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Abstract—This work presents some results on 

multiple errordetection and correction based on 

the Redundant Residue NumberSystem (RRNS). 

RRNS is often used in parallel 

processingenvironments because of its ability to 

increase the robustnessof information passing 

between the processors. The proposedmultiple 

error correction scheme utilizes the Chinese 

RemainderTheorem (CRT) together with a novel 

algorithm that significantlysimplifies the error 

correcting process for integers. An extensionof the 

scheme further reduces the computational 

complexitywithout compromising its error 

correcting capability. Proofs andexamples are 

provided for the coding technique which be 

implemented using Cadence virtuoso tool of 

180nm CMOS process. 

Index Terms—Arithmetic codes, error correction 

coding, maximumlikelihood decoding, redundant 

number systems, residuecodes. 

INTRODUCTION 

The integrity of information passing through 

moderndigital systems such as filters and arithmetic 

units isof utmost importance different coding 

schemes have beenemployed to achieve reliable and 

efficient transmission ofdata through these systems 

[1] an area of particular interestis error detection and 

correction using a Redundant ResidueNumber 

System. A Residue Number System (RNS)for 

integers describes methods of representing an integer 

as aset of its remainders or residues. Error control is 

achieved byaddition of extra residue hence the term 

RRNS and the RRNS code used in this work uses the 

Chinese RemainderTheorem (CRT) as a means of 

recovering the integerfrom a set of its residues.  

Error correcting codes based onthe CRT are 

attractive because of their ability to performcarry-free 

arithmetic and lack of ordered significance amongthe 

residues [2]. Significant work concerning RRNS has 

beencarried out by numerous parties after the initial 

push by [3],[4]. They introduced some of the 

concepts relatedto this error correction technique 

such as the terms legitimaterange and illegitimate 

range for consistency checking.  

In [1],a discussion of a single residue error 

correction algorithmis given. [6] and [7] addressed 

the problem of double andmultiple residue error 

correction, respectively.There are generally two 

different strategies employed tocorrect errors in a 

redundant residue code. The first method calculates 

the syndromes of received residues and then 

comparesthem with a set of predetermined 

observations. Fromthere, conclusions are drawn and 

the appropriate integerrecovery algorithm is 

performed. This is similar to algorithmsgiven in [1] 

and [7].  

The second method begins by recoveringthe 

erroneous integer from the received residues using 

theCRT. Subsequently, an error value is estimated 

using eithercontinued fractions or integer 

programming. The correct integeris thus recovered by 

subtracting the error value from theerroneous integer. 

[5] And [6] suggested algorithms using this 

strategy.In this paper, a novel error correction scheme 

based onthe second strategy is proposed. This scheme 

is similarto that in [5] and [6].  

However, the proposed scheme 

issignificantly simpler and does not require any 

complicatedoptimization algorithms. Briefly, in this 

scheme, the erroneousinteger that is computed from 

its residues is used in a simplemodular calculation 

that is iterated until the original integeris recovered. 

The algorithm is straightforward and easier 

toimplement. Furthermore, the theory and concept of 

this errorcorrection scheme is extended to make it 

more efficient andless computationally intensive.The 

presentation of this work can be divided into five 

sections.In Section II, some initial concepts and 

materials relatedto the RRNS and CRT are given. 

The major contributionof this paper, which is the 

multiple error correction scheme,is given in Section 

III.  
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In this section, mathematical proofsand 

examples are given to illustrate the salient features 

ofthe error correction scheme. Section IV discusses 

techniquesthat are used to improve performance of 

the scheme, withoutcompromising its error correcting 

capabilities. Conclusionsand recommendations are 

given in Section V. 

REDUNDANT RESIDUE NUMBER SYSTEMS 

AND CHINESE REMAINDER THEOREM  

To enable error correcting capabilities in RRNS, 

somerelevant background and terminologies must be 

first defined.To begin, a set of n pairwise relatively 

prime positive integersm1,m2, . . . , mi,mi+1, . . .,mn 

called moduli is selected. 

Note that the term moduli is the plural of modulus. 

Themoduli mi are chosen such that, the greatest 

common divisor,gcd(mi,mj) = 1 for each pair of i and 

j with i = j andm1 < m2 < . . . < mi < mi+1 < . . . 

