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Abstract—The Fast Fourier Transform (FFT) is one of the 

most important algorithms in the field of digital signal 
processing. It is used to calculate the discrete Fourier transform 

(DFT) efficiently. The aim of the project is to design the radix-2
k 

FFT architecture. In feed forward architectures radix-2
k

 can be 

used for any number of parallel samples which is a power of two. 
Furthermore, both decimation in frequency (DIF) and 
decimation in time (DIT) decompositions can be used. In addition 
to this, the designs can achieve a very high throughput, which 
makes them suitable for the most demanding applications. 
Indeed ,the proposed radix-feed forward architectures require 
fewer hardware resources. 
 

I. INTRODUCTION 
 

Application using frequency analysis of discrete-time 

signals in digital signal processor is the most convenient 
method especially in general-purpose digital computer or 
specially designed digital hardware. Frequency analysis is 
performed on a discrete-time signal {x(n)} by converting the 
time-domain sequence to an equivalent frequency-domain 

presentation 

 
A straight forward representation of the Fourier transform 

is illustrated in figure 1.1. the figure, it shows the essence of 
the Fourier transform of a waveform is to decompose or 
separate the waveform into a sum of sinusoids of different 
frequency. Thus the pictorial representation of the Fourier 

transforms is a diagram which displays the amplitude and 
frequency of each of the determined sinusoids. 

 
The Fourier transform identifies or distinguishes the 

different frequency sinusoids and their respective amplitudes 
which combine to form an arbitrary waveform. 
Mathematically , this relationship is stated as,  
 

 
The representation of finite Fourier Transform is given in 

{X(n)} of the sequence {x(n)}. Since {X(n)} is continuous 
function in frequency domain Fourier Transform, it is not 
computationally convenient to be represented by the sequence 

of {x(n)}. However the sequence of {x(n)} can be represented 
by sampling the spectrum {X(ω)} . This frequency domain 
representation leads to the discrete Fourier Transform (DFT), 
which is an important algorithm for performing frequency 

analysis of discrete-time signal. Discrete Fourier Transform 

 
 
 

 
(DFT) based signal processing is widely used and plays a 
significant role in digital signal processing algorithm.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig .1.1 Interpretation of the Fourier transform 

 
FAST FOURIER TRANSFORM  

Fast Fourier Transform is a high efficient algorithm to 
compute the DFT. For the given round of error the FFT 
algorithm results in an equivalent data representation with the 
calculated DFT computation. The basic idea of this approach 

is to decompose the N-point DFT into successively smaller 
DFT. Eventually, this approach leads to a family of highly 
efficient computation of FFT algorithm. 

 
Fast Fourier Transform is popularized by J. W. Cooley of 

IBM and John W. Tukey of Princeton University when they 
published a paper in 1965 which describes the fast 

computation of DFT. Several architectures have been 
proposed based on Cooley-Tukey algorithm to further reduce 
the computational complexity, including radix-2, radix-4 and 
split radix.  

DECIMATION IN TIME  
Decimation is the process of breaking down something 

into it's constituent parts. Decimation in time involves 
breaking down a signal in the time domain into smaller 

signals, each of which is easier to handle. This process of 
decimating the signal can easily be visualized. The first 
breakup into two N/2 point DFT can be shown as: 
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Fig.1.2 Breakup into two N/2 point DFT  
 

The Recombine Algebra mentioned in the diagram is just 
used to combine the samples again in the correct order. This is 
repeated again and again until you reach a series of two point 
DFTs e.g. For an 8 sample signal:  
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 1.3 Breakup for an 8 sample signal 
 

Since the recombination algebra takes N complex 
multiplications and there are log2 (N) stages, the approx  

number of complex multiplications is N log2(N).This means 

that this decimation approach has reduced the number of 
complex multiplications from N squared (N2) to N log2 (N). 
At high values of N (i.e., large signals) this is a massive 
saving.  

DECIMATION IN FREQUENCY  
So far you’ve seen the FFT implemented by decimating the 

signal in the time domain. It is also possible to implement the 
FFT by decimating the signal in the frequency domain and 
recombine the signal in the time domain. Apart from the 
difference it follows the same pattern as the decimation in 

time method. The first stage is breaking the N point signal 
down into two N/2 point DFTs.  
 
