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Abstract— In our present work we have considered solidification 

of liquid inside and outside sphericalvessels for five different 

values of latent heat parameters (𝜶). The main aim of this work is 

to develop the approximate analytical formulae for solving 

problems of solidification of liquids at their melting temperatures 

(Tm) kept inside and outside spherical vessels whose walls are 

maintained at constant wall temperature (Tw) such that Tw<Tm 

and to predict the solid-liquid interface position at anytime. The 

fourth order Runga-Kutta method has been used for solving the 

system of equation for the same problems obtained by the heat-

balance integral method incorporating special sub-divisions. The 

results obtained by the above two methods have been compared 

and an estimate of the error analysis has been carried out. 
 

Index terms - Solidification In spherical Region, Moving 

Boundary Problem, Runga-Kutta Method, Approximate Method.    

I. INTRODUCTION 

There is a considerable interest in the group of problems 

known as the Stefan problem. This is comparatively little 

information of an analytical or approximate technique 

available and so the development of numerical methods to 

deal with the Stefan problems is highly desirable. Transient 

heat-conduction problems involving melting or solidification 

generally referred to as “ Phase-change” or “ moving 

boundary” problems are important in many engineering 

applications such as in the making of ice, freezing of food, the 

solidification of metal in casting, and the cooling of large 

masses of ignious rock. 

Heat transfer problem involving phase-change can be of two 

type - 

i. When whole liquid is at its melting temperature that 

is no convection phenomenon in liquid region 

ii. The liquid is at a higher temperature than its melting 

point and convection phenomenon is included. 

             T.R.Goodman and Boston Mass (1) presented an 

approximate mathematical method for solving heat-transfer 

problems utilizing the heat-balance integral and applied to five 

problems involving a change of phase. Analytical expressions 

are driven when (i) Boundary temperature is fixed (ii) Heat 

flux at boundary is given (iii) Heat flux is generated 

aerodynamically or by radiations (iv) Heat flux at boundary is 

given and the melt is completely removed (v) Heat flux at 

boundary is given and at time t0 melt begins to vaporize 

.  Graham E. Bell (2) predicted the temperature distribution 

and the rate of removal of heat by a coolant for the process of 

solidification of a liquid about a cold isothermal pipe. The heat 

balance integral method incorporating spacial sub-divisions 

together with a piecewise linear profile is used. W.W.Yuen (3) 

applied the heat-balance integral method to melting problems 

with initial subcooling. A refinement of the heat-balance 

integral method as described by the G.E.Bell (4) has be 

successfully applied to the problem of the solidification of a 

spherical pipe. The author in (5) has demonstrated how the 

incorporation of special sub-division overcomes the sensitivity 

previously observed in the heat-balance integral method. 

N.K.Samria (6) studied solidification of liquid inside a 

spherical vessel using heat-balance integral method 

incorporating special sub-division and compared his results 

with an approximate method with simplified assumptions. 

R.S.Gupta and Dhirendra kumar (7) extended the 

variable time step method introduced by Douglas and Gallie 

for solving a one-dimensional Stefan problem with constant 

heat flux at the fixed end to cover a more general boundary 

condition. The numerical results are obtained for solidification 

of a liquid initially at the fusion temperature. For variable time 

step method x-direction is sub-divided into a finite number of 

equal intervals and a time step is determined such that the 

boundary traverses one space mesh during that time. We can 

divide this method by two main parts, the first part is method 

of Douglas and Galli originally presented for constant heat 

flux at the fixed surface, is extended to cover more boundary 

condition. It is refereed as extension of  Douglas and Gallie 

(EDG) method. The second method is “modified variable time 

step” method proposed earlier by Gupta and Kumar for 

constant heat flux, it is refereed as MVTS. The same author 

(8) also solved using the variable time step method an 

unconventional moving boundary problem, dissolution of a 

gas bubble in a liquid. In their work (9) the same author have 

also proposed a “modified variable time step”  method for 

analyzing two sample problems, dissolution of  the  gas bubble 

in a liquid inside a spherical with a convective boundary 

condition, the second with solidification outside a spherical 

under a constant temperature at the fixed surfaces. R.S.Gupta  

and  Ambreesh Kumar (10) presented the variable time step 

methods for  solving moving boundary problems by 

transforming the variable space domain. The same authors in 
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(11) have developed an efficient approach to isotherms 

