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Abstract— This article reports the solution of Korteweg-de Vries 

(KdV) equation which is well known non-linear wave mechanics 

problem.  In mathematics, the Korteweg–de Vries equation is a 

mathematical model of waves on shallow water surfaces, which is 

a non-linear Partial Differential Equation (PDE) of third order. 

In this paper, we apply the Differential Transform Method 

(DTM) for solving KdV equations and comparing the solution 

with other known methods. These result shows that the proposed 

method is very effective; simple in solving nonlinear differential 

equations. 

Index terms: Differential Transform Method (DTM), Homotopy 

Perturbation Method (HPM), Homotopy Perturbation Transform 

Method (HPTM), Korteweg-de Vries equation (KdV), Taylor Series.    

I. INTRODUCTION 

The famous KdV equation first derived in 1895 by 

D.J. Korteweg-de Vries and G.de Vries which describes the 

lossless propagation of shallow water waves [1].  After its 

discovery, scientist found solution of this equation which is 

called soliton. The word soliton was first used in Zabusky and 

Kruskal’s paper in 1965 [2] which is a solution to a non-linear 

partial differential equation. The Korteweg and de Vries 

equation is a typical non-linear partial differential equation 

that provides soliton solutions. 

           We consider the Korteweg and de Vries equation [3, 4]. 
 

0t x xxxw pww qw      (1)  

with initial condition ( ,0) ( )w x f x  (2) 

where ,p q  are real constants and the nonlinearity of xww  

tends to localize the wave, whereas dispersion spreads the 

wave out . The delicate balance between xww and xxxw defines 

the formulation of solitons that consist of single humped 

waves. ( , )w x t is the displacement which describes how waves 

evolve under the competing but comparable effects of weak 

nonlinearity and weak dispersion.  

In recent years, Klaus Brauer showed exact solutions, 

graphical representation of Korteweg-de Vries equation [3]. 

Chuxiong Zheng presented Numerical Solutions to a 

linearized KdV equation on unbounded domain [5]. Idris Dag 

explained the numerical solutions of Kdv equation using radial 

basis functions [6]. S.Kapoor investigated the Numerical 

solution of separated solitary waves for KdV equation through 

finite element technique [7]. Olusola Kolebaje discussed the 

Numerical solution of the Korteweg-de Vries equation by 

finite difference and adomain decomposition method [8]. 

Jamrud Aminuddin solved Kdv equation by numerical 

solutions [10]. Shraddha S Chavan found the solution of third 

order Korteweg-de Vries equation by Homotopy Perturbation 

method using Elzaki Transform [12]. Mehri Sajjadian 

presented Numerical solution of the Korteweg-de Vries-

Burger’s equations using computer programming [11]. Sen-

YungLee found the Linearized exact solution for the KdV 

equation by the Simplest equation Method [13]. Mohannad H. 

Eljaily solved the KdV equations by Homotopy Perturbation 

method [14]. Numerous methods were used to solve KdV 

analytically by [10-14]. KDV has motivated considerable 

research interest into numerical solutions by several methods. 

Recently, the study of solitons has been the focus of many 

research groups [15-21]. 

 In this paper we applied Differential Transform 

Method for the solution of Korteweg-de Vries equations and 

this method was successfully applied for obtaining exact 

solutions to non-linear differential equations. Also we used 

MATLAB program for graphical representation of the exact 

solution.  The paper is organized as follows: In Section 2, the 

basic idea of the Differential Transformation Method is 

described. In Section 3, the method is implemented to four 

examples, and the conclusions are given in Section 4. 

II. BASIC IDEA OF DIFFERENTIAL TRANSFORM METHOD 

The basic definitions and fundamental operations of 

two dimensional Differential Transform Method as follows. 

Consider a function of two variables w(x, y), be analytic in the 

domain S and let 0 0( , ) ( , )x y x y  in this domain. The 

function w(x, y) is represented by one power series whose 

centre is located at 0 0( , )x y .The Differential Transformation 

of the function w(x, y) is the form  

1 ( , )
( , )

! !
( , )

0 0

k h
w x y

W x y
k hk h x y x y





 

 
 
 

          (3) 

where w(x, y) is the original function and ( , )W k h  is the 

transformed function. 

The differential inverse transform of ( , )W k h  is defined as 
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( , ) ( , )( ) ( )

0 00 0

k h
w x y W k h x x y y

k h

 
   

 

         (4) 

In the application when 0 0( , )x y  taken as (0, 0) and from  

(3) and (4) we have, 

1 ( , )
( , ) ( , )

0 0 0 0! !

k h
w x y k h k h

w x y x y W x y x y
k hk h k hk h x y

   
    

    

 
 
 

 

   
The operations for the two-dimensional differential 

transform method are listed in the following Table 1. 