 
 
 
 
 
 
 
 

 

Compare this to the DFT diagram to see how the breakdown  
& recombination has been reversed. Just the same as the 
Decimation in Time method, the breakdown is continued until 

 

it reaches a series of two point DFTs such as this: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig 1.3 Breakup of series two point DFT 
 

II. RADIX 2 DIF FFT 

 

For radix-2,the DIF decomposition splits the output 
sequence into even and odd samples.The following equations 
are obtained  
 
 
 
 
 
 

 

The N-point DFT is transformed into N/2 DFTs.Applying 
the procedure iteratively leads to the decomposition into 2-
point DFTs.Fig 2.1 shows the flow graph of 8-point radix-2 
DIF FFT.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2.1. Flow graph of a radix-2 8 point DIF-FFT 

 
The graph is divided into 3 stages and each of them consists 
of set of butterflies and multipliers.The twiddle factor in 

between the stages indicate the multpilicaiton by Wn
k

, where  

WN denotes the Nth root of unity, with its exponent evaluated 
modulo N. This algorithm can be represented as a data flow 
graph (DFG) as shown in Fig. 2.2.The nodes in the DFG 
represent tasks or computations. 
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,  
 
 
 
 
 
 
 
 
 
 
Fig.2.2.Data Flow graph (DFG) of a radix-2 8-point DIF FFT. 

 

In this case, all the nodes represent the butterfly 

computations of the radix-2 FFT algorithm. In particular, 

assume nodes A and B have the multiplier operation on the 

bottom edge of the butterfly. The folding transformation is 

used on the DFG in Fig. 2.2 to derive a pipelined architecture. 

To transform the DFG, we require a folding set, which is an 

ordered set of operations executed by the same functional unit. 

Each folding set contains K entries some of which may be null 

operations. K is called the folding factor, the number of 

operations folded into a single function unit. The operation in 

the j-th position within the folding set (where j goes from 0 to 

K - 1) is executed by the functional unit during the time 

partition j. The term j is the folding order, the time instance to 

which the node is scheduled to be executed in hardware. 

 
For example, consider the folding set A = (φ, φ, φ, φ, 

A0, A1, A2, A 3) for K = 8. The operation A0 belongs to the 

folding set A with the folding order 4. The functional unit A 

executes the operations A0, A1, A2, A3 at the respective time 

instances and will be idle during the null operations. We use 
the systematic folding techniques to derive the 8-point FFT 
architecture. Consider an edge e connecting the nodes U and V 
with w(e) delays. Let the executions of the l-th iteration of the 
nodes U and V be scheduled at the time units Kl + u and Kl + 
v, respectively, where u and v are the folding orders of the 
nodes U and V. The folding equation for the edge e is 
 

DF (U -> V) = Kw(e) - PU + v – u (2.3) 
 

where PU is the number of pipeline stages in the hardware 

unit which executes the node 
 

RADIX-2
2

  DIF FFT  

 

 

Fig.2.3.16 Point Radix-2
2

 DIF-FFT architecture 
 

After these two stages,full multipliers are required to 
compute the product of decomposed twiddle factors.The  

complete radix-2
2

 algorithm can be derived by applying 

recursively.Fig.2.3 shows the flow graph of an N=16 point 
FFT decomposed according to decimation in frequency 
(DIF).The numbers at the input and output of the graph  
represent the index of input and output 

samples,respectively.The advantage of the algorithm is that it 

has the same multiplicative complexity as radix-4 
algorithm,but still retains the radix-2 butterfly structures.We 

can observe that, only every other stage of the flow graph has 
non-trival mulplications. The –j notion represents the trival 

multiplication,which involves only real-imaginary swapping 

and sign inversion. 
 

III 4 PARALLEL RADIX-2
2

 FEED 
FORWARD ARCHITECTURE 

 
The feed forward architectures,also known as multi-path 

delay commutator (MDC) do not have feedback loops and 
each stage passes the processed data to the next stage.These 
architectures can also process several samples in parallel.In 
current real-time applications,the FFT has to be calculated at 
very high throughput rates,even in the range of Giga samples  
per second.The Radix-2

k
 was presented for the SDF FFT as an 

improvement on radix-2 and radix-4.Next,radix-2
3

 and radix- 

2
4

,which enable certain complex multipliers to be 
simplified,were also presented for the SDF FFT.An  

explanation of radix-2
k

 SDF architectures can be found 
in.Finally,the current need for high throughput has been met 
by the MDF,which includes multiple interconnected SDF 

