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Abstract---GNG query is a partition-based clustering 

problem which can be found in many real applications 

and is NP hard .Given a data point set D, a query point 

set Q, and an integer k, the Group Nearest Group 

(GNG) query finds a subset (ω(|ω|≤ 𝑲) of points from D 

such that the total distance from all points in Q to the 

nearest point in ω is not greater than any other subset 

ώ(|ώ| ≤ 𝑲)  of points in D. Exhaustive Hierarchical 

Combination (EHC) algorithm and Subset Hierarchical 

Refinement (SHR) algorithm are developed for GNG 

query processing. While EHC is capable to provide the 

optimal solution for k = 2, SHR is an efficient 

approximate approach that combines database 

techniques with local search heuristic. The processing 

focus of our approaches is on minimizing the access and 

evaluation ofsubsets of cardinality k in D, since the 

number of such subsets is exponentially greater than |D|. 

To do that, the hierarchical blocks of data points at high 

level are second-hand to find an transitional solution and 

then refined by subsequent the guided search direction 

at low level so as to prune irrelevant subsets. The all-

inclusive experiments on both real and synthetic data 

sets demonstrate the superiority of SHR in terms of 

efficiency and quality. 

 

KeyTerms : Group nearest group (GNG),  K-median 

clustering, Group nearest neighbour (GNN). 

 

1. INTRODUCTION 

 

Data mining is the process of semi-automatically 

analyzing large databases to find patterns that are valid, 

novel, useful, understandable. It is also known as 

Knowledge Discovery in Databases (KDD).Data mining is a 

hot buzzword  for  a class of techniques that find patterns in 

data. It is a user-centric, interactive process which leverages 

analysis technologies and computing power. It is a group of 

techniques that find relationships that have not previously 

been discovered. It is not reliant on an existing database. 

Data mining overlaps with machine learning, statistics, 

artificial intelligence, databases, visualization.GNG query is 

a partition based clustering which can be found in many 

applications. The GNG query can be defined in a formal 

way. Given a set  of data points D, a query point set Q, and 

an integer value k (1≤ k ≤ min{|D| ,|Q|}), GNG query finds a 

subset of points from ὠ from D (|ὠ|) ≤ k) for every ὠ € P(D)  

 

(|ὠ| ≤ k), where P(D) is the power set of D. A GNG query 

may return k points. In some cases, a GNG query may return 

a solution with less than k points.  No matter what the 

setting of k is, the minimal total traveling distance is the 

distance from all persons. If we are aware of the cardinality 

of the solution k’, processing GNG query is to find the 

subset of k’ points that produces the minimum total 

traveling distance.  k’ is not known in advance when 

processing GNG  query. When k = 1, a GNG query reduces 

to a GNN query which returns an individual point in D. The 

focus of GNN query processing is on minimizing access and 

evaluation of data points in D. GNG query, also known as k-

median clustering in operations research, is a partition-based 

clustering problem which groups data points into k (a given 

number) clusters based on an optimization objective 

function. The partition-based clustering problem is NP-hard 

.The k median clustering has been investigated using local 

search heuristics which are popular for hard combinatorial 

optimization problem. The typical process of the local 

search heuristics finds an arbitrary solution and iteratively 

optimizes it with the operation of swap (i.e., replacing a 

point in the solution with another point in the search space) 

till improvement can be obtained. In practice, using local 

search heuristics for GNG query leads to a gap of a few 

percentage points between the obtained solution and the 

global optimum. Database techniques are explored to boost 

the GNG query processing of local search heuristics without 

any loss on clustering quality. 

2.EXHAUSTIVE HIERARCHICAL COMBINATION 

(EHC) ALGORITHM 

EHC aims to find the optimal solution without 

evaluating all subsets of k points. In EHC, every set of k 

blocks is evaluated in high hierarchical level and the set 

with the current best value (i.e., the minimum  total 

distance) are refined by visiting their children in next level. 

EHC is capable to provide the optimal solution. However, 
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the performance of EHC drops down dramatically when k 

increases from  2.      

