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Abstract—Space-time block codes have been shown to 

perform well with Multiple- input- Multiple output (MISO) 

systems. The existence of real V-blast design has been 

proved by Alamouti’s. As for a orthogonal design, it was 

proved by Toeplitz that for the corresponding Space- time 

block codes. In most of the existing STBC have been 

designs, achieving full diversity is based on Maximum-

likelihood (ML) decoding at the receiver that is usually 

computationally expensive. Orthogonal Space –time block 

codes achieve full diversity when a linear receiver, such as 

zero forcing (ZF) or Minimum mean square (MMSE) is 

used. So the non-coherent flat-fading wireless 

communication system have multiple transmitter antennas 

and a single receiver antenna (MISO) multiple input single 

output , with focus on error performance analysis of a 

space-time block code (STBC) for a square Quadrature 

Amplitude Modulation (QAM) constellation using linear 

receivers. For such a system, a non-coherent  ZF receiver is 

used and proven to be able to extract full diversity from a 

orthogonal STBC, and also able to extract full diversity 

from  a coherent code enabling full diversity  for the 

coherent ZF receiver. 

 

Keywords - Full diversity, non linear receiver, Space-Time-
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I.  INTRODUCTION 

       

         A recent development in wireless communication 

systems is the multi-input multi output (MIMO) wireless 

link which, due to its potential in meeting these 

challenges caused by fading channels together with 

power and bandwidth limitations, has become a very 

important area of research. The importance of MIMO 

communications lies in the fact that they are able to 

provide a significant increase in capacity over single-

input single-output (SISO) channels. Existing MIMO 

designs employ multiple transmitter antennas and 

multiple receiver antennas to exploit the high symbol rate 

provided by the capacity available in the MIMO 

channels.  Over the past several years, various space-time 

coding schemes have been developed to take advantage 

of the MIMO communication channel. Using a linear 

processor, orthogonal space-time block codes [2], [3], can 

provide maximum diversity achievable by a maximum 

likelihood detector. However, they have a limited 

transmission rate and thus, do not achieve full MIMO 

channel capacity. Linear dispersion codes have been 

proposed in [4] for which each transmitted codeword is a 

linear combination of certain weighted matrices 

maximizing the ergodic capacity of the system. 

Unfortunately, good error probability performance for 

these codes is not strictly guaranteed.  In this paper, we 

consider a coherent communication system equipped 

with multiple transmitter antennas and a single receiver 

antenna, i.e., a MISO system. These systems are often 

employed in mobile communications for which the 

mobile receiver may not be able to support multiple 

antennas. The highest transmission rate for a MISO 

system is unity, i.e., one symbol period. For such a MISO 

system with receivers, rate-1 and full diversity STBC 

have been proposed by various authors [4]-[5].  

           In recent years, when channel state information is 

completely known at the receiver, simple space-time 

block codes (STBCs) such as orthogonal STBCs, block 

orthogonal STBCs, quasi orthogonal STBCs, multigroup 

decodable STBCs, full-diversity STBCs with linear 

receivers, fast maximumlikelihood (ML)-decodable 

multiple input multiple output (MIMO) STBCs, and 

partial interference cancellation decodable STBCs have 

been developed to significantly simplify the decoding 

complexity of the ML detector. However, the exact 

knowledge of channel state information is not easily 

attainable. Therefore, non-coherent and differential 

STBCs have been proposed for general MIMO 

communication systems.   
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       A simple approach to obtaining channel state 

information is to send a certain amount of training signals 

enabling the receiver too reliably estimate the channel 

coefficients. Generally, a training STBC consists of two 

parts: one known at the receiver for estimating the 

channel and the other being a coherent STBC. It has been 

proven that the training ML receiver extracts full 

diversity for the training STBC if the underlying coherent 

STBC enables full diversity for the coherent ML receiver.  

    We are specifically interested in a non-coherent 

communication system equipped with multiple 

transmitter antennas and a single receiver antenna, i.e., a 

multiple-input- single-output (MISO) system. Multiple 

input multiple-output (MIMO) wireless communication 

systems, i.e., wireless systems with multiple transmit and 

receive antennas, are important due to their potential for 

significant spectrum efficiency. Of particular interest are 

those schemes that assume channel knowledge at the 

receiver but no knowledge at the transmitter .since 

training sequences are typically available [7]. Practical 

modulation schemes for MIMO systems with receive-

only channel knowledge fall principally into two areas 

known as diversity and multiplexing. Diversity 

modulation, or space-time coding, uses specially 

designed codeword that maximize the diversity advantage 

or reliability of the transmitted information.  

      In fading channels, such codes maximize the 

diversity gain at the expense of a loss in capacity .Spatial 

multiplexing (or BLAST, on the other hand, transmits 

independent data streams from each transmitting antenna. 

