
International Journal of Advanced Information Science and Technology (IJAIST)      ISSN: 2319:2682 
Vol.4, No.5, May 2015                                                                            DOI:10.15693/ijaist/2015.v4i5.13-19                                                                                                                                                     
 

13 

 

Asic Implementation Of Alms Adaptive Filter 
 

  M.Karthika
1
,           P.Elayaraja

2
,
     

     K Deepa
3 

                   
 

1 & 3
PG Scholar, Kongunadu College of Engineering and Technology, Trichy, Tamil Nadu 

2
Assistant Professor, Kongunadu College of Engineering and Technology, Trichy, Tamil Nadu 

                    

Abstract: 

Novel architecture to implement the pipeline fixed 

point adjoint LMS adaptive filter to reduce the delay and 

noise in a desired output signal. In this work we are 

implement in a real time input signal such us audio, 

cardiac etc.,  a input signal affected from external and 

internal noise sources, the unwanted noise signal can 

often be improved by an adaptive filter with adjoint least 

mean squares (ALMS) algorithm. The existing 

architecture has not achieved the sufficient output and 

reduces the performance for the continuous process and 

many more applications, when the desired signal 

exhibits large power fluctuations and delay. The adjoint 

least mean square algorithms provide the secondary 

paths estimates, secondary paths coefficients and states 

to achieve the minimum adaptation delay. The adaptive 

filter with adjoint least mean square (ALMS) algorithm 

implement in a real time input signal to improve the 

signal – to – noise ratio (SNR), Mean square error 

(MSE) and the response time in desired output signal. 

The proposed architecture implemented in both 

MATLAB and Cadence environment and obtain the 

minimum delay time 0.08239, Improve the SNR 

12.6803 and MSE 9.9974e-004 in MATLAB and 

occupied cell area 0.284µm, total power consumed 

160.77 mW  and the minimum delay time is 0.17ns. 

Index Terms— Adaptive filters, adaptive noise 

cancellation, noise reduction, fixed-point arithmetic, 

LMS, ALMS. 

I. INTRODUCTION 

Adaptive Noise Cancellation 

Noise Cancellation is a variation of optimal filtering 

that involves producing an estimate of the noise by 

filtering the reference input and then subtracting this 

noise estimate from the primary input containing both 

signal and noise. It makes use of an auxiliary or 

reference input which contains a correlated estimate of 

the noise to be cancelled. As shown in the Fig. 1, an 

Adaptive Noise Canceller (ANC) has two inputs – 

primary and reference. The primary input receives a 

signal s from the signal source that is corrupted by the 

presence of noise n uncorrelated with the signal. The 

primary input receives a signal s from the signal source 

that is corrupted by the presence of noise n uncorrelated 

with the signal. 

 

Fig.1 Adaptive Noise Canceller 

The reference input receives a noise n0 uncorrelated 

with the signal but correlated in some way with the noise 

n. The noise no passes through a filter to produce an 

output nˆ that is a close estimate of primary input noise. 

This noise estimate is subtracted from the corrupted 

signal to produce an estimate of the signal at sˆ, the 

ANC system output. 

Adaptive Filter Algorithms 

Apply different algorithms to the FIR adaptive filter 

to control how the filter adjusts the coefficients. The 

adaptive algorithms adjust the filter coefficients to 

minimize the following cost function J(n): 

J(n) = E[e
2
(n)]   (2) 

where E[e
2
(n)] is the expectation of e

2
(n), and e

2
(n) is 

the square of the error signal at time n. Depending on 

how the adaptive filter algorithms calculate the cost 

function J(n), the Adaptive Filter Toolkit categorizes 

those algorithms into the following two groups: 

 Least Mean Squares (LMS) algorithms. 

LMS algorithms calculate J(n) by using the 

following equation: 

J(n) = e2(n)    (3) 
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This equation shows that the LMS algorithms use 

the instantaneous value of e2(n) at time n as the 

estimation of E[e2(n)]. 