In EHC, a GNG query is processed by traversing 

the R-tree of D. At the root, every k entry forms a subset 

denoted as ω. For a query point q €  Q and a subset ω, the 

minimum distance from q to an entry E in ω (E is the 

minimum bounding rectangle of data points under E in R-

tree is denoted as function mindist(q,E) and the maximum 

distance is denoted as function maxdist(q,E). Given a set Q 

of query points and a subset ω, the query points can be 

grouped to the closest entries in ω according to these two 

distance functions. 

For distance function mindist(q,E), the distance sum from 

query points to the closest entries in ω is denoted as 

∑q€Qmindist(q, ω), and ∑q€Qmaxdist(q, ω) for distance 

function maxdist(q,E), that is, ω has two distance sums. Let 

a leaf node be the child leaf node of ω if it is under one entry 

in ω. It is clear that any subset formed by k child leaf nodes 

of ω must have a distance sum in between ∑q€ Qmindist(q, 

ω) and ∑q€ Qmaxdist(q, ω). Thus, we denote ∑q€ Qmindist(q, 

ω) as ∑lband ∑q€Qmaxdist(q, ω) as ∑ub.At the root, let 

{ω1,….,ωn} be all possible subsets of k entries. When each 

of these subsets computes ∑lb and∑ub , they are inserted into 

a heap H. The minimum ∑ub in H is assigned to a threshold 

£. If a subset ω in H has lower bound distance ∑lb
ω
≥ £, it can 

be safely pruned from H. That is, the child leaf nodes of ω 

cannot form a subset of size k with a distance sum less than 

£. For the remaining subsets in H, following the best first 

traverse fashion, the ω with the minimum ∑lb is selected, the 

direct child nodes of ω (i.e.,the nodes directly referred by 

entries in ω) are visited and every k entries of these child 

nodes form new subsets. The ∑lb and∑ub are computed for 

each of these new subsets. 

 

 
 

Fig 1: Query Processing when k = 2 

 

 

After inserting them into H, the threshold £ is set as 

the current minimum∑ub in H. Similarly, any subset in H 

with∑lb≥£ can be safely pruned. These operations are 

repeated until the minimum∑lb in H is associated with a 

subset of leaf nodes (in this case ∑lb=∑ub  ). This subset is 

returned by EHC. For description clarity, the subsets are 

inserted into the heap and then pruned. However, the 

pruning can also take place before inserting subsets into H. 

Fig.1 shows an example of EHC. The entries in the root are 

combined into subsets of size k =  2 and these subsets are 

inserted into a heap. The minimum ∑ub   in H is 46. Using£ 

= 46 as the threshold, the subset{E3, E4}can be pruned from 

the heap. Then, {E1,E2} are replaced by all possible subsets 

of size  2 composed by direct child nodes of E1, E2. 

 

3.  SUBSET HEIRARCHIAL REFINEMENT (SHR) 

ALGORITHM 

EHC is workable only for small k even though 

optimization is applied. In this section, we describe the 

Subset Hierarchial Refinement algorithm. It can provide a 

high quality solution while the performance is linear with k, 

D, and Q. The time complexity is O(k(|D| - k)|Q|). SHR is 

inspired by PAM. SHR works basically as follows: first, an 

initial subset ω is identified; then, SHR tries to refine ω by 

tentatively replacing elements in ω by points in D - ω until 

the total distance cannot be reduced further. 

 

3.1  PRUNING RULES 

Before going to the details of SHR, we first 

propose two pruning rules which explore the proximity of 

the query points in order to prune the irrelevant subsets. 

