training data set and the 

result is tabulated in table 4.1. The experimental atomic 

radii and the atomic radii predicted by our developed 

systemare so close to the extent that the differences are 

hardly seen graphically as indicated in the fig 4.1 and the 

table 4.1 

Figure 4.1:A graph of the actual atomic radii and the atomic radii predicted while training  our system
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Table 4.1: The Actual and predicted atomic radii while 

training our system (Accuracy of 99.58%) 

Element Experimental 

atomic radius 

Predicted 

atomic radii 

Th 180 179.80 

Ti 140 140.20 

Li 145 144.80 

F 50 50.20 

Zr 155 154.80 

Sm 185 184.80 

Cl 100 100.20 

Ag 160 160.20 

Ca 180 179.80 

Nb 145 145.20 

H 25 25.20 

Rb 235 234.80 

Np 175 174.80 

P 100 100.20 

Pt 135 135.20 

Cr 140 140.20 

Mo 145 145.20 

U 175 174.80 

Al 125 125.20 

V 135 135.20 

Ce 185 184.80 

Os 130 130.20 

W 135 135.20 

Cs 260 259.80 

Tb 175 174.80 

Pm 185 184.80 

Gd 180 179.80 

Pa 180 179.80 

Sn 145 144.80 

Ra 215 214.80 

Dy 175 174.80 

Se 115 115.20 

Re 135 135.20 

Br 115 115.20 

Eu 185 184.80 

Fe 140 140.20 

Hf 155 155.20 

Cu 135 135.20 

In 155 154.80 

Ho 175 174.80 

Cd 155 155.20 

Ti 190 189.80 

Er 175 174.80 

C 70 70.20 

Tm 175 174.80 

O 60 60.20 

Nd 185 184.80 

B 85 85.20 

Sc 160 160.20 

Po 190 189.80 

Ta 145 144.80 

As 115 115.20 

Mg 150 149.80 

Ge 125 125.20 

Ni 135 135.20 

Bi 160 159.80 

Co 135 135.20 

Pb 180 179.80 

Yb 175 174.80 

Lu 175 174.80 

Zn 135 135.20 

Sr 200 199.80 

Pr 185 184.80 

Ir 135 134.80 
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Ba 215 214.80 

Pd 140 140.03 

Si 110 110.20 

Ga 130 130.20 

Mn 140 140.20 

Pu 175 174.80 

Sb 145 145.20 

N 65 65.20 

 
In the same vein, for the testing data set, the actual and the 

predicted radii were also compared and they are highly 

connected with close values as can be seen from the fig 4.2 

as well as the table 4.2. 

Figure 4.2:A graph of the actual atomic radii and the atomic radii predicted while testing our trained system
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Table 4.2: The Actual and predicted atomic radii while 

testing our trained system (Accuracy of 99.63%). 

Element Experimental 

Atomic 

radii(Pico 

Meter) 

Predicted Atomic 

radii (Pico 

meter)while testing 

our system 

Te 140 140.2 

Rh 135 134.8 

Ru 130 130.2 

Tc 135 132.652 

Au 135 135.2 

Am 175 174.8 

 

 

 
The accuracy of our results on the basis of the coefficients 

of correlation between the actual(as atomic radii as 

obtained experimentally) and the predicted atomic radii 

using support vector regression is depicted in table 4.3. We 

also achieved low root mean square and absolute errors for 

the training and testing data set. These high accuracies in 

both the training and the testing set give strong indication 

that the predictor variables (atomic number and the number 

of electron’s orbits) that we employed in predicting the 

atomic radii are good parameters for the prediction.  The 

chosen predictor parameters facilitate this excellent 

prediction ability as deducted from its statistical analysis in 

table1.1. 

Table 4.3:  Results 

 Training 

data set 

Testing data set 

Coefficient of 

correlation 
0.996 0.996 

Root mean 

square error 
4.255 3.695 

Absolute error 1.668 1.940 

 
 

5.0    Conclusion and recommendation 

Our findings in this research work show that the atomic 

radii elements can be accurately and easily predicted 

directly from their atomic numbers using support vector 

machine.Comparison of our predicted atomic radii with 

actual(experimental obtained) atomic radii shows 

excellentcorrelation. Thesuccess of this approachconfers 

confidence in extending and recommending theproposed 

method to predict atomic radii of elements that are difficult 

to obtain experimentally. 
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