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Abstract— In our present work we have considered solidification
of liquid inside and outside sphericalvessels for five different
values of latent heat parameters (a). The main aim of this work is
to develop the approximate analytical formulae for solving
problems of solidification of liquids at their melting temperatures
(Tm) kept inside and outside spherical vessels whose walls are
maintained at constant wall temperature (Tw) such that Tw<Tm
and to predict the solid-liquid interface position at anytime. The
fourth order Runga-Kutta method has been used for solving the
system of equation for the same problems obtained by the heat-
balance integral method incorporating special sub-divisions. The
results obtained by the above two methods have been compared
and an estimate of the error analysis has been carried out.

Index terms - Solidification In spherical Region, Moving
Boundary Problem, Runga-Kutta Method, Approximate Method.

|. INTRODUCTION

There is a considerable interest in the group of problems
known as the Stefan problem. This is comparatively little
information of an analytical or approximate technique
available and so the development of numerical methods to
deal with the Stefan problems is highly desirable. Transient
heat-conduction problems involving melting or solidification
generally referred to as “ Phase-change” or “ moving
boundary” problems are important in many engineering
applications such as in the making of ice, freezing of food, the
solidification of metal in casting, and the cooling of large
masses of ignious rock.
Heat transfer problem involving phase-change can be of two
type -
i. When whole liquid is at its melting temperature that
is no convection phenomenon in liquid region
ii.  The liquid is at a higher temperature than its melting
point and convection phenomenon is included.
T.R.Goodman and Boston Mass (1) presented an
approximate mathematical method for solving heat-transfer
problems utilizing the heat-balance integral and applied to five
problems involving a change of phase. Analytical expressions
are driven when (i) Boundary temperature is fixed (ii) Heat
flux at boundary is given (iii) Heat flux is generated
aerodynamically or by radiations (iv) Heat flux at boundary is
given and the melt is completely removed (v) Heat flux at
boundary is given and at time t, melt begins to vaporize
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Graham E. Bell (2) predicted the temperature distribution
and the rate of removal of heat by a coolant for the process of
solidification of a liquid about a cold isothermal pipe. The heat
balance integral method incorporating spacial sub-divisions
together with a piecewise linear profile is used. W.W.Yuen (3)
applied the heat-balance integral method to melting problems
with initial subcooling. A refinement of the heat-balance
integral method as described by the G.E.Bell (4) has be
successfully applied to the problem of the solidification of a
spherical pipe. The author in (5) has demonstrated how the
incorporation of special sub-division overcomes the sensitivity
previously observed in the heat-balance integral method.
N.K.Samria (6) studied solidification of liquid inside a
spherical vessel using heat-balance integral method
incorporating special sub-division and compared his results
with an approximate method with simplified assumptions.

R.S.Gupta and Dhirendra kumar (7) extended the
variable time step method introduced by Douglas and Gallie
for solving a one-dimensional Stefan problem with constant
heat flux at the fixed end to cover a more general boundary
condition. The numerical results are obtained for solidification
of a liquid initially at the fusion temperature. For variable time
step method x-direction is sub-divided into a finite number of
equal intervals and a time step is determined such that the
boundary traverses one space mesh during that time. We can
divide this method by two main parts, the first part is method
of Douglas and Galli originally presented for constant heat
flux at the fixed surface, is extended to cover more boundary
condition. It is refereed as extension of Douglas and Gallie
(EDG) method. The second method is “modified variable time
step” method proposed earlier by Gupta and Kumar for
constant heat flux, it is refereed as MVTS. The same author
(8) also solved using the variable time step method an
unconventional moving boundary problem, dissolution of a
gas bubble in a liquid. In their work (9) the same author have
also proposed a “modified variable time step” method for
analyzing two sample problems, dissolution of the gas bubble
in a liquid inside a spherical with a convective boundary
condition, the second with solidification outside a spherical
under a constant temperature at the fixed surfaces. R.S.Gupta
and Ambreesh Kumar (10) presented the variable time step
methods for  solving moving boundary problems by
transforming the variable space domain. The same authors in
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(11) have developed an efficient approach to isotherms
migration method in two dimensions. Here the movement of
the isotherms has been tracked along the fixed radial lines in
the cylindrical coordinates system. The same author (12) gave
a method based on coordinate transformation which
transforms the time-varying domain into an invariant one for
solving multi-dimensional (cuboid) solidification/melting
problems.
Approximate method