<mn. Fromthis set of n moduli, the first k moduli 

form a set of nonredundantmoduli while the last r = n 

− k moduli form aset of redundant moduli [1]. These 

sets of moduli are used todefine the following,Mk = 

m1MR =N i=k+1miM =ni=1mi = MK ·MR (2)for i = 

1, 2,  k, k + 1, . . . , n. It can be seen that MK isthe 

smallest product of k different mi’s.  

 

 

Fig.1. Scheme for the Number system generation 

As with other error correction codes, the redundant 

components are used for error detection and 

correction. Without loss of generality, an integer X in 

the range of [0,M) where M is as defined in (2), can 

be uniquely represented by a residue vector x = {x1, 

x2, . . . , xn} using X ≡ xi (modmi) (3) for i = 1, 2, . . 

. , k, k+1, . . . , n. With (3), each of the residues xi 

corresponds to X modulo mi such that 0 ≤ xi < mi. As 

shown in the fig.1. 

However, for error correction to work, X has to be 

selectedfrom the range of [0,MK) instead, where MK 

is from (1). Indoing so, the residue vector x can be 

divided into two parts,namely the first k residues 

called information residues and theremaining r 

residues called redundant residues [1].Without loss of 

generality again, when a residue vectorx is given, the 

corresponding integer X can be uniquelydetermined 

by simultaneously solving all n linear congruencesin 

(3). The problem of simultaneously solving a set of 

linearcongruences is simplified by using the CRT as 

shown belowX =ni=1xiMiaimodM (4)whereMi = 

Mmiand ai = M−1i modmifori = 1, 2, . . ., n. The 

integersai are also known as themultiplicative 

inverses of Mimod mi. If X is selected fromthe range 

of [0,MK), any k residues out of the total n 

residuesfrom the residue vector x, where n > k should 

be sufficientin recovering the original integer X.From 

[1], when the integer X is chosen from the rangeof 

[0,MK), the resulting redundant residue code can 

beconsidered semiinear.Theorem 1: A code Ω based 

on a redundant residue numbersystem has the 

minimum nonzero Hamming weight wtmin ≥r + 1 

and minimum distance dmin ≥ r + 1 [8]. 
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Fig.2. NUMBER SYSTEM MODULE 

According to Theorem 1, since the minimum distance 

can have the value of r + 1, the code Ω can be 

considered maximum distance separable (MDS). 

MDS codes are codes that have dmin = r + 1. 

Theorem 2: A code Ω based on a redundant residue 

number system can correct up to t errors; t ≤ r/2 

where  is the largest integer less than or equal to ∗ 

[8]. MDS codes are attractive because they are 

optimal whereby they can correct the maximum 

amount of errors t, with the least number of 

redundancies. Code generation circuit as shown in 

fig.2. 

 

MULTIPLE ERROR CORRECTION SCHEME 

For the multiple error correction scheme, first 

consider aredundant residue code with a set of 

moduli mi. An integerX is selected from the range 

[0,MK) and the residue vector isx = {x1, x2, . . . , 

xn}. n and k are chosen such that Theorem2 holds, 

thus allowing this code to correct up to t errors.From 

here onwards, let the range [0,MK) be termed as 

thelegitimate range while its counterpart, the range 

[MK,M) betermed as the illegitimate range. Suppose 

that t errors havebeen introduced into the vector y 

when it passes through apotentially noisy system. 

The resulting vector is y, that isy = x +e{y1, . . . ,yn} 

= {x1, . . . , xn}+ {eu1, . . . , 0, eu2, . . . , eut} 

(5)where 0 ≤ euj<muj for 1 ≤ j ≤ t. The errorvalues 

are eu1, eu2, . . . , euj, euj+1, . . .eut and the 

subscriptsu1, u2, . . . , uj, uj+1, . . . , ut are the 

positions of errors withiny. Upon receiving the vector 

y, error detection is first performedby determining 

whether y is a valid vector.  

 

Fig.3. Number system schedule module 

This canbe accomplished by computing the 

corresponding integer Yusing a formula based on (4), 

which isY =ni=1yiMiaimodM (6)where Mi and ai are 

as defined earlier for (4). If the recoveredY is within 

the legitimate range, then y is a valid vector andno 

further steps need to be carried out. On the other 

hand, if Yis in the illegitimate range, it can then be 

concluded that y haserrors in its residue. When there 

are errors, the relationshipbetween X and Y isX ≡ (Y 

− E) (modM) , 0 ≤ E ≤ M. (7)In (7), E is the amount 

of error that has propagated into theX resulting in the 

erroneous Y . The magnitude of the errorE can be 

calculated using the CRT and is determined to beE 

≡tj=1eujMujauj (modM) (8)where Muj,muj and auj 

are the corresponding values of Mi,mi and ai for i = 

uj.To simplify the decoding problem, let E in (8) be 

expressedin its expanded form, givingE 

≡eu1Mmu1au1 + . . . + eutMmutaut(modM) . (9)Let 

M from (2) be expressed asM =ni=1mi =utα=u1mα 

·ln−tβ=l1mβ (10)where u1, u2, . . . , uj, uj+1,. . . , ut 

are the positions of residueswith errors and l1, l2, . . . 