migration method in two dimensions. Here the movement of 

the isotherms has been tracked along the fixed radial lines in 

the cylindrical coordinates system. The same author (12) gave 

a method based on coordinate transformation which 

transforms the time-varying domain into an invariant one for 

solving multi-dimensional (cuboid) solidification/melting 

problems. 

Approximate method 
 

The following governing equation for temperature 

fields can be given to represent the solidification 

process for cylindrical „a‟. 

For the liquid region 

𝜕2𝑇𝑙(𝑟, 𝑡)

𝜕𝑟2
+

𝛤

𝑟

𝜕𝑇𝑙(𝑟, 𝑡)

𝜕𝑟
=

1

𝑎𝑙

𝜕𝑇𝑙(𝑟, 𝑡)

𝜕𝑡
 

0 < r <R(t), t>0 for inside solidification 

R(t) < r <∞, t>0 for outside solidification 

For solidified region 

𝜕2𝑇𝑠(𝑟, 𝑡)

𝜕𝑟2
+

𝛤

𝑟

𝜕𝑇𝑠(𝑟, 𝑡)

𝜕𝑟
=

1

𝑎𝑠

𝜕𝑇𝑠(𝑟, 𝑡)

𝜕𝑡
 

R(t) < r < a, t>0 for inside solidification 

R(t) < r <∞, t>0 for outside solidification 

𝛤 = 1 for cylindrical case.. 

The boundary conditions for the general case for the above 

solidification problem will be: 

For inside solidification problem 
∂Tl(r, t)

∂r
= 0, at  r = 0, t > 0 

Ts r, t = Tl r, t = Tm   at   r = R t , t > 0 

Ts r, t = Tw   at r = a,      t > 0 

For outside solidification problem 
𝜕𝑇𝑙(𝑟, 𝑡)

𝜕𝑟
= 0, 𝑎𝑡  𝑟 → ∞, 𝑡 > 0 

𝑇𝑠 𝑟, 𝑡 = 𝑇𝑙 𝑟, 𝑡 = 𝑇𝑚   𝑎𝑡   𝑟 = 𝑅 𝑡 , 𝑡 > 0 

𝑇𝑠 𝑟, 𝑡 = 𝑇𝑤   𝑎𝑡 𝑟 = 𝑎,      𝑡 > 0 

At solid-liquid interface, 

𝐾𝑠

𝜕𝑇𝑠(𝑟, 𝑡)

𝜕𝑟
− 𝐾𝑙

𝜕𝑇𝑙(𝑟, 𝑡)

𝜕𝑟
= 𝜌𝑠𝐿𝑠

𝑑𝑅(𝑡)

𝑑𝑡
 

At r= R(t), t>0 for both inside and outside cases of 

solidification. 

The initial conditions are given below. 

At t=0, 𝑇𝑙 𝑟, 𝑡 = 𝑇0 = 𝑇𝑚 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟, 𝑡 = 0 , 𝑅 0 = 𝑎 

The above problem has been simplified by considering that the 

initial temperature ′𝑇𝑚 ′ of the liquid is equal to constant, so 

the variation of temperature in the liquid region becomes zero. 

The equation of solidified region is applicable given by the 

simplified statement of the problem as: 

𝜕2𝑇𝑠(𝑟, 𝑡)

𝜕𝑟2
+

𝛤

𝑟

𝜕𝑇𝑠(𝑟, 𝑡)

𝜕𝑟
=

1

𝑎𝑠

𝜕𝑇𝑠(𝑟, 𝑡)

𝜕𝑡
 

R(t) < r < a, t>0 for inside solidification 
a< r <R(t), t>0 for outside solidification 

𝑇𝑠 𝑟, 𝑡 = 𝑇𝑤   𝑎𝑡 𝑟 = 𝑎,      𝑡 > 0for both inside and outside 

solidification problems. 

