
International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.4, No.4, April 2015 DOI:10.15693/ijaist/2015.v4i2.325-329

Efficient radix 2
k

 FFT Architecture

Mrs.R.Pavithra[1], S.Manoj Prabhakar[2],
Assistant Professor,KLNCE M.Marichamy[3],L.S.Karthik[4],

KLNCE.

Abstract—The Fast Fourier Transform (FFT) is one of the

most important algorithms in the field of digital signal
processing. It is used to calculate the discrete Fourier transform

(DFT) efficiently. The aim of the project is to design the radix-2
k

FFT architecture. In feed forward architectures radix-2
k

 can be

used for any number of parallel samples which is a power of two.
Furthermore, both decimation in frequency (DIF) and
decimation in time (DIT) decompositions can be used. In addition
to this, the designs can achieve a very high throughput, which
makes them suitable for the most demanding applications.
Indeed ,the proposed radix-feed forward architectures require
fewer hardware resources.

I. INTRODUCTION

Application using frequency analysis of discrete-time

signals in digital signal processor is the most convenient
method especially in general-purpose digital computer or
specially designed digital hardware. Frequency analysis is
performed on a discrete-time signal {x(n)} by converting the
time-domain sequence to an equivalent frequency-domain

presentation

A straight forward representation of the Fourier transform

is illustrated in figure 1.1. the figure, it shows the essence of
the Fourier transform of a waveform is to decompose or
separate the waveform into a sum of sinusoids of different
frequency. Thus the pictorial representation of the Fourier

transforms is a diagram which displays the amplitude and
frequency of each of the determined sinusoids.

The Fourier transform identifies or distinguishes the

different frequency sinusoids and their respective amplitudes
which combine to form an arbitrary waveform.
Mathematically , this relationship is stated as,

The representation of finite Fourier Transform is given in

{X(n)} of the sequence {x(n)}. Since {X(n)} is continuous
function in frequency domain Fourier Transform, it is not
computationally convenient to be represented by the sequence

of {x(n)}. However the sequence of {x(n)} can be represented
by sampling the spectrum {X(ω)} . This frequency domain
representation leads to the discrete Fourier Transform (DFT),
which is an important algorithm for performing frequency

analysis of discrete-time signal. Discrete Fourier Transform

(DFT) based signal processing is widely used and plays a
significant role in digital signal processing algorithm.

Fig .1.1 Interpretation of the Fourier transform

FAST FOURIER TRANSFORM

Fast Fourier Transform is a high efficient algorithm to
compute the DFT. For the given round of error the FFT
algorithm results in an equivalent data representation with the
calculated DFT computation. The basic idea of this approach

is to decompose the N-point DFT into successively smaller
DFT. Eventually, this approach leads to a family of highly
efficient computation of FFT algorithm.

Fast Fourier Transform is popularized by J. W. Cooley of

IBM and John W. Tukey of Princeton University when they
published a paper in 1965 which describes the fast

computation of DFT. Several architectures have been
proposed based on Cooley-Tukey algorithm to further reduce
the computational complexity, including radix-2, radix-4 and
split radix.

DECIMATION IN TIME
Decimation is the process of breaking down something

into it's constituent parts. Decimation in time involves
breaking down a signal in the time domain into smaller

signals, each of which is easier to handle. This process of
decimating the signal can easily be visualized. The first
breakup into two N/2 point DFT can be shown as:

48

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.4, April 2015 DOI:10.15693/ijaist/2015.v4i2.325-329

Fig.1.2 Breakup into two N/2 point DFT

The Recombine Algebra mentioned in the diagram is just
used to combine the samples again in the correct order. This is
repeated again and again until you reach a series of two point
DFTs e.g. For an 8 sample signal:

Fig 1.3 Breakup for an 8 sample signal

Since the recombination algebra takes N complex
multiplications and there are log2 (N) stages, the approx

number of complex multiplications is N log2(N).This means

that this decimation approach has reduced the number of
complex multiplications from N squared (N2) to N log2 (N).
At high values of N (i.e., large signals) this is a massive
saving.

DECIMATION IN FREQUENCY
So far you’ve seen the FFT implemented by decimating the

signal in the time domain. It is also possible to implement the
FFT by decimating the signal in the frequency domain and
recombine the signal in the time domain. Apart from the
difference it follows the same pattern as the decimation in

time method. The first stage is breaking the N point signal
down into two N/2 point DFTs.

Compare this to the DFT diagram to see how the breakdown
& recombination has been reversed. Just the same as the
Decimation in Time method, the breakdown is continued until

it reaches a series of two point DFTs such as this:

Fig 1.3 Breakup of series two point DFT

II. RADIX 2 DIF FFT

For radix-2,the DIF decomposition splits the output
sequence into even and odd samples.The following equations
are obtained

The N-point DFT is transformed into N/2 DFTs.Applying
the procedure iteratively leads to the decomposition into 2-
point DFTs.Fig 2.1 shows the flow graph of 8-point radix-2
DIF FFT.