 Recursive Least Squares (RLS) algorithms 

RLS algorithms calculate J(n) by using the 

following equation: 

  (4) 

Where, N is the filter length and λ is the forgetting 

factor. This algorithm calculates not only the 

instantaneous value e
2
(n) but also the past values, such 

as e
2
(n–1), e

2
(n–2), ..., e2(n–N+1). The value range of 

the forgetting factor is (0, 1). In this paper Section 2 

addressed the existing system delayed LMS algorithm 

and its pipelined architecture. Section 3 proposed adjoint 

LMS filter with architecture. Section 4 contains the 

results and shows the entire architecture implement in 

cadence design environment and finally Section 5 

concludes this work. 

II. DELAYED LMS ALGORITHM 

The Least Mean Square (LMS) adaptive filter is the 

most popular and most widely used adaptive filter, not 

only because of its simplicity but also because of its 

satisfactory convergence performance. Since the 

conventional LMS algorithm does not support pipelined 

implementation because of its recursive behavior, it is 

modified to a form called the delayed LMS (DLMS) 

algorithm, which allows pipelined implementation of the 

filter.  

The delayed LMS (DLMS) algorithm is described by the 

following equations: 

)1()()( 1DnWnXTny   

)()()( nyndne   

nnnn XeWW ..1     (6) 

The weights of LMS adaptive filter during the n 

th iteration are updated according to the following 

equations [2] : 

nnnn XeWW ..1     (7) 

dn is the desired response, yn is the filter output, and en 

denotes the error computed during the n th iteration. μ is 

the step-size, and N is the number of weights used in the 

LMS adaptive filter. In the case of pipelined designs 

with m pipeline stages, the error en becomes available 

after m cycles, where m is called the ―adaptation delay.‖ 

The DLMS algorithm therefore uses the delayed error en 

−m, i.e., the error corresponding to (n − m) th iteration 

for updating the current weight instead of the recent-

most error. 

 

Fig. 2 Structure of the conventional delayed LMS 

adaptive filter 

The weight-update equation of DLMS adaptive filter is 

given by 

...1 mnmnnn XeWW      (10) 

The block diagram of the DLMS adaptive filter is 

shown in Fig. 2, where the adaptation delay of m cycles 

amounts to the delay introduced by the whole of 

adaptive filter structure consisting of finite impulse 

response (FIR) filtering and the weight-update process. 

The delay introduced by the pipeline stages in FIR 

filtering, and the other part is due to the delay involved 

in pipelining the weight-update process.  

... 111 nnnnnn XeWW     

111 nnnnnn Yde    

nnn
T

n XWY .2    (11) 

We notice that, during the weight update, the error 

with n1 delays is used, while the filtering unit uses the 

weights delayed by n2 cycles. The modified DLMS 

algorithm decouples computations of the error-

computation block and the weight-update block and 

allows us to perform optimal pipelining by feed-forward 

cut-set retiming of both these sections separately to 

minimize the number of pipeline stages and adaptation 

delay. 

Pipelined Structure of the Error-Computation Block 

The proposed structure for error-computation unit of 

an N-tap DLMS adaptive filter is shown in Fig. 4. It 

consists of N number of 2-b partial product generators 

(PPG) corresponding to N multipliers and a cluster of 
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L/2 binary adder trees, followed by a single shift–add 

tree. Each subblock is described in detail.  

 

Fig.3 Error computation block 

All the L/2 partial products generated by each of the 

N PPGs are thus added by (L/2) binary adder trees. The 

outputs of the L/2 adder trees are then added by a shift-

add tree according to their place values. Each of the 

binary adder trees require log2 N stages of adders to add 

N partial product, and the shift–add tree requires log2 L 

− 1 stages of adders to add L/2 output of L/2 binary 

adder trees.2 The addition scheme for the error-

computation block for a four-tap filter. 

III. PROPOSED SYSTEM 

 Filters the input vector χ(n) through the adaptive 

filter coefficients vector ω(n-1) to produce the filter 

output vectory y(n) 

 Filter y(n) through the secondary path filter s to 

produce the secondary actuator response at the 

sensor ys(n) 

 Evaluates the current error sampling e(n)=d(n)+ 

ys(n).note the error here is formed by adding the 

signal rather than subtracting them to be compatible 

with real world sensors such as microphones and 

accelerometers 

Adjoint LMS with Adaptive 

Filter  

Fig. 4 Block Diagram of Adjoint LMS 

 Filters the mirrored error vector e(n) through the 

estimate of the secondary path se to produce the 

filter-error signal fe(n)    

