
International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.12-15

12

Comparative Study of Functional Dependency

Generation Algorithms

W.C.Uduwela

Lecturer(prob)/Dep Mathematics and Computer

Science, Faculty of Natural Sciences, The Open

University of Sri Lanka

P.G.Wijayarathna

Senior Lecturer/Dep of Industrial Management,

Faculty of Science, University of Kelaniya, Sri

Lanka

Abstract - Relational database model is the most common

database model use of current Information Systems. The basis of

its design process is Functional Dependencies. Various researches

have been carried out to develop algorithms to discover the

hidden Functional Dependencies in the existing data sets. The

findings help for database designers in various ways: to database

design verifications, to database management, to reverse

engineering, and to query optimization. Therefore, it is important

to find the most efficient algorithm since there are few. Four

popular functional dependency algorithms (TANE, FD_Mine,

Fast_FD and Dep_Miner) were selected to suggest the most

efficient algorithm. Algorithms were analyzed based the data

published in the literature and by implementing our own version

of FD_Mine and Fast_FD algorithms for the missing data.

According to the analysis we were able to conclude that the

performance of TANE and FD_Mine are good for a large

number of records while the performance of FastFD is good for a

large number of attribute sets.

Index Terms: Functional Dependencies, Relational Database,

Relational schema, Functional Dependency Algorithms

I. INTRODUCTION

 Relational database model is the most common

database model spread over in commercial applications of

information systems. Its efficiency fully depends on the

relational schema (database schema): it describes the

categorizations of the data and the relationships among them.

The basis of the relation schema design process is Functional

Dependencies (FDs): it describes relationships between

attributes of the database relations. Further, an FD uniquely

determines the value of an attribute with the values of some

other attributes [1]. For an example in a student database

student_name and student_address are determined by

student_id. Formally a functional dependency can be denoted

as X → Y in a relational schema R, where X, Y ⊆ R, is

satisfied by r(R), if for all pairs of tuples ti, tj∈ r(U), if ti[X] =

tj[X] then ti[Y]=tj[Y].

 Typically, Functional Dependencies are obtained

from the semantic model of the application domain [2,3], but

various researches have been carried out to develop algorithms

to discover hidden FDs in the existing data sets. These

approaches, especially for knowledge discovery and data

mining purposes [1]. Not only that, but also these help in

various ways: to verify database design [4], to database

management, to reverse engineering and, to query

optimization [1]. Therefore, database designers, especially

non technical people and novel database designers can get the

help of these algorithms to make the correction in the existing

relational schema as it is difficult to develop the correct

relational schema at the beginning. In this paper, we do a

comprehensive study of four popular functional dependency

algorithms (TANE, FD_Mine, FAST_FD and Dep_Miner) to

suggest the efficient algorithm among them, as I couldn’t find

a solution from the literature.

The paper has organized as follows. Section 2

reviews the existing approaches used in FD discovery. Section

3 describes the methodology adapted to analyze the selected

approaches. Section 4 depicts the outcome and Section 5

concludes the paper.

II. FD DISCOVERY METHOD AND BASIC CONCEPTS OF THEM

 Researchers motivate to find the efficient solutions

and algorithms to discover the functional dependencies

automatically from the datasets at the very beginning of 1980s

[4]. These findings can be grouped as either top-down

approaches or bottom-up approaches [4], but some researchers

categorized them as either breadth-first search approaches or

depth-first search approaches, respectively [5]. The rest of

this paper considers the top-down and bottom-up

categorization for its analysis.

 Top-down approaches start by generating candidate

FDs level-by-level, from short left hand side (lhs) to long lhs;

it is like an attribute lattice (Refer Figure 01 for its

illustration). Then it checks the satisfaction of the candidate

FDs for satisfaction against the relation or its partitions [4].

TANE and FD_Mine [4, 5] are famous algorithms in this

category and Table 01 describes the strategies they have used.

 On the other hand, the bottom-up approaches, start

with comparing tuples to get either agree-sets or difference-

sets. Then it generates candidate FDs and check them against

the agree-sets or difference-sets for satisfaction. FAST_FD

and Dep_Miner [4, 5] are famous algorithms in this category

and Table 01 describes the strategies they used.

 The following concepts and terms are needed to

understand the concepts in the above mentioned algorithms.

Basic Concepts of Functional Dependencies

Let F be a set of FDs over a dataset D and X be a candidate

over D;

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.12-15

13

 Minimal FD A FD, X → A ⊂ F is minimal, if A is not

functionally dependent on any proper

subset of X, i.e. if Y → A does not hold in

F for any Y ⊂ X.

 Closure of

FD

Closure of candidate X is denoted Closure

(X) or X+, with respect to F, is defined as

{Y | X →Y can be deduced from F by

Armstrong's axioms}.

 Non Trivial

FD

A FD, X → A ⊂ F is non-trivial if A ∉ X.

 Nontrivial

closure

Non trivial closure of candidate X denoted

Closure’(X) with respect to F, is

defined as Closure’(X) = Closure(X) – X.

 Candidate set It is a combination of the attributes over the

dataset.