, ln−t are the remaining positionswithout errors inside 

the vector y. By substituting (10) into(9), (11) is 

obtained. Continue by lettingg = eu1ut=u1α=u1mα · 

au1 + . . . + eut·utα=u1α=utmα · autZc =ln−tβ=l1mβ 
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EXTENSION TO ERROR CORRECTION 

SCHEMES BASEDON THE RRNS 

While error correction algorithm has been proven to 

work,the recovery process can still be 

computationally intensive. Alarge number of 

iterations is sometimes required to correctlyguess the 

positions of the errors. The systematic approachof 

trying all possible combinations means that it will 

take atmost p = nCt trials.  

 

 

Fig.4. Transient analysis 

The variables n and t are the number of residues and 

correctable errors for a (n, k) code, respectively. 

Designing a code that can correct more errors 

requires that the number of residues be increased too. 

As a result, the number of trials p will grow, 

increasing the computational overhead. To remedy 

this shortcoming, the multiple error correction 

algorithm presented earlier in Section III needs to be 

modified. Firstly, recall that exactly t errors can be 

corrected using (13). In addition, it has been shown 

that any errors less than t can also be corrected with 

(13).   

 

Fig.5. Transient analysis 

This is possible as long as Zc isthe product of any (n 

− t) moduli corresponding to residueswithout errors.If 

the multiple error correction algorithm was set to 

correcto errors where o > t,any errors less than o can 

also becorrected. However, ambiguity will arise 

because more thanone possible solution will fall 

within the legitimate range. Theproblem is caused by 

the fact that the algorithm is attemptingto correct 

more errors then it possibly can.  
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Fig.6. Module transient analysis 

Therefore, thesolutions are for residues with γ, t+1, 

t+2,  o errors whereγ ∈ {0, 1, . . . , t−1, t}. To resolve 

the ambiguity, solutions forresidues with t+1, t+2,  o 

errors will have to eliminated.A very simple way of 

eliminating nonsensical solutions isto use the 

maximum likelihood decoding (MLD). Let the setof 

solutions of a scheme that has been set to correct o 

errors The only value of Vi that has a Hamming 

distance whichis less than or equal to t = 2 is 51. 

Therefore, the modifiederror correction algorithm has 

correctly recovered the originalinteger.  

Table I 

K0 2.5V 2.25V 0.8V 1.5V 

Length 14 12 8 6 

Soft 

error 1 

0% 0.9% 6.5% 13% 

Soft 

error 2 

0% 0.8% 5.5% 11% 

Soft 

error 3 

0% 0.7% 5.5% 10% 

Soft 

error 4 

0% 0.6% 4.5% 9% 

 

 

Fig.6. Comparison analysis 

Although the total number of iterations shown inthis 

example is three, the original integer could have 

beenrecovered in the second iteration.The overall 

performance gain of the modified algorithmcompared 

to the original algorithm is shown in Fig. 1. 

Theeffects of the modified algorithm are more 

significant whenthe total number of correctable 

errors, t is larger. Note thatthe number of trials for the 

modified algorithm f, is obtainedexperimentally and 

are obtained for worst case situationswhere the 

maximum number of iterations need to carried out. 

CONCLUSIONS 

The single error correction scheme is significantly 

simplerand does not require any complicated 

optimization algorithmsuch as those used by [6]. 

Furthermore, the algorithm is quitestraightforward 

and easy to implement as it has been shown inthe 

procedural codes. Unlike the scheme proposed by [1], 

thisalgorithm can be easily improved upon to correct 

multipleerrors without major changes in the 

algorithm. However,the proposed multiple error 

correction scheme does requiremore iterations in 

order to correct the errors. This limitation increases 

the computational overhead in terms of resourcesand 

time. In addition, when using the CRT, large 
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numbersmay be encountered that can further reduce 

the performanceof the algorithm. It be implemented 

using a Cadence virtuoso 180nm technology. 
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