The following governing equation for temperature
fields can be given to represent the solidification
process for cylindrical ‘a’.
For the liquid region
a°Ty(r,t) T aT,(r,t) 10T,(r,t)
or? r or  aq Ot
0 <r <R(t), t>0 for inside solidification
R(t) <r <o, t>0 for outside solidification
For solidified region
°Ty(r,t) T T, (r,t) 1 0Ty(r,t)
or? r or  a, Ot
R(t) <r < a, t>0 for inside solidification
R(t) <r <o, t>0 for outside solidification
I = 1 for cylindrical case..
The boundary conditions for the general case for the above
solidification problem will be:
For inside solidification problem
aTl (r, t)

0, atr=0,t>0

Jr
T, (r,t) =Ti(r,t) =T, at r=R(),t>0
T,(r,t) =T, atr=a, t>0
For outside solidification problem
aTl (T, t)
— =0, atr > ot >0
oar

T,(r,t) =T)(r,t) =T, at r=R(),t>0

T,(r,t) =T, atr=a, t>0
At solid-liquid interface,
0T, (r,t) oTy(r,t) dR(t)
" or N N T

At r= R(t), t>0 for both inside and outside cases of
solidification.
The initial conditions are given below.
Att=0, T)(r,t) =Ty =T, forallr,t =0,R(0) =a
The above problem has been simplified by considering that the
initial temperature 'T,, ' of the liquid is equal to constant, so
the variation of temperature in the liquid region becomes zero.
The equation of solidified region is applicable given by the
simplified statement of the problem as:

0°T,(r,t) T aT,(r,t) 1 0T,(r,t)

or? r dr  a, ot
R(t) < r < a, t>0 for inside solidification
a<r <R(t), t>0 for outside solidification

T,(r,t) =T, atr =a, t > O0for both inside and outside
solidification problems.
T,(r,t) =T, at r=R(),t>0

for both inside and outside solidification problems.
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aT,(r,t) dR(t)

S ar = pS S dt
At r=R(t), t>0 for both inside and outside cases of
solidification.
The initial conditions are given by
T,(r,t) =T, at t=0,atallr.
R(0)=a
The following non-dimensional parameters have been adopted
in order to generalize the problem:

1) = T;(r,t) =T,
u(z,7) = T —T,
T R(t) ast
z=—,z0)=—,71=—
a a a

After being non-dimensionalized, the above equations take the
form:

0%u(z, ) I ou(z,1)
0z2 z 0z
_ Ou(z,1)
IR

Z(t) <z <1, t > 0 forinside solidification.

1<z<Z(t), T > 0 for outside solidification

The boundary conditions for both cases of inside and outside
solidification process are given as,

uiz,t)=0atz=1,7>0

(1.18)
uiz,t)=latz=(r), >0
(1.1b)
ou(z, 1) _ aaZ(T) atz =200t
0z dat
>0 (1.1¢)
Where
1 Ly
o« = _

=Non —

dimensional latent heat parameter, with initial condition
given as,

uiz0)=1latt=0forallz

(1.1e)

For approximate solution of the problem, we assume that the
time dependence of the temperature in the solidified region
can be neglected. So the temperature profile in the solidified
region can be assumed to be stationary for the time being. This
enables us to derive the analytical formulae for the
temperature distribution in radial direction. From this
temperature profile we get the value of temperature gradient
du(z)/0z at z=Z(t), and also we can get an expression for ©
in terms of Z(7).