 Uses χ(n) and fe(n) to calculate the normalized 

gradient vector and uses this to update the adaptive 

filter coefficients ω(n) 

 Supports both real and complex signals 

The wiener solution to the above problem is given 

by w(ω)= s(ω)‾ ¹ p(ω) where w(ω) is the controller 

response at frequency ω. s(ω) is  the response of the 

secondary path and p(ω) is the response of the primary 

of the secondary path at the same frequency the adaptive 

controller will asymptotically approach this wiener 

solutions provided that s(ω) is a minimum phase 

functions (does not have zeros outside the unit circle) 

and the controller length is large enough to 

accommodate the above convolution if s(ω) is not 

minimum phase functions the adaptive controller will 

approach the causal part of the solutions if the controller 

is too short the solutions will be truncated 

Adjoint LMS Algorithm: 

A new algorithm termed adjoint LMS which 

provides a simple alternative to the previously 

mentioned algorithms. In adjoint LMS, the error (rather 

than the input) is filtered through an adjoint filter of the 

error channel.Performance regarding convergence and 

mis adjustment are equivalent. However, linearity is not 

assumed in the derivation of the algorithm. Furthermore, 

equations for single-input-single-output (SISO) and 

multiple-input-multiple-output (MIMO) are identical 

and both remain order N.  

Algorithm Specifications  

An adaptive filter is specified as  





1

0

)()()()()(
M

n

T

n kXkWnkxkwky

 (13)

 

where k is the time index,  y is the filter output, x the 

filter input, and wn the filter coefficients. The vectors 

are, 

T

M kwkwkwkW )](.),........(1),(0[)( 1
 (14)

 

and 
TMkxkxkxkX )]1(),......1(),([)( 

(15)
 

 provide for compact notation. It is also often convenient 

to write the filter operation by )(),()( 1 kxkqWky 

  (16)
 

where  
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 

 
1

0

11 )(),(
M

n n qkwkqW
  (17)

 

with q
-n 

representing a time delay operator (i.e., q
-n

x(k) = 

x(k-n) ).  

 

Fig. 5 (a) Filtered-x LMS, (b) Adjoint LMS 

The standard filtered x-LMS is illustrated in Fig. 

6.2a where there exists a physical channel represented 

by C(q
-1

,k) between the output of the filter and the 

available desired response. The output error is defined as  

e(k) = d(k)-C(q
-1

,k)y(k)  (18) 

and the filtered x-LMS algorithm expressed as  

w(k+1) = w(k)+µe(k)X’(k)   

       

x’(k) = C(q
-1 

,k)x(k)    (19) 

where, x’corresponds to the inputs filtered through a 

model C’of the error channel (µ controls the learning 

rate). This algorithm can be derived from the standard 

LMS algorithm assuming linearity by simply commuting 

the order of the filter and the channel. Thus the original 

input become filtered by the channel (channel model) 

before entering the filter and the error appears directly at 

the output of the adaptive filter 

We now present an alternative algorithm called 

adjoint LMS. The equations are  

)2()2()()1(
~

MkXMkekWkW    (20) 

)(),()( 1
~ ^

kekqCke     (21) 

These equations differ from Equations 20 and 21 in 

that the error rather than the input is now filtered by the 

channel model as illustrated in Fig. 6.2b (  is the 

order of the FIR channel model). Furthermore, the 

filtering is through the adjoint channel model (q
-1

 is 

replaced with q
+1

). Graphically, an adjoint system is 

found for any filter realization by reversing the flow 

direction and swapping branching points with summing 

junctions and unit delays with unit advances. This is 

illustrated in Fig. 6.3 for a FIR tapped delay line. 

However, the method applies to all filter realizations 

including IIR and lattice structures. The consequence of 

the non causal adjoint filter is that a delay (equal to the 

channel model delay) must be incorporated into the 

weight update in Equation 20 to implement an on-line 

adaptation.. 