 

INITIAL CANDIDATE PRUNING (ICP) 

Given D, Q, and a subset ω- D, we tentatively use 

points in D -ω to replace the points in ω in order to obtain an 

updated ω which produces a smaller total distance. During 

this process, a point p
’
 €D -ω can be pruned if 

d(q,p’)≥d(q,ω) for q € Q.ICP aims to reduce the search 

space when optimizing a given ω by replacing one point p  

€ω with a data point p’ €   D -ω. The replacement should 

reduce the total distance from query points in Q to the 

closest points in ω.If a point p’ € D -ω cannot reduce the 

total distance by replacing it with any point in ω, p’ is not 

relevant to the optimization of ω. The purpose of ICP is to 

identify such p’ and prune it. ICP is valid when p’ is an 

entry of a node in R-tree. When a node N is visited during 

the tree browsing, the entries in N are processed. To each 

entry, say E, the distance mindist(q,E) is computed from all 

q  €   Q. E can be pruned if mindist(q,E)- d(q,ω) for q  €   Q. 
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The reason is that replacing any p  €ω by any data point 

under E in Rtree cannot reduce the total distance.  

 

FURTHER CANDIDATE PRUNING (FCP) 

Given D, Q, and a subset ω- D, we tentatively use 

points in D -ω to replace a point p  €ω in order to obtain an 

updated ω which produces a smaller total distance. During 

this process, p’ €D -ω can be pruned if the resultant total 

distance cannot be reduced. If a point p’€ D -ω is not pruned 

by ICP, FCP is applied to check whether replacing p’ with 

some points in ω can be avoided. The idea is to compute the 

total distance when replacing p’ with a point in ω. Clearly, if 

p’ is a data point, every possible replacement is processed 

and thus no computation is avoided.  

The pruning power of FCP takes effect when p’ is 

an entry of an R-tree node. As shown in Fig.1 , when 

replacing p3 by the entry E4, q1, q 2 will change to E4 and 

q3 is still to p4. Since the resultant total distance cannot be 

reduced, any data point under E4 cannot diminish the total 

distance if it replaces p3 in ω. Thus, the replacement 

between E4 and p3 can be pruned safely and so does E4 and 

p4.Both FCP and ICP are used in SHR when browsing 

Rtree. When a node is visited, the entries in this node are 

pruned using ICP first, and then the remaining entries are 

pruned using FCP. The entries pruned by ICP can also be 

pruned by FCP. That is, FCP does decide the number of 

entries accessed and processed. The purpose of ICP is that it 

is cheaper to prune some entries and so FCP is avoided to do 

that same job. The effect of ICP to performance is stronger 

when query points are distributed in a small region. 

 

4.  PARTITION-BASED CLUSTERING 

Given an integer k and a data point set D, database 

clustering is the process of grouping data points together 

based on a user defined similarity function. Data points are 

similar to each other when they are in the same cluster and 

dissimilar when they are in different clusters. Two well 

known partition-based algorithms are the k-means and k 

medoids. The k-means algorithm uses the centroid (a virtual 

point rather than a data point) of the objects in each cluster 

as the cluster center while k-medoids algorithm uses the 

most centrally located point as the center. The overall 

distance for data points to the associated cluster centers is 

minimum. The k-median clustering is the bichromatic 

version of k-medoids clustering where there are two 

datasets, and one data set is grouped to k cluster centers 

from the other data set. In general, the task of finding a 

global optimal k partition belongs to the class of NP-hard 

problems. For this reason, heuristics are used to achieve a 

balance between the efficiency and effectiveness close to the 

global optimum as much as possible. The algorithm for k-

means clustering  is relatively scalable and efficient in 

processing large datasets because the computational 

complexity of the algorithm is O (nkt), where n is the total 

number of objects, k is the number of clusters, and t is the 

number of iterations. Normally, k << n and t <<n. The 

method often terminates at a local optimum. The k-means is 

very sensitive to noise and outlier data points since a small 

number of such data can substantially influence the mean 

value. K-medoids/median clustering is less sensitive to noise 

and outliers. However, this results in a higher running time.  

 

5.  LOCAL SEARCH HEURISTICS 

The local search heuristic is popular in clusterings 

of k partitions and this process includes two steps . The first 

step arbitrarily selects k points as the initial cluster centers. 