 

Original Function Transform Function 

( , ) ( , ) ( , )w x y u x y v x y   ( , ) ( , ) ( , )W k h U k h V k h   

( , ) ( , )w x y u x y  ( , ) ( , )W k h U k h  

( , )
( , )

u x y
w x y

x





 

( , ) ( 1) ( 1, )W k h k U k h    

( , )
( , )

u x y
w x y

y





 ( , ) ( 1) ( , 1)W k h h U k h    

( , ) ( , ) ( , )w x y u x y v x y  
( , ) ( , ) ( , )

0 0

k h
W k h U r h s V k r s

r s
   

 

 

( , )
m n

w x y x y  
1, ,

( , ) ( , )
0,

k m h n
W k h k m h n

otherwise






 
   

                                     

 

In section 2 the main points of the differential transform 

method discussed briefly. The details of this Differential 

Transform Method can be found elsewhere [16, 17]. 

III. APPLICATIONS 

To illustrate the effectiveness of the present method, 

four test examples are considered in this section. The accuracy 

of this method is assessed by comparison with the exact 

solutions. 

 

Example 1: In this example, we solve Eq. (1), when 6p   , 

1q  and ( ) 6f x x .  

In this case, Eq. (1) reduces to  

             6 0t x xxxw ww w               (5) 

with initial condition ( ,0) 6w x x            (6) 

 

Taking the Differential Transform both sides of Eq. (5) and 

Eq. (6) we get the transformed version of Eq. (5) as 

( 1) ( , 1) 6 ( , )( 1) ( 1, )
0 0

k h
h W k h W r h s k r W k r s

r s
        

 
 

     

 ( 1)( 2)( 3) ( 3, ) 0k k k W k h                (7) 
 

The transformed version of Eq. (6) is 

( , 0) 6 ( 1) ( )W k k h               (8) 

Taking 0,1,2........k  and 0,1,2........h  in Eq. (8) and 

substituting in Eq. (7) we get the values of ( , )W k h , which 

are given in Table 2. 

 

Table 2 

 

k\h    0      1        2      3        4       5..... 

0 

1 

2 

3 

4 

... 

   0      0        0      0        0       0 ..... 

   6     
36       

56    
76     

96      
116  ....  

    0      0        0      0        0        0 ..... 

   0       0        0      0        0        0 ...... 

   0       0        0      0        0        0 ..... 

   ...      ...       ...     ...       ...        ... 

 

 

The solution of Eq. (5) is  

( , ) ( , )
0 0

k h
w x t W k h x t

k h

 
  

 

3 5 2 7 3 9 4
6 6 6 6 6 ............x xt xt xt xt     

 

      

2 3 4
6 1 (36 ) (36 ) (36 ) (36 ) ....................x t t t t      
 

 
which is in series form, and the closed form is 

6
( , )

1 36

x
w x t

t



 ,   where 36 1t 

 
 

This is exactly the same as that obtained by Homotopy 

Perturbation Transform Method [14]. 

The behavior of exact solution to Eq. (5) are shown in Figure. 

(a) and (b) with 1<  x < 2,  

1<  t < 2 and 2<  x < 3, 2< t <3. 

 

 

Figure (a) 
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Figure (b)    
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Fig.1: The surface shows the exact solution of w(x, t) for Eq. (5)  

when, (a) 1 < x < 2 and 1 < t < 2, (b) 2 < x < 3 and 2 < t < 3. 

 

Example 2: In this example, we solve Eq. (1), 

when 6p  , 1q  and ( )f x x .  

In this case, Eq. (1) reduces to  

6 0t x xxxw ww w                (9)  

with initial condition ( ,0)w x x                         (10) 

 

Taking the Differential Transform both sides of Eq. (9) and 

Eq. (10) we get the transformed version of Eq. (9) as 

( 1) ( , 1) 6 ( , )( 1) ( 1, )
0 0

k h
h W k h W r h s k r W k r s

r s
        

 
 

      

 ( 1)( 2)( 3) ( 3, ) 0k k k W k h              (11) 

 

The transformed version of Eq. (10) is 

 

( , 0) ( 1) ( )W k k h                          (12) 

 

Taking 0,1,2........k  and 0,1,2........h  in Eq. (12) and 

substituting in Eq. (11) we get the values of ( , )W k h , which 

are given in Table 3. 

 

Table 3 

k\h    0       1        2        3        4       5..... 

0 

1 

2 

3 

4 

... 

   0       0        0        0        0       0 ..... 

   1     - 6      
26    -

36     
46      

56  ....  

   0       0        0        0        0        0 ..... 

   0       0        0        0        0        0 ...... 

   0       0        0        0        0        0 ..... 