Multiplexing designs allow capacity to be achieved but at 

the expense of a loss in diversity advantage in fading 

channels. In these systems, it is desirable to provide both 

high spectrum efficiency and high reliability. 

     On space time codes design are based on the 

criteria obtained in [8],namely full rank, diversity and the 

full diversity criterion is the first one needed to be 

satisfied since it governs the exponential in the pair wise 

error probability (PEP) decay vs. the signal to noise ratio 

(SNR). It is based on maximum-likelihood (ML) 

decoding at the receiver that usually has a high 

complexity and    may not have soft outputs. in practical 

multiple-input multiple-output (MIMO) system, decoding 

complexity is an important concern and a decoding 

scheme with low complexity is always desired.   

II.MISO SYSTEM MODEL 

TX 1                                                                                                                           RX 1 

 

TX n 

 

 

FIG: 1 BLOCK DIAGRAM OF MISO SYSTEM 

 MISO systems are composed of three main elements, 

namely the transmitter (Tx), the channel (H) and the 

receiver (Rx). In this paper, Nt is denoted as the number 

of antenna elements at the transmitter and Nr is denoted 

as the number of elements at the receiver. Fig. 1 depicts 

the block diagram of such a MISO system. 

 

III. SPACE-TIME BLOCK CODE 

        

           Spatial diversity can be achieved by transmitting 

several replicas of the same information through each 

antenna, the different replicas sent for exploiting diversity 

are generated by a space-time encoder which encodes a 

single stream through space using all the transmit 

antennas and through time by sending each symbol at 

different times. By doing so, the probability of losing the 

information decreases exponentially [9]. This form of 

coding is called space-time coding (STC). Due to their 

decoding simplicity, the most dominant form of (STBC) 

is space-time block codes (STBC).  

 

 

   

 

 

FIG. 2: BLOCK DIAGRAM OF SPACE-TIME CODING 

 

A. ORTHOGONAL SPCAE TIME BLOCK CODES 

 

         For complex orthogonal STBCs, due to the 

Orthogonality of their codes, their maximum likelihood 

(ML) decoding is linear & hence they achieve full 

diversity with linear receivers. OSTBCs can be expanded 

to any number of transmit antenna. The real orthogonal 

designs exist only for N=2, 4 & 8 STBCs based on real 

designs have transmission rate of 1; 

 A number codes based on generalized real designs are 

constructed explicitly for N≤8. 

The codes for a N=4 transmit antenna system is given by  

 

     …… (1) 

 

          We find that column of C differs from the first by a 

permutation and a reflection. Thus when transmitting this 
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code over a slow fading channel, its structure will be 

transferred to the Alamouti’s STBC. There are Q=4 

symbols being sent over L=4 symbol periods, thus the 

rate of the space time encoding is 1.   
        The most prevalent space-time codes can be 

divided into two main categories: space-time trellis codes 

(STTCs) and space-time block codes (STBCs). STTCs, 

discovered by Tarokh in 1998, transmit multiple, 

redundant copies of a trellis (or convolution) code 

distributed over time and multiple antennas. STTCs 

encode a stream of data s(n) via T n convolution encoders 

(or one convolution encoder with T n outputs) and 

transmit the T n streams of data s (n),...,s (n) 1 nT via the 

T n transmit antennas.  
        These codes provide both coding gain and diversity 

gain, however, being based on trellis codes they are 

relatively complex to encode and decode, since they rely 

on a Viterbi decoder at the receiver [9].  

    STBCs, on the other hand, operate on a block of 

input symbols at a time forming a matrix structure whose 

rows represent time and columns represent transmit 

antennas. Unlike STTCs, STBCs generally do not 

provide any coding gain (unless concatenated with an 

outer-code) but do provide full diversity benefits. 

 

B.  PROPERTIES OF OVERLAPPED   ALAMOUTI   

CODES 

               Our proposed overlapped Alamouti codes have 

some good properties that will be investigated and 

described in this subsection, and their performance 

comparison with some other STBC is to be carried out. 

We now make the following remarks for overlapped 

Alamouti codes and the main counterparts in the 

comparison are OSTBC and Toeplitz codes. 

 

1) Symbol rate: Overlapped Alamouti codes have 

symbol rate. 

 

                    …..  (2)                                                      

   

               Which are slightly higher than RτM, L for 

Toeplitz codes when both M and L are even, and can 

approach as goes to infinity. Also, is strictly less than 

unless and is even, i.e., if and only if is equivalent to 

concatenated Alamouti codes. So, under the criterion in 

Theorem 1, overlapped Alamouti codes and Toeplitz 

codes are asymptotically optimal in terms of symbol rates 

according to Corollary 2. However, for OSTBC, the 

symbol rates are upper bounded by for more than two 

transmit antennas and furthermore, a tight upper bound 

was conjectured to be for or transmit antennas. Hence, 

overlapped Alamouti codes have more flexible and, 

generally, higher rates than OSTBC. 