Fig. 2.1. Flow graph of a radix-2 8 point DIF-FFT

The graph is divided into 3 stages and each of them consists
of set of butterflies and multipliers.The twiddle factor in

between the stages indicate the multpilicaiton by Wn
k

, where

WN denotes the Nth root of unity, with its exponent evaluated
modulo N. This algorithm can be represented as a data flow
graph (DFG) as shown in Fig. 2.2.The nodes in the DFG
represent tasks or computations.

49

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.4, April 2015 DOI:10.15693/ijaist/2015.v4i2.325-329

,

Fig.2.2.Data Flow graph (DFG) of a radix-2 8-point DIF FFT.

In this case, all the nodes represent the butterfly

computations of the radix-2 FFT algorithm. In particular,

assume nodes A and B have the multiplier operation on the

bottom edge of the butterfly. The folding transformation is

used on the DFG in Fig. 2.2 to derive a pipelined architecture.

To transform the DFG, we require a folding set, which is an

ordered set of operations executed by the same functional unit.

Each folding set contains K entries some of which may be null

operations. K is called the folding factor, the number of

operations folded into a single function unit. The operation in

the j-th position within the folding set (where j goes from 0 to

K - 1) is executed by the functional unit during the time

partition j. The term j is the folding order, the time instance to

which the node is scheduled to be executed in hardware.

For example, consider the folding set A = (φ, φ, φ, φ,

A0, A1, A2, A 3) for K = 8. The operation A0 belongs to the

folding set A with the folding order 4. The functional unit A

executes the operations A0, A1, A2, A3 at the respective time

instances and will be idle during the null operations. We use
the systematic folding techniques to derive the 8-point FFT
architecture. Consider an edge e connecting the nodes U and V
with w(e) delays. Let the executions of the l-th iteration of the
nodes U and V be scheduled at the time units Kl + u and Kl +
v, respectively, where u and v are the folding orders of the
nodes U and V. The folding equation for the edge e is

DF (U -> V) = Kw(e) - PU + v – u (2.3)

where PU is the number of pipeline stages in the hardware

unit which executes the node

RADIX-2
2

 DIF FFT

Fig.2.3.16 Point Radix-2
2

 DIF-FFT architecture

After these two stages,full multipliers are required to
compute the product of decomposed twiddle factors.The

complete radix-2
2

 algorithm can be derived by applying

recursively.Fig.2.3 shows the flow graph of an N=16 point
FFT decomposed according to decimation in frequency
(DIF).The numbers at the input and output of the graph
represent the index of input and output

samples,respectively.The advantage of the algorithm is that it

has the same multiplicative complexity as radix-4
algorithm,but still retains the radix-2 butterfly structures.We

can observe that, only every other stage of the flow graph has
non-trival mulplications. The –j notion represents the trival

multiplication,which involves only real-imaginary swapping

and sign inversion.

III 4 PARALLEL RADIX-2
2

 FEED
FORWARD ARCHITECTURE

The feed forward architectures,also known as multi-path

delay commutator (MDC) do not have feedback loops and
each stage passes the processed data to the next stage.These
architectures can also process several samples in parallel.In
current real-time applications,the FFT has to be calculated at
very high throughput rates,even in the range of Giga samples
per second.The Radix-2

k
 was presented for the SDF FFT as an

improvement on radix-2 and radix-4.Next,radix-2
3

 and radix-

2
4

,which enable certain complex multipliers to be
simplified,were also presented for the SDF FFT.An

explanation of radix-2
k

 SDF architectures can be found
in.Finally,the current need for high throughput has been met
by the MDF,which includes multiple interconnected SDF

paths in parallel.However,radix-2
k

 has not been considered for

feed forward architecture until the first radix-2
2

 feed forward
FFT architectures were proposed.The paper shows that radix-

2
k

 can be used for any number of parallel samples which is a

power of two.Accordingly,radix-FFT architectures for 2,4, and
8 parallel samples are presented.These architectures are shown
to be more hardware-efficient than previous feed forward and
parallel feedback design in the literature.This makes them very
attractive for the computation of the most demanding
applications.4-parallel architecture can be derived using the
following folding sets.

50

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.4, April 2015 DOI:10.15693/ijaist/2015.v4i2.325-329

Fig.3.1 Proposed 4-parallel (Architecture 2) for the computation of 16-point
radix- 2 DIF FFT

The DFG shown in Fig is retimed to get the non-negative
folded delays. The final architecture can be obtained following
the proposed approach. For an N-point FFT, the architecture
takes 4(log4N ¡ 1) complex multipliers and 2N ¡ 4delay
elements. We can observe that hardware complexity is almost
double that of the serial architecture and processes 4-samples
in parallel. The power consumption can be reduced by 50% by
lowering the operational frequency of the circuit.As for radix-

2
2

, these properties have been obtained directly from the flow

graphs of the algorithms. The conditions for butterflies are the
same for all stages of the FFT, whereas the conditions for
rotations depend on the stage, S . Rotations are classified into

trivial (T), non-trivial (NT), and rotations by W8 or W16.
Rotations by and are not-trivial, but include a reduced set of

angles. According the rotations by W8 only consider angles

that are multiples of ∏/4, whereas W16 only includes

multiples of ∏/8. This allows for the simplification of the
rotators that carry out the rotations. For this purpose, different
techniques have been proposed in the literature. They include
the use of trigonometric identities, the representation of the
coefficients in canonical signed digit (CSD) and the scaling of
the coefficients.

