
International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.1, No.7, November 2012 DOI:10.15693/ijaist/2012.v1i7.54-57

54

Efficient Multideployment And Multisnapshotting On

Clouds

 P.JAGALINGAM, P.SARAVANAN and T.B DHARMARAJ

Dept of Computer Science Engg, Christ the king engineering college, karamadai-635109,

Tamilnadu, India.

Abstract:

 Infrastructure as a Service (IaaS) cloud computing has revolutionized the way we think of acquiring

resources by introducing a simple change: allowing users to lease computational resources from the cloud provider’s

datacenter for a short time by deploying virtual machines (VMs) on the re – sources. This new model raises new

challenges in the design and development of IaaS middleware. One of those challenges is the need to deploy a large

number (hundreds or even thousands) of VM instances simultaneously. Once the VM instances are deployed, another

challenge is to simultaneously take a snapshot of many images and transfer them to persistent storage to support

management tasks, such as suspend – resume and migration. With datacentres growing rapidly and configurations

becoming heterogeneous, it is important to enable efficient concurrent deployment and snapshotting that are at the

same time hypervisor independent and ensure a maximum compatibility with different configurations. This project

addresses these challenges by proposing a virtual file system specifically optimized for virtual machine image storage.

It is based on a lazy transfer scheme coupled with object versioning that handles snapshotting transparently in a

hypervisor – independent fashion, ensuring high portability for different configurations.

Keywords: virtual Machines, Infrastructure as a service, hypervisor .

Introduction:

 This new model raises new challenges in the

design and development of IaaS middleware. One of

those challenges is the need to deploy a large

number(hundreds or even thousands) of VM instances

simultaneously. Once the VM instances are deployed,

another challenge is to simultaneously take a snapshot

of many images and transfer them to persistent storage

to support management tasks, such as suspend-

resume and migration. With datacenters growing

rapidly and configurations becoming heterogeneous, it

is important to enable concurrent deployment and

snapshotting that are at the same time hypervisor

independent and ensure a maximum compatibility

with different configurations.

 In this system we are planning to use

three servers, one server will act as a gateway server

or dispatcher server and other two servers are going to

act as computational servers where the VM (virtual

machine) is nothing but the mirror image of any

application which is going to deploy in cloud servers

(Armbrust et al., 2010).. A client machine can able to

access any VM through Gateway server only. In

Gateway server will have the management module

which will decides which server has to respond for the

client request based on load balance calculations.

 In this work the underlying infrastructure is

represented by a large-scale cloud data center

comprising heterogeneous physical nodes which are

nothing but cloud servers. Each node has a CPU,

which can be multicore, with performance defined in

Millions Instructions per second (MIPS). Besides that,

a node is characterized by the amount of RAM and

network bandwidth (Bar-Noy et al., 1992). Users

submit requests for provisioning of m heterogeneous

VMs with resource requirements defined in MIPS,

amount of RAM and network bandwidth. SLA

violation occurs when a VM cannot get the requested

amount of resource, which may happen due to VM

consolidation. The software system architecture is

tiered comprising a dispatcher, global and local

managers. The entire client request will be received by

gateway server (i.e.) cloud middleware which will

interact with hypervisor and take the decision which

server has to respond.

Modules description:

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.1, No.7, November 2012 DOI:10.15693/ijaist/2012.v1i7.54-57

55

 The major modules in our project are,

1. Designing the Virtual File System

2. Optimize VM and Reduce contention

3. Optimize multisnapshotting

Designing the Virtual File System

 We propose to aggregate the storage space

from the compute nodes in a shared common pool that

is managed in a distribution fashion, on top of which

we build our virtual file system. This approach has key

advantages. First , it has a potential for high scalability,

as a growing number of compute nodes automatically

leads to a larger VM image repository, which is not the

case if the repository is hosted by dedicated machines.

Second, it frees a large amount of storage space and

overhead related to VM management on dedicated

storage nodes, which can improve performance and/or

quality-of-service guarantees (B.Claudel et al., 2009)

for specialized storage services that the applications

running inside the VMs require and are often offered by

the cloud provider (e.g., database engines, distributed

hash tables, special purpose file system, etc.)

Optimize VM and Reduce contention

 In this module we discuss new VM needs to

be instantiated, the underlying VM image is presented

to the hypervisor as a regular file accessible from the

local disk. Read and Write accesses to the file,

however, are trapped and treated in a special fashion.

A read that is issued on a fully or partially empty

region in the file that has not been accessed before (by

either a previous read or write) results in fetching the

missing content remotely from the VM repository,

mirroring it on the local disk and redirecting the read

to the local copy (O.Richard et al., 2009) . If the

whole region is available locally, no remote read is

performed. Writes, on the other hand, are always

performed locally. Each VM image is split into small,

equal-sized chunks that are evenly distributed among

the local disks participating in the shared pool. When

a read accesses a region of the image that is not

available locally, the chunks that hold this region are

determined and transferred in parallel from the remote

disks that are responsible for storing them. Under

concurrency, this scheme effectively enables the

distribution of the I/O workload, because accesses to

different parts of the image are served by different

disks. While splitting the image into chunks size and

is subject to a trade-off (G.DeCandia et al., 2007) A

chunk that is too large may lead to false sharing; that

is, many small concurrent reads on different regions in

the image might fall inside the same chunk, which

leads to a bottleneck.