 

2) Orthogonality: If we say the first column and the last 

column of a matrix are adjacent in a cyclic way, for OMxL 

in, each column in its codeword matrix must be 

orthogonal to its two adjacent columns except that when 

is odd, the first and the Mth columns are only orthogonal 

to the second and the (M-1)th columns, respectively. 

Nevertheless, for Toeplitz codes, no Orthogonality exists 

in their codeword matrices. Observing the 

corresponding equivalent channel matrices is another way 

to evaluate the Orthogonality of the codes.            

              For OSTBC, they have perfect Orthogonality 

and the corresponding is a scaled unitary matrix. For 

overlapped Alamouti codes, on the other hand, all the odd 

columns of when is even, where and are two Toeplitz 

matrices with columns and denotes the Kronecker 

product between two matrices.  

 

3) Diversity-Multiplexing Tradeoff: It has been shown 

in that in an independent MISO flat fading channel; 

Toeplitz codes can approach the diversity-multiplexing 

tradeoff with ZF or MMSE receiver for square QAM 

constellation. Since our overlapped Alamouti codes have 

the same diversity as and slightly higher symbol rates 

than Toeplitz codes, they can also approach the diversity-

multiplexing tradeoff in the same situation. Compared 

with OSTBC, overlapped Alamouti codes have symbol 

rate and block length advantages. Therefore, although 

overlapped Alamouti codes cannot outperform OSTBC in 

the case when their symbol rates are the same due to the 

perfect Orthogonality of the latter, the higher available 

rates of overlapped Alamouti codes can compensate the 

drawback of Orthogonality and may lead to performance 

gains over OSTBC.                 

             For example, an OSTBC that uses 16-QAM 

constellation may be outperformed by an overlapped 

Alamouti code, which uses 4-QAM constellation, with a 

higher symbol rate but the same throughput, and 

furthermore, the overlapped Alamouti code generally has 

a smaller block length than the OSTBC when the number 

of transmit antennas is not small. The above observation 

will be verified from the simulation 
 

IV. ZF RECEIVERS 

     

      The main purpose in this section is to propose ZF 

and ZF-DFE receivers for the training space time block 

coded channel model (1) and  then  to prove that, the 
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coherent STBC enable full diversity for the coherent ZF 

and ZF-DFE receivers, then the training STBC will also 

enable full diversity for the non-coherent training ZF 

receivers.      

    1. ZF Receiver: This detector consists of two steps: 

Step 1) Estimate the fading channel h using (4.2) and the 

ZF equalizer, 

 

                                ....... (7) 

Step 2) The channel estimate ĥ is regarded to be perfect 

and used for estimating the transmitted signals with the 

equivalent channel model and the ZF detector. 

 2. ZF-DFE receiver: For discussion convenience, let 

. Then, basically, the ZF-DFE detector is based on the 

detector and can be described as follows:   

Step 1) The estimate of the channel is obtained by 

equation (1). 

 

Step 2) The channel estimate h is regarded used for 

detecting the transmitted signals with the equivalent 

channel model and the coherent ZF-DFE detector. 

Specifically speaking, the detection captures two 

procedures. 

 

1. Initialization: the last symbol sk of s is first detected 

using the ZF equalizer gk with the channel matrix H 

(ĥ), i.e., 

  

    Z K =y                           ...... (3)     

    ŜK =Quant (g
 
K

H
 zK)        ....... (4) 

 

2.  Recursion: suppose that the previously already 

detected symbols, 

 

Zk =Zk+1 – hk+1 Ŝk+1                        ....... (5)                                   

ŜK =Quant (g
 
K

H
 zK)                                    ....... (6) 

 

For k= k-1,k-2....1. 

                              

V. RESULTS 

 

A: ORTHOGONAL STBCS WITH ZF RECEIVER: 

 

           In this section, we examine the error performance 

of the STBCs based on the coherent overlap and 

Alamouti-Toeplitz codes with the non coherent ZF 

receiver. The coding matrix is characterized 

 by , 

where Xd(s) is normalized into E[tr(Xd(s)X
H

d (s))] = 1 

and . Notice that the symbol rate for 

the training STBCs is 9/16. Hence, if we choose 16-QAM 

constellation, then the transmission bit rate is 9/4 = 2.25 

bits per channel use. 

           In fact, a theoretic analysis on this issue given in 

reveals that, since the condition number of the equivalent 

Toeplitz channel matrix becomes dramatically worse as 

the block size increases, the coding gain exponentially 

shrinks.  