0 4]
Since @) << z)
dt 0z
C0u(z) _ 0

ot
Applying this approximation, the egn. (2.1) reduces to

0%u(z,1) N I du(z,1)
0z2 z 0z
=0, (1.2)
With boundary conditions
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u(z)=0 atz=1,7 >0, (2.2a)
u(z)=latz=Z2(t), T >0,
(1.2b)

ou(z, ) _ a@Z(T) atz=200), T
0z ot
>0 (1.2¢)
and initial conditions,
u(z) =1 atz=0 forall z
(1.2d)
Z(0)=1,

Spherical problem

The approximate analytical solution for spherical problem is
readily obtained from egn. (1.2) by substitutingl"=2 with
boundary conditions, (2.2a) to (2.2d) and is given as:

0%u(z) 20u(2)

0z2 z 0z

=0, (2.5)
With boundary conditions,
uiz)=0atz=1,7t>0

(2.5a)
u(z) =1 at z=2(t), => 0
(2.5h)
du(z) dZ (1)
1 a It atz=7Z(1),t
>0 (2.5¢)

and initial conditions

u(z)=1 at t=0 for all z

(2.5d)

Z(0)=1

The solution for interface position at any time can be
formulated as follows:

_0%u(z) | 20u(2) 0 , d*u(z) ) du(z)
© 9272 z 0z 0_ dz? + dz

d [ZZ du@) _

dz dz

After integrating, we get.
,adu(z) c du(z) €
P4 T g T

Again after integration, we get
u(z)=f%dz+ C,=u(z) = _TCl+ C,
applying the boundary conditions,
u(z)=1 atz=Z(t),t>0
u(z)=0atz=1,t>0

we get
. Z(m)
Cl_CZ_Z(T)—l
~u(2)
_Z(r) z-1 (2.5¢)
T Z() -1 z )

After differentiating eqn. (2.5¢), we get
du(z)  Z(r) 1

dz  Z(1)—1'22
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At interface (i.e z= Z(7)
du(z) ‘ _ 1

dz O 7T 70 [1-Z()]
Also from Eqgn. (2.5¢) at interface

du(z) ‘ dZ(7)
Tdz @ T YTy
z(t) _ 1
dt  ZM[-Z@)]

wdt =« [Z2(t) — Z(7) 1dZ(7)

Z(7)
TZJ. alZ?(t) — Z(1)]d Z (1)
-2y

3
Approximate time for complete solidification (for inside

solidification only, when Z(1) =0) is given by 7, = a/6 =
1/6 Ste.
The equation for heat flow rate through the wall of spherical
vessel can be formulated as :

Q= —K,A(T,/dr)

—4nK,a?(T,, —T,) du(z)

a dz
wdz/dr = 1/a,and
du(z) — _ Z(1)
d@ 1T -z
. _ _ Z(1)
~Q = 4'77:1(5(1(71m Tw) [1-Z(1)]
%0
B 1 4K L Z(1)
TCa T @]

Egns. (2.6) and (2.6a) are applicable for both cases of inside
and outside solidification processes.

. RESULTS AND DISCUSSION

VARIATION OF THICKNESS OF SOLIDIFICATION
REGION WITH TIME

The position of interface was found by the approximate
solution given by equation (2.4) for spherical vessel and
equation (2.6) for spherical vessel at different times for
five different values of latent heat parameter («). The
systems of equations (2.8a) to (2.8b) for cylindrical
vessel obtained by heat balance integral method has
been solved numerically using fourth order Runga-Kutta
method for five different values of a. The procedure
adopted in solution by numerical method is followed by
subdividing temperature in to seven equal divisions.
Starting values of Zy,Zy,............... Z; was supplied for
Z,=0.95 (inner solidification) and for Z,=1.05 (outer
solidification) given in tables (2.4a) to (2.4b). Initially we
have started with a time increment of At = 2 x 10712
for the purpose of stabilizing the results. Once the results
are stabilized a time increment of AT = 2 x 1078 gave
stable results up to 0.9. After the lapse of time t=1.2 a
time increment of T = 2 x 10~° gave quite accurate
results.
4.1 a Inside solidification:
The results obtained by spherical approximate
method show the solidified region thickness (1-z(7)) as a
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function of time. The results given by approximate method
show higher values of complete solidification times as
compared to those given by numerical method for a =
21.689 and 17.351 and lower values of complete
solidification times for « = 8.675,5.784 and 4.338
(tables to 5.2a to 5.5e). By numerical method
corresponding to Z(t) =0.02 could have been calculated
after which the results show the negative values of Z(7).
Table-5.2a Variation of Thickness of solidified region with
time and rate of heat out through the wall of spherical vessel
for inside solidification for (x= 21.689).