Reordering of output samples

Reordering of the ouput samples is an inherent problem in

FFT computation.The outputs are obtained in bit-reversal

order in the serial architectures.In general the problem is

solved by using a memory of size N.Samples are stored in

memory in natural order using counter for the addresses and

then they are read it in bit-reversal order by reversing the bits

of the counter. In embedded DSP systems, special memory

addressing schemes are developed to solve this problem. But

in case of real-time systems, this will lead to an increase in

latency and area. The order of the output samples in the

proposed architectures is not in the bit-reversed order. The

output order change for different architectures because of

different folding sets/scheduling schemes. We need a general

scheme for reordering these samples. One such approach is

presented in this section. The approach is described using a

16-point radix-2 DIF FFT example and the corresponding

architecture is shown in Fig.3.3. The order of output samples

is shown in Fig. 3.2

Fig 3.2 solution to the reordering of outuput samples

The first column (index) shows the order of arrival of the

output samples. The second column (output order) indicates

the indices of the output frequencies. The goal is to obtain the

frequencies in the desired order provided the order in the last

column. We can observe that it is a type of de-interleaving

from the output order the final order. Given the order of

samples, the sorting can be performed in two stages. It can be

seen that the first and the second half of the frequencies are

interleaved. The intermediate order can be obtained by de-

interleaving these samples as shown in the table. Next, the

final order can be obtained by changing the order of the

samples. It can be generalized for higher number of points; the

reordering can be done by shuffling the samples in the

respective positions according to the final order required.
A shuffling circuit is required to do the de-

interleaving of the output data. Fig.3.3 shows a general circuit
which can shuffle the data separated by R positions. If the
multiplexer is set to ”1” the output will be in the same order as
the input, whereas setting it to ”0” the input sample in that

position is shuffled with the sample separated by R positions.

Fig 3.3 Basic circuit for data shuffling

IV.CONCLUSION

This architecture can be extended to radix-
 k feedforward

(MDC) FFT architectures. Indeed, it is shown that feedforward structures are more efficient than

feedback ones when several samples in parallel must be processed.

In feedforward architectures radix -
k

can be used for any

number of parallel samples which is a power of two. Indeed, the
number of parallel samples can be chosen arbitrarily depending of
the throughput that is required. Additionally, both DIF and DIT
decompositions can be used.

REFERENCES

[1] L. Yang, K. Zhang, H. Liu, J. Huang, and S. Huang, “An efficient

locally pipelined FFT processor,” IEEE Trans. Circuits Syst. II,
Exp. Briefs, vol. 53, no. 7, pp. 585–589, Jul. 2006.

[2] H. L. Groginsky and G. A. Works, “A pipeline fast Fourier
transform,” IEEE Trans. Comput., vol. C-19, no. 11, pp. 1015–

1019, Oct. 1970.
[3] A. M. Despain, “Fourier transform computers using CORDIC

itera-tions,” IEEE Trans. Comput., vol. C-23, pp. 993–1001, Oct.
1974.

[4] S. He and M. Torkelson, “Design and implementation of a 1024-

51

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.4, April 2015 DOI:10.15693/ijaist/2015.v4i2.325-329

point pipeline FFT processor,” in Proc. IEEE Custom Integr.
Circuits Conf., 1998, pp. 131–134.

[5] M. A. Sánchez, M. Garrido, M. L. López, and J. Grajal,
“Implementing FFT based digital channelized receivers on
FPGA platforms,” IEEE Trans. Aerosp. Electron. Syst., vol.
44, no. 4, pp. 1567–1585, Oct. 2008.

[6] A. Cortés, I. Vélez, and J. F. Sevillano, “Radix FFTs: Matricial
representation and SDC/SDF pipeline implementation,” IEEE
Trans. Signal Process., vol. 57, no. 7, pp. 2824–2839, Jul. 2009.

[7] E. H. Wold and A. M. Despain, “Pipeline and parallel-pipeline
FFT processors for VLSI implementations,” IEEE Trans.
Comput., vol. C-33, no. 5, pp. 414–426, May 1984.

[8] S.-N. Tang, J.-W. Tsai, and T.-Y. Chang, “A 2.4-GS/s FFT
processor for OFDM-based WPAN applications,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 57, no. 6, pp. 451–455, Jun.
2010.

[9] H. Liu and H. Lee, “A high performance four-parallel 128/64-
point radix- FFT/IFFT processor for MIMO-OFDM systems,” in
Proc. IEEE Asia Pacific Conf. Circuits Syst., 2008, pp. 834–8

[10] L. Liu, J. Ren, X. Wang, and F. Ye, “Design of low-power, 1

GS/s throughput FFT processor for MIMO-OFDM UWB

communication system,” in Proc. IEEE Int. Symp. Circuits Syst.,

2007, pp. 2594–2597.

52