   ...      ...      ...       ...       ...        ... 

 

Table 4 

k\h    0       1        2        3        4       5..... 

0 

1 

2 

3 

4 

... 

   0       0        0        0        0       0 ..... 

 - 1     - 1      -1      -1       -1      -1 ....  

   0       0        0        0        0        0 ..... 

   0       0        0        0        0        0 ...... 

   0       0        0        0        0        0 ..... 

   ...      ...      ...       ...       ...        ... 

 

The solution of Eq. (13) is  

( , ) ( , )
0 0

k h
w x t W k h x t

k h

 
  

 
 

2 3 4
(1 ) 1 ....................x t t t t       

 

 

which is in series form and the closed form is  
1

( , )
1

x
w x t

t





 

 
This is exactly the same as that obtained by Homotopy 

Perturbation Method using Elzaki Transform [12].The 

behavior of exact solution to Eq. (13) are shown in Figure. (a) 

and (b) with 1< x < 2, 1< t <2 and 2< x <3, 2< t <3. 

 

Figure (a) 
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Figure (b) 
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                 Fig.3: The surface shows the exact solution of  

w(x, t) for Eq. (13) when, (a) 1 < x < 2 and 1 < t < 2,   

                                (b) 2 < x < 3 and 2 < t < 3. 

 

 

Example 4: In this example we solve equation Eq. (1), 

when 6p   , 1q   and ( ) 1f x x  .  

In this case, Eq. (1) reduces to  

6 0t x xxxw ww w                        (17)  

with initial condition ( ,0) 1w x x                      (18) 

http://www.sciencedirect.com/science/article/pii/S1110016815000769#e0060
http://www.sciencedirect.com/science/article/pii/S1110016815000769#e0060
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Taking the Differential Transform on both sides of Eq. (17) 

and Eq. (18) we get the transformed version of Eq. (17) as 

( 1) ( , 1) 6 ( , )( 1) ( 1, )
0 0

k h
h W k h W r h s k r W k r s

r s
        

 

( 1)( 2)( 3) ( 3, ) 0k k k W k h                            (19) 

The transformed version of Eq. (18) is 

( , 0) ( ) ( ) ( 1) ( )W k k h k h                               (20) 

Taking 0,1,2........k  and 0,1,2........h  in Eq. (20) we 

get the values of ( , )W k h , which are given in  

 
Table 5

 

k\h    0       1        2        3        4       5..... 

0 

1 

2 

3 

4 

... 

   0      -6       36    -108    108    -108 ..... 

 - 1       6     -36      108   -108     108 ....  

   0       0        0        0        0        0 ..... 

   0       0        0        0        0        0 ...... 

   0       0        0        0        0        0 ..... 

   ...      ...      ...       ...       ...        ... 

 
The solution of Eq. (17) is  

( , ) ( , )
0 0

k h
w x t W k h x t

k h

 
  

 
 

2 3 4
(1 ) 1 6 36 108 108 ....................x t t t t       

 
 

2 3 2
(1 ) 1 6 36 108 (1 ....................)x t t t t t        

 
 

which is in series form and the closed form is 

3
1082

( , ) (1 ) 1 6 36
1

t
w x t x t t

t
    



 
 
 

 

 

This is exactly the same as that obtained by Homotopy 

Perturbation Method using Elzaki Transform [12]. The 

behavior of exact solution to Eq. (17) are shown in Figure. 

4(a), 4(b) with 1< x < 2, 1< t <2 and 2< x <3, 2< t <3. 

Figure(a) 
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Figure(b) 
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Fig.4: The surface shows the exact solution of w(x, t) for 

Eq. (17) when, (a) 1 < x < 2 and 1 < t < 2,   

                                    (b) 2 < x < 3 and 2 < t < 3. 

IV. CONCLUSION 

In this paper, the Differential Transformation Method 

(DTM) was applied to solve an important evolution equation 

namely the KdV equation and we achieved exact solutions. 

The Differential Transformation Method (DTM) is based on 

the Taylor series expansion, by which we can constructs an 

analytical solution in the form of polynomial series form. 

DTM is successful method to solve linear and non-linear 

Partial Differential Equations which can  quickly give 

convergent approximations leading to the exact solution.  

The main goal of this work was to conduct a comparative 

study between the Differential Transformation Method (DTM) 

and Homotopy Perturbation Method (HPM). We observed 

that, these two methods are very efficient and effective as they 

both give approximations with high accuracy and closed form 

solutions if they exist. Comparisons with the exact solution, 

shows that, DTM is simple, efficient and reliable. It remains 

small size of computation comparing to other numerical 

methods. It’s rapid convergence showed that, this method is 

reliably introduces a significant improvement in solving the 

Korteweg–de Vries equation over existing methods. 
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