Approximate method Runga-Kutta Method
Z(1) T Q(watts) | Z(t) T Q(watts)
0 3.61483 | 0 0.02062 | 3.51796 | 185.64
0.1 | 3.51362 | 7.03691 | 0.10009 | 3.41596 | 241.48
0.2 | 3.23889 | 15.83305 | 0.21074 | 3.10996 | 359.67
0.3 | 2.83403 | 27.14237 | 0.29949 | 2.75996 | 486.79
0.4 | 2.34241 | 42.22147 | 0.40541 | 2.25996 | 691.5
0.5 | 1.80742 | 63.3322 | 0.50248 | 1.75996 | 957.81
0.6 | 1.27242 | 94.99831 | 0.60897 | 1.20996 | 1403.85
0.7 | 0.7808 | 147.7751 | 0.70003 | 0.77496 | 2037.78
0.8 | 0.37594 | 253.3288 | 0.80017 | 0.37496 | 3403.27
0.9 | 0.10122 | 569.9897 | 0.90019 | 0.10096 | 7502.73
1 0 1 0

Table-5.2b Variation of Thickness of solidified region with
time and rate of heat out through the wall of spherical vessel
for inside solidification for (x= 17.351).
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0.3 | 1.13353 | 67.86063 | 0.30763 | 1.13559 | 103.15
0.4 | 0.9369 | 105.561 | 0.40209 | 0.94559 | 138.66
0.5 | 0.72292 | 158.3415 | 0.50157 | 0.73059 | 191.4
0.6 | 0.50893 | 237.5122 | 0.60125 | 0.51559 | 271.3
0.7 | 0.3123 | 369.4634 | 0.70195 | 0.31559 | 406.88
0.8 | 0.15037 | 633.3658 | 0.80261 | 0.15059 | 681.31
0.9 | 0.04048 | 1425.073 | 0.90041 | 0.04109 | 1480.27
1 0 1 0

Table-5.2d Variation of Thickness of solidified region with
time and rate of heat out through the wall of spherical vessel
for inside solidification for (<= 5.784).

Approximate method Runga-Kutta Method
Z(7) T Q(watts) | Z(7) T Q(watts)
0 0.964 0 0.01879 | 1.03209 | 76.78
0.1 | 0.93701 | 26.3872 | 0.10646 | 0.99209 | 91.05
0.2 | 0.86374 | 59.3712 | 0.20311 | 0.90709 | 118.61
0.3 | 0.75578 | 101.7792 | 0.30363 | 0.78709 | 159.12
0.4 | 0.62467 | 158.3232 | 0.40022 | 0.65209 | 212.92
05 |0.482 237.4848 | 0.50057 | 0.50209 | 292.42
0.6 | 0.33933 | 356.2272 | 0.60155 | 0.35209 | 414.16
0.7 | 0.20822 | 554.1312 | 0.70059 | 0.21709 | 614.53
0.8 | 0.10026 | 949.9393 | 0.8005 | 0.10459 | 1019.48
0.9 | 0.02699 | 2137.363 | 0.90007 | 0.02809 | 2230.31
1 0 1 0

Table-5.2e Variation of Thickness of solidified region with
time and rate of heat out through the wall of spherical vessel
for inside solidification for («= 4.338).

Approximate method Runga-Kutta Method
Z(7) T Q(watts) Z(1) T Q(watts)
0 2.89183 | 0 0.01973 | 2.84272 | 44.83
0.1 | 2.81086 | 8.79624 0.10092 | 2.75672 | 57.36
0.2 | 259108 | 19.79154 | 0.21205 | 2.50472 | 84.37
0.3 | 2.2672 | 33.92836 | 0.30509 | 2.20472 | 115.17
0.4 | 1.87391 | 52.77744 | 0.40926 | 1.80472 | 162.02
0.5 | 1.44592 | 79.16616 | 0.50538 | 1.40472 | 223.4
0.6 | 1.01793 | 118.7493 | 0.60012 | 1.00972 | 313.14
0.7 | 0.62464 | 184.721 0.70113 | 0.61972 | 471.86
0.8 | 0.30075 | 316.6647 | 0.80099 | 0.29972 | 787.53
0.9 | 0.08097 | 712.4953 | 0.90017 | 0.08172 | 1726.89
1 0 1 0

Table-5.2c Variation of Thickness of solidified region with
time and rate of heat out through the wall of spherical vessel
for inside solidification for (<= 8.675).