 Partition of

 attributes

(Equivalence

class

partition)

Partition of attribute A can be denoted as

A(D) = {{t1, t2, t3, t4, t7}, {t5, t6}}. The

values of tuples t1, t2, t3, t4, and t7 on

attribute A are all the same, they are

assigned to the same group. Likewise, as

the values of t5 and t6 are the same, they

are assigned into another group.

 Cardinality of

a partition

Which is the number of groups in

partitions, Ex :- According to the above

example cardinality of A is, |πA| = 2.

 Minimal

cover

It is the simplified set of FDs, that is

equivalent to F. This means that they have

the same closure of F+ as F and its no

further reduction

Other concepts used in the algorithms

 Agree Set Let ti and tj be tuples and X an attribute set.

The tuples ti and tj agree on X if ti[X] = tj[X].

 Disagree sets If t1 and t2 do not appear together in some

stripped partition, then t1and t2 disagree on

every attribute. Such tuples that disagree

form a set and such sets are said to be

disagree sets.

 Maximal Set A maximal set is an attribute set X which, for

some attributes A, is the largest possible set

not determining A.

Pruning rules used in TANE and FD_Mine algorithms:

Let X and Y are candidates over a dataset D;

 Rule 1 : If X → Y and Y → X hold, then

X and Y are said to be equivalent

candidates, denoted as X ↔ Y, then

candidate Y can be deleted.

 Rule 2 : If X is a key, then any superset XY

of X does not need to be checked.

 Rule 3: If Closure’(X) and Closure’(Y) are the

nontrivial closures of attributes X and

Y, respectively, then XY →

Closure’(X) U Closure’(Y) does not

need to be checked.

 Rule 4 : Let X1X2…Xk → Xk+1 be a k-level FD.

If any subsets Xi(1)Xi(2) …Xi(k-1) of

X1X2…Xk satisfies Xi(1)Xi(2) …Xi(k-1)

→ Xi(k), then X1X2…Xk → Xk+1 does

not need to be checked.

Figure 01. Example for the attribute lattice

Table 01. Summary of each tool and their approaches

Name of the Tool Summary of the approach

[1] TANE: 1999

It discovers all

minimal non trivial

FDs.

It searches the FDs in level wise

manner in the lattice while reducing

the search space using pruning rules

(Rule 2 and Rule 4). Results from the

previous level are used for the later

levels. To find the FDs, it represents

the attribute sets as equivalence class

partitions of the set of tuples and

compares the cardinality of partitions.

If the value of lhs is equal to rhs then

there is an FD.

[8] Dep_Miner:

2000

It discovers all

minimal non trivial

FDs and the real

world Armstrong

relations.

This is based on the agree set. From

agree set maximal sets are derived, and

from maximal sets, all minimal non-

trivial FDs are generated. Lhs of the

FDs are generated from the

complement of the maximal set.

[6] FastFD: 2001

It discovers all

First, it identifies the difference set

(This is can be derived based on the

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.12-15

14

minimal non trivial

FDs

agree set). Then it reduces to the set of

minimal candidates by removing the

superset of the difference set. The

minimum cover of the difference set

gives the minimal FDs.

[2,3] FD_Mine:

2002

It discovers all

minimal non trivial

FDs

The approach is same as TANE, but it

uses the all four pruning rules to

minimize the searching space of the

lattice.

III. COMPARATIVE STUDY AND DISCUSSION

We reviewed the above stated FD algorithm
approaches and compare their performances based on its pros
and cons and the time taken to explore the FDs. E-mail survey
was conducted for the analysis. As the response rate is not at
the considerable level, tools were analyzed based the data
published in the literature and implemented our own version
of FD_Mine and FastFD algorithms for the missing data.

The article [6], had published a study on a
comparison on running time between TANE, FastFD and
Dep_Miner to explore the FDs. They had implemented their
own versions of Dep_Miner and FastFD, while they had used
the version available on the web for TANE. The experiment
had conducted on the relations extracted from the UCI
Machine Learning repository which is in online [7]. It says the
running time meets or exceeds the Dep_Miner’s performance
by the FastFD performance for large data set and FsatFD
becomes increasingly faster than Dep_Miner for large attribute
set too. That means FastFD’s performance is better than the
Dep_Miner’s performance for all types of datasets. However,
the comparison between TANE and FastFD is not straight
forward. FastFD had taken a long time than TANE when the
data set is large, but TANEs performance is poorer than
FastFD when the number of attributes getting larger.

A comparison between TANE and FD_Mine had
done in the article published [3]. Although, they had used the
same approach to develop both algorithms, the techniques
used in FD_Mine reduce the search space by using four
pruning rules described above. The analysis says that
FD_Mine performance is better than TANE in execution time
as well as the number of FDs to be checked (has to check
lesser number of FDs than TANE). In their experiment they
had fixed the number of tuples (records) into 100,000 and the
number of attributes ranges from 10 to 60 for each experiment.
It showed that the gap between execution times of the
FD_Mine and TANE is strongly enlarged when the number of
attributes increases.