The data points are grouped to the nearest center and cluster 

quality is computed. In the second step, the iterative 

relocation technique is adopted. In each iteration, some/all 

cluster centers are updated and the cluster quality is 

recomputed. The second step terminates when the cluster 

quality cannot be further improved. A well-known local 

search heuristic for k-mediod/median clustering is PAM . 

Using PAM, k centers are randomly selected in the first step 

to form the initial set of medoids/median, say  ω. In each 

iteration of the second step, PAM performs following 

operations: tentatively replacing a current medoid/median p 

€ ω  by a point  p’= D -ω , the cluster quality improvement 

is computed, e.g., the reduction of the distance sum; among 

all such tentative replacements, the one with the maximum 

improvement is carried out. PAM repeats this operation until 

the cluster quality cannot be improved any further. The 

solution of k-medoids/k-median clustering can be solved 

with local search heuristics within a factor of at most 5 from 

the global optimum.  

 

6.  GNG QUERY PROCESSING 

The query processing starts by selecting an initial 

subset ω ini. We can arbitrarily select k points from D as ω 

ini. However, if ωini produces a smaller total distance, fewer 

replacements are required to reach the final solution and 

thus a better overall performance. In this work, we employ 

an approach based on k-means algorithm which considers 

the distribution of both Q and D. First, Q is clustered using 

k-means algorithm. Then, for each obtained center 

(i.e.,mean), the nearest neighbor from D is retrieved as a 

member of ωini until there are k distinct points in  ω ini. A 

noteworthy point is that ωini is not reliable to be an 

approximate solution of GNG. At the root N for the first 

iteration, we tentatively replace Each p €   ω cur by every 

entry E  € N and compute the resultant total distance sum. 

For an entry E and a point p  €ω cur, only if the resultant sum 

<£, we record{sum, p,E} in a heap H (empty initially); 

otherwise, this replacement can be safely pruned according 
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to the pruning rules. After processing tentative replacements 

between all entries in N and all points in  ωcur, if H is empty, 

SHR terminates by returning  ωcur since no replacement can 

further reduce the total distance; else if H is not empty, the 

element h  €   H with the minimum sum is removed from H 

for further processing. For h with h:E referring to a non leaf 

node, the entries in this node are processed in the similar 

way as we process the root.  

The only difference is that these entries only 

tentatively replace with h  rather than all p  € ω cur. For h 

with h:E referring to a leaf node, say  p’, the first iteration is 

done by replacing h:p with  p’ in  ω cur and resetting 

£=h.sum. In the next iteration, the R-tree is browsed again 

with the updated ωcur and £ in the same way. SHR 

terminates until no further reduction of the total distance is 

possible as discussed above. The R-tree is browsed by 

visiting the root first. Replacing each point in the initial 

subset with every entry in the root, the resultant subset and 

the associated total distance are recorded in a heap. If the 

total distance is greater than £, the resultant subset can be 

safely pruned. 

Two subsets {E1, p4, 10}{p3, E2 ,21} remain in 

the heap. Since {E1, p4, 10} has the minimum total 

distance, E1 is replaced by every entry in node N1 in this 

subset. Subsequently, the subset {p2; p4; 22 } has the 

minimum otal distance. Since p2,p4 are leaf nodes, the first 

iteration stops; the current subset and £are updated to{p2 

,p4,22} and  22.As a further step to cut off the tentative 

replacements, £can be updated during the R-tree traversed 

within one iteration. It is similar to the method used in EHC. 

When tentatively replacing a point p  €  ω cur with an entry 

E, we can also group query points based on their maximum 

distances to E. The consequential total distance is the 

upperbound of the total distance of the subset which is 

obtained by replacing p with any data point under E in R-

tree. It is denoted as ∑ub.If∑ub< £, £ is updated to∑ub . For an 

element h  € H, it can be pruned safely pruned if h.sum≥£. 