Approximate method Runga-Kutta Method

Z(7) T Q(watts) | Z(r) T Q(watts)

0 1.44583 | 0 0.01325 | 1.48759 | 45.24

0.1 | 1.40535 | 17.59349 | 0.10049 | 1.43759 | 54.74

0.2 | 1.29547 | 39.58536 | 0.2003 | 1.31759 | 73.94

Approximate method Runga-Kutta Method
Z(7) T Q(watts) | Z(r) T Q(watts)
0 0.723 0 0.02992 | 0.80135 | 112.98
0.1 | 0.70276 | 35.18293 | 0.10188 | 0.77335 | 128.66
0.2 |0.64781 | 79.1616 | 0.20028 | 0.70535 | 164.84
0.3 | 0.566883 | 135.7056 | 0.30077 | 0.61135 | 217.99
0.4 | 0.4685 211.0976 | 0.40247 | 0.50035 | 293.44
0.5 |0.3615 316.6464 | 0.50146 | 0.38535 | 398.86
0.6 | 0.2545 474.9697 | 0.60162 | 0.27035 | 560.88
0.7 | 0.15617 | 738.8416 | 0.70169 | 0.16535 | 833.36
0.8 | 0.07519 | 1266.586 | 0.80002 | 0.08035 | 1368.57
0.9 | 0.02024 | 2849.817 | 0.90007 | 0.02135 | 2997.43
1 0 1 0

4.1 b Outside solidification:

The results by approximate methods have been
shown in tables (5.2a)to (5.2e). The times for complete
solidification have been calculated upto Z(7)=3.0. The
solidification times obtained by approximate method as
compared to numerical method show higher values for
a=21.689 andl7.351 and lower values for a =
8.675,5.784 and 4.338. Figures show that the results
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obtained by both methods are similar for cylindrical upto
Z(t)=2.0..
ERROR ANALYSIS
In tables (5.2a) to (5.2e) show complete
solidification times by both approximate and numerical
method at five different values of latent heat parameter () for
inside and outside solidification process of cylindrical and
spherical problems. Approximate method is more correct. So
assuming numerical method to be more correct one an
estimate of errors in approximate method has been carried out.
The percentage error is given by the formula:
T, (numerical) — t,(approx)

= x 100
€ T (humerical)

CONCLUSION

The main aim of this work is to predict the time required for
the completion of the solidification process and also to predict
the temperature distribution in the solidified region of a liquid
kept inside and outside spherical vessels. Whose walls are
maintained at constant sub melting temperature. The
approximate technique has been used and the obtained
systems of equations have been solved by fourth order Runga-
kutta method. Although a number of assumption have been
made in the problem specification and change of flux has been
approximated by the discontinues change in the adjacent
profile gradients. The acceptable estimates of both the
temperature and the flux have been obtained by using small
sub-divisions (n=7) and incremental time (initially t=2 x
107'2). An approximate analytical approach has been made to
predict solid-liquid interface position at any time. Results
obtained by both numerical and analytical methods, have been
compared and an estimate of the errors has been established,
assuming heat balance integral (numerical) method to be the
more correct.

The results show that the percentage of error using
approximate analytical method is less for higher values of
latent parameters and high for lower values. The percentage
error e = 0% at « = 9.4 and ¢ = 0% at @ = 12.3 for inside
and outside solidification process of spherical vessel. The
percentage error becomes infinite when « is reduced below 4.0
for spherical (inside) cases. For the only case of solidification
outside spherical vessel, the percentage error is upto a
maximum of 25.425% even for the lowest value of a = 0.
Thus, approximate analytical solution can be adopted for
higher value of alpha with the maximum errors encountered:

Q) & = —2.3% when a > 12.2 for inside spherical
case and,
(i) &€ = +25.42% for outside spherical case.

(Applicable for both higher and lower value of
a.)
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