Therefore, only for sufficiently large SNR values can one 

observe the same diversity gain (slope) in both curves 

 

 
 

Fig 3:a) Bit Error performance of orthogonal STBCs 

using ZF receiver. 

.           The average bit error rates for the orthogonal 

STBCs are shown in Fig.3 (a) and (b). We can observe 

that the ZF receiver outperforms the orthogonal STBC 

ZF receiver for both systems with about 1.7–3-dB signal-

to-noise ratio (SNR) gains. From Fig.3 (a), we also 

observe a very interesting phenomenon, where it looks 

that the ZF receivers have different diversity gains, which 

seems inconsistent with the error performance analysis. 

 

B. ANALYSIS OF SYMBOL ERROR RATE USING 16 

QAM:             

          For example, an OSTBC that uses 16-QAM 

constellation may be outperformed by an over lapped 

Alamouti code, which uses 4-QAM constellation, with a 

higher symbol rate but the same throughput, and 

furthermore, the overlapped Alamouti code generally has 

a smaller block length than the OSTBC when the number 

of transmit antennas is not small. The above observation 

will be verified from the simulation.  Where each sub 

code word matrix Xo(si) for i = 1, 2, 3 comes  from an 8 × 
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8 OSTBC  with symbol rate 1/2 and with normalization 

E[tr(Xo(si)Xo
H
(si))] = 1/3,  and 

 . Hence, the symbol rate of this OSTBC is 

3/8. We like to mention that one of the advantages of the 

OSTBCs is that the ZF receiver is equivalent to the 

MMSE receiver, i.e., symbol-by-symbol detection.  

 

 

b) SNR vs symbol error rate using MISO. 

 

VI. CONCLUSIONS 

    

    Non-coherent flat-fading wireless communication 

system equipped with multiple transmitter antennas and a 

single receiver antenna. For such a system, we have 

designed the non coherent ZF receiver for the Orthogonal 

STBC, then the resulting orthogonal STBC also enables 

full diversity for the ZF receiver, also we analysis the bit 

error performances of orthogonal Space time block codes 

using ZF receiver.  

. 

REFERENCES 

 

[1] S.M. Alamouti, ―A simple transmit diversity scheme 

for wireless communications,‖ IEEE J. Sel. Areas 

Communication., vol. 16, no. 8, pp. 1451–1458, 

Oct. 1998. 

 

[2] Y.Shang and X.-G. Xia, ―Space-time block codes 

achieving full diversity with linear receivers,‖ IEEE 

Trans. Inf. Theory, vol. 54, no. 10, pp. 4528–4547, Oct. 

2008. 

 

[3] O. Roy, S. Perreau, and A. J. Grant, ―Optimal 

estimator-detector receivers for space-time block 

coding,‖ in Proc. IEEE Int. Symp. Inf. Theory, Chicago, 

IL, Jun. 2004, p. 504. 

 

[4]  J. iu, J.-K. Zhang, and K. M. Wong, ―Full diversity 

codes for MISO systems equipped with linear or ML 

detectors,‖ IEEE Trans. Inf. Theory,vol. 54, no. 10, pp. 

4511–4527, Oct. 2008. 

 

[5] P.Dayal, M. Brehler, and M. K. Varanasi, 

―Leveraging coherent space-time codes for non-coherent 

communication via training,‖ IEEE Trans. Inf. Theory, 

vol. 50, no. 9, pp. 2058–2080, Sep. 2004. 

 

[6] B. Hassibi and B. M. Hochwald, ―High-rate codes 

that are linear in space and time,‖ IEEE Trans. Inf. 

Theory, vol. 48, no. 7, pp. 1804–1824, Jul. 2002. 

 

[7] R. W. Heath and A. J. Paulraj, ―Linear dispersion 

codes for MIMO systems based on frame theory,‖ IEEE 

Trans Signal Process., vol. 50, no. 10, pp. 2429–2441, 

Oct. 2002. 

 

[8] J.-K. Zhang, J. Liu, and K. M. Wong, ―Trace-

orthogonal full diversity cyclotomic space-time codes,‖ 

time codes,‖ IEEE Trans. Signal Process., vol. 55, no. 2, 

pp. 618–630, Feb. 2007. 

 

[9]H. Wang, X.-G. Xia, Q. Yin, and B. Li, ―A family of 

space-time block codes achieving full diversity with 

linear receivers,‖ IEEE Trans. Communication., vol. 57, 

no. 12, pp. 3607–3617, Dec. 2009. 

 

[10] G Ganesan and P. Stoica, ―Differential modulation 

using space-time block codes,‖ IEEE Signal Process. 

Lett., vol. 9, no. 2, pp. 57–59, Feb. 2002. 

 