 

7.  ANALYSIS OF  SHR VERSUS PAM AND 

CLARANS 

k-medoids algorithms PAM and CLARANS can be 

used to process GNG queries. Using PAM, k centers are 

randomly selected in the first step to form the initial set of 

medoids, say ω. In each iteration of the second step, PAM 

performs following operations. Tentatively replacing each 

current medoid p €   ω  by every point  p’= D - ω , the 

cluster quality improvement is computed, e.g., the reduction 

of the distance sum. Among all such tentative replacements, 

the one with the maximum improvement is carried out. In 

next iteration, PAM repeats this operation until the cluster 

quality cannot be improved any further. The complexity of 

PAM in one iteration is O (k (|D|- k)
2
 ). For a large D, such 

computation becomes costly. If the initial subset is the same, 

SHR and PAM return the identical solution since SHR is 

equivalent to PAM without the proposed database 

techniques to improve the processing efficiency. Compared 

to PAM, SHR is more efficient as it avoids unnecessary 

tentative replacements with support of R-tree and pruning 

rules.  PAM can always find solutions of GNG query that 

are within a factor of at most 5 from the optimum and for 

practical, non-pathological instances, the gap is usually 

much smaller, just a few percentage points.  In CLARANS, 

one randomly selected point in ωcur is tentatively replaced by 

one randomly selected point in D -ω cur. If the total distance 

can be reduced, ωcur is updated by carrying out this 

replacement immediately. For the updated ωcur, if no better 

solution is found after maxneighbor attempts, a local 

optimal solution is assumed to be reached. From local 

optimal solutions, the global solution is returned. Therefore, 

the solution of CLARANS is unbounded in terms of quality. 

By setting a higher value of maxneighbor, the quality of 

solution can be improved to approach the quality level of 

PAM and SHR. Inorder to compare the efficiency of SHR 

with CLARANS, suppose SHR and CLARANS have a 

common initial subset  ω. In the best case of CLARANS,  ω 

is the final solution such that no better point in D - ω  can be 

found by conducting maxneighbor tentative replacements. 

Then, CLARANS returns ω. As suggested, maxneighbor is 

1.25 percent of the number of the possible replacements 

between all points in D and all points in  ω, and thus the 

number of subsets evaluated by CLARANS is 1. 25%  k 

(|D|- k) in the best case. In SHR, each node at high level of 

R-tree tentatively replaces all p  € ω  and, following the best 

first traverse fashion, we visit the children of the node by 

replacing which the total distance can be reduced the most. 

The total number of subsets evaluated by SHR is m - n 

where m is the number of nodes visited and n is the fan-out 

of node. n is a constant in a given R-tree and the value is 50 

in our experiments. In the best case of SHR,  ω is the final 

solution such that m is logn|D|. For a medium size D (|D| = 

20k in the PP data set used in our experiments),m*N in SHR 

is smaller than 1. 25%  k (|D|- k)in CLARANS by several 

times in the best case. The larger the D, the better the 

relative performance of SHR, compared to CLARANS. In 

general cases, SHR is deliberately designed to always refine 

the currently most promising subset when traversing the 

index structure while CLARANS randomly selects a subset 

to process. Thus, we expect the performance of SHR to be 

generally better than CLARANS. 

 

8  CONCLUSION 

The  GNG query can be found in various business 

analytic and decision support systems. Since GNG query is 
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a problem computationally intractable, both efficiency and 

effectiveness are critical to the practical value of GNG 

query.  Use of hierarchical blocks instead of data points to 

optimize the number of subsets evaluated. This work 

proposes two GNG query processing algorithms, Exhaustive 

Hierarchical Combination algorithm and Subset Hierarchial 

Refinement. EHC provides the optimal solution when k = 2 

and SHR provides fast approximate solution for any setting 

of  k. Compared to PAM , SHR has the same quality while 

the performance is better by 1-3 orders of magnitude. 

Compared to CLARANS , SHR returns quality bounded 

solution and SHR outperforms CLARANS by several times 

in most cases. The performance of EHC, SHR and 

optimized SHR will be evaluated and compared. 
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