𝑇𝑠 𝑟, 𝑡 = 𝑇𝑚   𝑎𝑡   𝑟 = 𝑅 𝑡 , 𝑡 > 0 

for both inside and outside solidification problems. 

𝐾𝑠

𝜕𝑇𝑠(𝑟, 𝑡)

𝜕𝑟
= 𝜌𝑠𝐿𝑠

𝑑𝑅(𝑡)

𝑑𝑡
 

At r= R(t), t>0 for both inside and outside cases of 

solidification. 

The initial conditions are given by 

𝑇𝑙 𝑟, 𝑡 = 𝑇𝑚   𝑎𝑡   𝑡 = 0, 𝑎𝑡 𝑎𝑙𝑙 𝑟. 
R(0)=a 

The following non-dimensional parameters have been adopted 

in order to generalize the problem: 

𝑢 𝑧, 𝜏 =
𝑇𝑠 𝑟, 𝑡 − 𝑇𝑤

𝑇𝑚 − 𝑇𝑤

 

𝑧 =
𝑟

𝑎
 , 𝑧 𝜏 =

𝑅(𝑡)

𝑎
 , 𝜏 =

𝑎𝑠𝑡

𝑎2
 

After being non-dimensionalized, the above equations take the 

form: 

𝜕2𝑢(𝑧, 𝜏)

𝜕𝑧2
+

𝛤

𝑧

𝜕𝑢(𝑧, 𝜏)

𝜕𝑧
 

=
𝜕𝑢(𝑧, 𝜏)

𝜕𝜏
                                                                                                 (1.1) 

Z(𝜏) < z < 1, 𝜏 > 0 for inside solidification. 

1 < z <Z(𝜏) , 𝜏 > 0 for outside solidification 

The boundary conditions for both cases of inside and outside 

solidification process are given as, 

u(z, 𝜏) =0 at z = 1, 𝜏 > 0                                                                                                                 

(1.1a) 

u(z, 𝜏) =1 at z = (𝜏), 𝜏 > 0                                                                                                               

(1.1b) 
𝜕𝑢 𝑧, 𝜏 

𝜕𝑧
= 𝛼

𝜕𝑍 𝜏 

𝜕𝜏
  𝑎𝑡 𝑧 = 𝑍 𝜏 , 𝜏

> 0                                                                                     1.1𝑐  

Where  

𝛼 =
1

𝑆𝑡𝑒.
=  

𝐿𝑠

𝐶𝑠 𝑇𝑚 − 𝑇𝑤 
 

  

=Non −
dimensional latent heat parameter, with initial condition  
given as, 
u(z,0) = 1 at 𝜏 = 0 for all z                                                                                                         

(1.1e) 

For approximate solution of the problem, we assume that the 

time dependence of the temperature in the solidified region 

can be neglected. So the temperature profile in the solidified 

region can be assumed to be stationary for the time being. This 

enables us to derive the analytical formulae for the 

temperature distribution in radial direction. From this 

temperature profile we get the value of temperature gradient 

𝜕𝑢(𝑧)/𝜕𝑧 at z=Z(𝜏), and also we can get an expression for 𝜏 

in terms of Z(𝜏). 