The adjoint system is found by reversing flow 

direction, swapping summing junctions with branching 

points and delays with advances. Adjoint LMS is clearly 

a simple modification of filtered-x LMS. For SISO 

systems the computational complexity of adjoint LMS 

and filtered x-LMS are identical. The real advantage 

comes when dealing with MIMO systems. In this case 

the adaptive filters are represented by an L x P matrix of 

transfer functions W(q
-1

.k) and the channel by a P x Q 

transfer function matrix C(q
-1

,k). Filtered x-LMS does 

not generalize directly since matrices do not commute 

and it makes no sense to filter the input X by C since 

dimensions may not even match.  

 

Fig. 6 FIR model of the channel and corresponding 

adjoint model. 

)()()()1(
~

kXkekWkW lp
T

lplp   (22) 

For 1 < l < L and 1 < p < P, and there is now a filtered 

matrix of inputs for each filter Wip formed as:  

)](.).........()([)(
~

2

~

1

~~

kXklXkXkX lpQplplp

T

  (23) 

with each row in the matrix found by filtering the input 

through the corresponding secondary path:  

)(),()( 1
1

~

kxkqCkX lpqlp
   (24) 
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The implementation of Multiple Error LMS 

results in a total of L x P x Q filter operations. In the 

cases of adjoint LMS, however, we encounter no such 

problem. Equations generalize directly:  

)2()2()()1(
~

MkXlMkekWlpkWlp    (25) 

)(),()( 1
~~

kekqCke    (26) 

 

The output error  is dimension Q (number of 

channel outputs) whereas the error  after filtering 

through the adjoint MIMO channel model is order 

(number of primary filter outputs) as desired. The 

clear advantage of this form is that operations remain 

order , where is the total number of filter 

parameters (compare the weight update matrix operation 

in Equation 7 to the vector operation in Equation 10). 

Table 6.1 gives a comparison of multiplications for 

some specific parameter values.  

Multiplications Adjoint LMS 

  

weight updates  

Total 567 

Multiplications Multiple Error LMS 

filtered inputs  

weight updates 
 

Total 3264 

Table 1: Comparison of computational complexity 

The above table consider the Reference inputs, 

L=16. Adaptive filter outputs, P=16, Adaptive filter taps, 

M1=8, Channel outputs, Q=32, Channel model taps, M2 

= 16.  

Fixed-Point Implementation and Optimization 

The most widely used format for floating-point 

arithmetic is the IEEE 754 standard. This standard 

details four floating-point formats - basic and extended 

each in single and double precision bit widths. 

Representation of every numeric value, in any number 

system, is composed of an Integer and a fractional part. 

The boundary that delimits them is called the radix 

point. The fixed-point format for representing numeric 

values derives its name from the fact that in this format, 

the radix point is fixed in a certain position. For integers 

this position is immediately to the right of the least 

significant digit.  

Every floating-point number can be divided into 

three fields, sign S, exponent E, and fraction F. Using 

the binary number system, it is possible to represent any 

floating-point number as: (-1)
8
*1.f*2

e-BIAS
.  

 

Fig.7 IEEE 754 Single precision format 

IV. RESULTS  

 

Fig. 8 Simulated output wave form for Adjoint LMS 

algorithm. 

 

Fig. 9 After floor plan 

Fig.8 shows the simulated and noise eliminated 

output waveform. It consider the two input signal such 

us real time input 16-bit data signal in data1 and the 

reference input signal 16-bit data signal in data2 and the 
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final output for the ALMS with adaptive filter output 16-

bit in alms final output. 

Fig. 9 to 12 shows the ASIC implementation of 

floorplan, placement, routing and final chip design for 

the proposed ALE adjoint-LMS architecture. 

 

Fig. 10 Placement. 

 

Fig.11 Routing 

 

Fig.12 Final Chip Design 

V. CONCLUSION   

The proposed an efficient architecture for the design 

of a modified adjoint LMS adaptive filter. By using a 

Partial Product Generator (PPG), the combinational b 

locks can achieve efficient area-delay product and 

energy - delay product. The proposed design gives the 

large efficient output comprises the existing output with 

large complexities. The architecture implemented in 

cadence encounter and it’s obtain the total area is 2.8nm, 

the total dynamic power consumption is 160.77mw, the 

leakage power is 548.96mw and the total time 

consumption is 11.15ps  and 0.17 ps for input to the 

output response time. In feature the architecture 

implemented in Recursive Least Squares (RLS) 

algorithms to achieve the better performance compare to 

the least mean square algorithm. 
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