We could not find the comparison between FastFD
and FD_Mine in the literature; therefore our own versions of
FD_Mine and FastFD were implemented using C# for the
comparison. Algorithms were tested on few dataset using a
personal computer installed with Windows 7 professional
operating system, core i7 processor and 8GB RAM. Data sets
with a large number of attributes and large number of record
sets were used for the analysis. Table 02 shows the analysis of
the result.

Further, the thesis [5] says that the output of the
algorithm described in this paper is same for the same dataset.

The summary of the analysis of TANE, Dep_Miner, FastFD
and FD_Mine as presented in the Table 03.

Table 02. Time Taken to Find the Functional Dependencies

|r| Number of Raws, |R| Number of Attributes, |F| Number of

Functional Dependencies Generated, - More than 1800

seconds

|r| |R| |F| FD_Mine

(seconds)

FastFD

(seconds)

217 05 08 0.061 35.21

217 15 311 267.640 366.641

50 20 3055 228.979

50 26 3159 537.84

Table 03. Summary of the Pros and Cons of the algorithms

Tool Advantages Disadvantages

[1] TANE:

1999

More appropriate if the

dependencies are

relatively

small.Applicable to

large data set too.

Has poor

performance

when attributes

getting larger.

Performance is

poorer than

FD_Mine

[8]

Dep_Miner:

2000

This is the only

solution that gives

Armstrong’s relation

along with FDs

Performance is

poorer than the

Fast_FD

[6] FastFD:

2001

When attributes

getting larger

performance are better

than the Dep_Miner,

FD_Mine and TANE.

Performance is

poor for large

data set.

[2,3]

FD_Mine:

2002

Reduces the search

space and FDs to be

checked than the

TANE; therefore

performance is better

than FastFDalgorithm

Has poor

performance

when attributes

getting larger.

IV. CONCLUSION

Analysis showed that all the algorithms generate the

minimal non trivial functional dependencies as the outcome

while the thesis [5] says that the outcome of each algorithm

are same. Comparison of three algorithms FastFD,

Dep_Miner, and TANE are taken from the research paper

published [6], while comparison of TANE and FD_Mine also

taken from the research paper published [3]. Own versions of

FD_Mine and FastFD algorithms were used for their

comparison. Since the tests were run in different environment

direct comparison is impossible, but the results are, however

indicative.

According to the analysis, we can conclude that if

there is a large number of attributes the better algorithm is

either TANE or FD_Mine. If there is a large number of

recordsFastFD performance is better than TANE and

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.12-15

15

FD_Mine algorithms. Among TANE and FD_Mine,

FD_Mine’s performance is better than TANE performance.

REFERENCES

[1] H. Yk¨a, J. K¨arkk¨ainen, P. Porkka, and H. Toivonen,
―Tane: An efficient algorithm for discovering functional and
approximate dependencies,‖ The computer journal,
42(2),pp.100–111, 1999.

[2] H. Yao, H. J Hamilton, and C. J. Butz., ―Fd_Mine:
functional dependencies in a database using equivalences.
In Data Mining‖, ICDM2003. Proceedings. 2002 IEEE
International Conference on, pages729–732. IEEE, 2002.

[3] H. Yao, H. J. Hamilton, "Mining functional dependencies
from data," Data Mining and Knowledge Discovery, pp.
197-219, Volume 16 Issue 2, April 2008.

[4] Jixue Liu; Jiuyong Li; Chengfei Liu; Yongfeng Chen,
"Discover Dependencies from Data—A Review," in
Knowledge and Data Engineering, IEEE Transactions on ,
vol.24, no.2, pp.251-264, Feb. 2012

[5] K. Sood, ―Comparison Of FunctionaLdependency
Extraction Methods And An Application Of Depth First
Search‖, M.Sc. Disseration, Department of Computer and
Information Science and the Graduate School, University of
Oregon, June 2014

[6] W. Catharine, C. Giannella, and E. Robertson, ―Fastfds: A
heuristic-driven, depth-first Algorithm for mining functional
dependencies from relation instances extended abstract.‖,
In Data Warehousing and Knowledge Discovery, pages
101–110. Springer, 2001.

 [7] http://archive.ics.uci.edu/ml/

[8] L. St´ephane, J.-MarcPetit, and L. Lakhal., ―Efficient
discoveryof functional dependencies and Armstrong
relations. In Advances in Database Technology EDBT
2000, pages 350–364.Springer, 2000

Authors Profile

W.C.Uduwelareceived the B.Sc. degree in
Management and Information Technology
from the department of Industrial
Management, University of Kelaniya in
2008.Currently doing M.Phil. research in
same department. Her research interest
includes software enginnering.

Dr P.G.Wijayarathnareceived Dr. Eng.
degree (specializing in Software
Engineering) and M.Eng. degree from the

University of Electro-Communications, Tokyo, Japan. He
graduated from the Faculty of Science, University of Kelaniya
with an Honors degree in 1984. His research interest includes
Reasoning with spatiotemporal information, 3-D imaging,
Specification based auto code/test case generation, Road
traffic simulation and Web Engineering.