paths in parallel.However,radix-2
k

 has not been considered for 

feed forward architecture until the first radix-2
2

 feed forward 
FFT architectures were proposed.The paper shows that radix-  

2
k

 can be used for any number of parallel samples which is a 

power of two.Accordingly,radix-FFT architectures for 2,4, and 
8 parallel samples are presented.These architectures are shown 
to be more hardware-efficient than previous feed forward and 
parallel feedback design in the literature.This makes them very 
attractive for the computation of the most demanding 
applications.4-parallel architecture can be derived using the 
following folding sets.  
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Fig.3.1 Proposed 4-parallel (Architecture 2) for the computation of 16-point 
radix- 2 DIF FFT 
 
The DFG shown in Fig is retimed to get the non-negative 
folded delays. The final architecture can be obtained following 
the proposed approach. For an N-point FFT, the architecture 
takes 4(log4N ¡ 1) complex multipliers and 2N ¡ 4delay 
elements. We can observe that hardware complexity is almost 
double that of the serial architecture and processes 4-samples 
in parallel. The power consumption can be reduced by 50% by 
lowering the operational frequency of the circuit.As for radix-  

2
2

, these properties have been obtained directly from the flow 

graphs of the algorithms. The conditions for butterflies are the 
same for all stages of the FFT, whereas the conditions for 
rotations depend on the stage, S . Rotations are classified into  

trivial (T), non-trivial (NT), and rotations by W8 or W16. 
Rotations by and are not-trivial, but include a reduced set of 

angles. According the rotations by W8  only consider angles 

that are multiples of ∏/4, whereas W16 only includes 

multiples of ∏/8. This allows for the simplification of the 
rotators that carry out the rotations. For this purpose, different 
techniques have been proposed in the literature. They include 
the use of trigonometric identities, the representation of the 
coefficients in canonical signed digit (CSD) and the scaling of 
the coefficients. 
 
Reordering of output samples 
 

Reordering of the ouput samples is an inherent problem in 

FFT computation.The outputs are obtained in bit-reversal 

order in the serial architectures.In general the problem is 

solved by using a memory of size N.Samples are stored in 

memory in natural order using counter for the addresses and 

then they are read it in bit-reversal order by reversing the bits 

of the counter. In embedded DSP systems, special memory 

addressing schemes are developed to solve this problem. But 

in case of real-time systems, this will lead to an increase in 

latency and area. The order of the output samples in the 

proposed architectures is not in the bit-reversed order. The 

output order change for different architectures because of 

different folding sets/scheduling schemes. We need a general 

scheme for reordering these samples. One such approach is 

presented in this section. The approach is described using a 

16-point radix-2 DIF FFT example and the corresponding 

architecture is shown in Fig.3.3. The order of output samples 

is shown in Fig. 3.2  

 
Fig 3.2 solution to the reordering of outuput samples  

The first column (index) shows the order of arrival of the 

output samples. The second column (output order) indicates 

the indices of the output frequencies. The goal is to obtain the 

frequencies in the desired order provided the order in the last 

column. We can observe that it is a type of de-interleaving 

from the output order the final order. Given the order of 

samples, the sorting can be performed in two stages. It can be 

seen that the first and the second half of the frequencies are 

interleaved. The intermediate order can be obtained by de-

interleaving these samples as shown in the table. Next, the 

final order can be obtained by changing the order of the 

samples. It can be generalized for higher number of points; the 

reordering can be done by shuffling the samples in the 

respective positions according to the final order required.  
A shuffling circuit is required to do the de-

interleaving of the output data. Fig.3.3 shows a general circuit 
which can shuffle the data separated by R positions. If the 
multiplexer is set to ”1” the output will be in the same order as 
the input, whereas setting it to ”0” the input sample in that 

position is shuffled with the sample separated by R positions.  
 
 
 
 
 

 

Fig 3.3 Basic circuit for data shuffling 

 

IV.CONCLUSION 

 

This architecture can be extended to radix- 
 k  feedforward 

(MDC) FFT architectures. Indeed, it is shown that feedforward structures are more efficient than 

feedback ones when several samples in parallel must be processed. 

 

In feedforward architectures radix -
k 

can be used for any 

number of parallel samples which is a power of two. Indeed, the 
number of parallel samples can be chosen arbitrarily depending of 
the throughput that is required. Additionally, both DIF and DIT 
decompositions can be used. 
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