Optimize Multisnapshotting

 We propose a solution that addresses these

requirements by leveraging two features proposed by

versioning system: shadowing means to offer the

illusion of creating a new standalone snapshot of the

object for each update to it but to physically store only

the differences and manipulate metadata in such way

that the illusion is upheld. This effectively means that

from the user’s point of view, each snapshot is first

class object that can be accessed independently. We

propose to deploy a distributed versioning system that

efficiently supports shadowing and cloning, while

consolidating the storage space of the local disks into

a shared common pool. With this approach,

snapshotting can be easily performed in the following

fashion.

Store only the incremental differences between

snapshots.

Consolidate each snapshot as a standalone entity.

Present a simple raw image format to the hypervisors

to maximize migration portability.

Results and Discussion:

 IMPLEMENTATION

 In our project we have implemented our

approach in the cloud by means of two basic building

blocks: a distributed versioning storage service, which

supports cloning and shadowing and is responsible for

managing the repository, and a mirroring module,

which runs on each compute node and is responsible

for trapping the I/O accesses of the hypervisor to the

image with the purpose of facilitating on – demand

mirroring and snapshotting.

Cloud Server Creation:

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.1, No.7, November 2012 DOI:10.15693/ijaist/2012.v1i7.54-57

56

Application creation:

Application Deployment:

Accessing Application:

Monitoring Application:

Monitoring Status:

ResourcesAllocation:

DESCRIPTON

 Admin user who is the super user who will

maintain the cloud server configuration details and

application deployment details in the cloud. In cloud

server session, admin can add the total connections in

cloud server. Admin can view the cloud connection

details and can edit, delete the clouds. In application

Management, he can add the applications which we

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.1, No.7, November 2012 DOI:10.15693/ijaist/2012.v1i7.54-57

57

are going to deploy in the cloud. He can view, edit and

update the application details. In Application

deployment, he can deploy the applications in

particular cloud which we added already. Admin can

view and delete the deployment details. In monitoring

status, if any user is using the applications, it will

show the cloud details and users system detail in

active connections session. Monitoring server shows

the different cloud details i.e. how many applications

are deployed in particular clouds, how many

applications are running in each clouds, how many

users are currently using the applications in particular

cloud, total connections in each cloud and available

connections in each clouds.

Conclusions:

We propose a lazy VM deployment scheme

that fetches VM image content as needed by the

application executing in the VM, thus reducing the

pressure on the VM storage service for heavily

concurrent deployment requests. Furthermore, we

leverage object versioning to save only local VM

image differences back to persistent storage when a

snapshot is created, yet provide the illusion that the

snapshot is a different, fully independent image.

This has two important benefits. First, it

handles the management of updates independently of

the hypervisor, thus greatly improving the portability

of VM images and compensating for the lack of VM

image format standardization. Second, it handles

snapshotting transparently at the level of the VM

image repository, greatly simplifying the management

of snapshots. We demonstrated the benefits of our

approach through experiments on hundreds of nodes

using benchmarks as well as real-life applications.

Compared with simple approaches based on

prepropagation, our approach shows a major

improvement in both execution time and resource

usage: the total time to perform a multideployment

was reduced by up to a factor of 25, while the storage

and bandwidth us-age was reduced by as much as

90%. Compared with approaches that use copy-on-

write images (i.e., qcow2) based on raw backing

images stored in a distributed file system (i.e., PVFS),

we show a speedup of multideployment by a factor of

2 and comparable multisnapshotting performance, all

with the added benefits of transparency and

portability.

References:

1. M. Armbrust, A. Fox, R. Griffith, A. Joseph, R.

Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin,

I. Stoica, and M. Zaharia. A view of cloud computing.

Commun. ACM, 53:50–58, April 2010

2. A. Bar-Noy and S. Kipnis. Designing broadcasting

algorithms in the postal model for message-passing

systems. In SPAA ’92: Proceedings of the 4th Annual

ACM Symposium on Parallel Algorithms. Pages 13–

22, New York, 1992. ACM.

3. P. H. Carns, W. B. Ligon, R. B. Ross, and R.

Thakur. Pvfs: A parallel file system for Linux clusters.

In Proceedings of the 4th Annual Linux Showcase and

Conference, pages 317–327, Atlanta, GA, 2000.

USENIX Association.

4. B. Claudel, G. Huard, and O. Richard. Taktuk,

adaptive deployment of remote executions. In HPDC

’09: Proceedings of the 18th ACM International

Symposium on High Performance Distributed

Computing, pages 91–100, New York, 2009. ACM.

5. G. DeCandia, D. Hastorun, M. Jampani, G.

Kakulapati, A. Lakshman, A. Pilchin, S.

Sivasubramanian, P. Vosshall, and W. Vogels.

Dynamo: Amazon’s highly available key-value store.

In SOSP ’07: Proceedings of 21st ACM SIGOPS

Symposium on Operating Systems Principles, pages

205–220, New York, 2007. ACM