Since                                                      
𝜕𝑢(𝑧)

𝜕𝜏
<<<

𝜕𝑢(𝑧)

𝜕𝑧
 

∴
𝜕𝑢(𝑧)

𝜕𝜏
≅ 0 

Applying this approximation, the eqn. (2.1) reduces to  

𝜕2𝑢(𝑧, 𝜏)

𝜕𝑧2
+

𝛤

𝑧

𝜕𝑢(𝑧, 𝜏)

𝜕𝑧
= 0,                                                                                        (1.2) 

With boundary conditions 
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u(z) =0  at z=1, 𝜏 > 0,  (2.2a) 

u(z) =1 at z= Z(𝜏), 𝜏 > 0,                                                                                                             
(1.2b) 

 
𝜕𝑢 𝑧, 𝜏 

𝜕𝑧
= 𝛼

𝜕𝑍 𝜏 

𝜕𝜏
  𝑎𝑡 𝑧 = 𝑍 𝜏 ,   𝜏

> 0                                                                               1.2𝑐  

and initial conditions, 

u(z) = 1 at z=0 for all z                                                                                                                 

(1.2d) 

Z(0) = 1, 

Spherical problem 
 

The approximate analytical solution for spherical problem is 

readily obtained from eqn. (1.2) by substituting𝛤=2 with 

boundary conditions, (2.2a) to (2.2d) and is given as: 

𝜕2𝑢(𝑧)

𝜕𝑧2
+

2

𝑧

𝜕𝑢(𝑧)

𝜕𝑧
= 0,                                                                                          (2.5) 

With boundary conditions, 

u(z) =0 at z=1, 𝜏 > 0                                                                                                                        

(2.5a) 

u(z) =1 at z=Z(𝜏), 𝜏> 0                                                                                                                   

(2.5b) 
𝑑𝑢 𝑧 

𝑑𝑧
= 𝛼

𝑑𝑍 𝜏 

𝑑𝜏
 𝑎𝑡 𝑧 = 𝑍 𝜏 , 𝜏

> 0                                                                                         2.5𝑐  

and initial conditions  

u(z)= 1 at 𝜏=0 for all z                                                                                                                     

(2.5d) 

Z(0) =1 

The solution for interface position at any time can be 

formulated as follows: 

∵
𝜕2𝑢(𝑧)

𝜕𝑧2
+

2

𝑧

𝜕𝑢(𝑧)

𝜕𝑧
= 0  or  𝑧2  

𝑑2𝑢(𝑧)

𝑑𝑧2
+ 2𝑧

𝑑𝑢(𝑧)

𝑑𝑧
= 0                                                               

 
𝑑

𝑑𝑧
 𝑧2

𝑑𝑢(𝑧)

𝑑𝑧
 = 0 

After integrating, we get. 

𝑧2
𝑑𝑢(𝑧)

𝑑𝑧
= 𝐶1        or

𝑑𝑢(𝑧)

𝑑𝑧
=  

𝐶1

𝑧2
 

Again after integration, we get 

u(z)= 
𝐶1

𝑧2 𝑑𝑧 + 𝐶2 = 𝑢 𝑧 =  
−𝐶1

𝑧
+ 𝐶2 

applying the boundary conditions,  

u(z)=1  at z=Z(𝜏) , 𝜏 > 0 

u(z)=0 at z=1 , 𝜏 > 0 

we get  

𝐶1 =  𝐶2 =
𝑍(𝜏)

𝑍 𝜏 − 1
 

∴ 𝑢 𝑧 

=  
𝑍(𝜏)

𝑍 𝜏 − 1
.
𝑧 − 1

𝑧
                                                              (2.5𝑒) 

After differentiating eqn. (2.5e), we get 
𝑑𝑢(𝑧)

𝑑𝑧
=

𝑍(𝜏)

𝑍 𝜏 − 1
.

1

𝑧2
 

At interface (i.e z= Z(𝜏) 
𝑑𝑢(𝑧)

𝑑𝑧
⃒𝑧=𝑍(𝜏) =

1

𝑍(𝜏)  1 − 𝑍(𝜏) 
 

Also from Eqn. (2.5c) at interface 
𝑑𝑢(𝑧)

𝑑𝑧
⃒𝑧=𝑍(𝜏) = 𝛼

𝑑𝑍(𝜏)

𝑑𝜏
 

∴  𝛼
𝑑𝑍(𝜏)

𝑑𝜏
= −

1

𝑍(𝜏) 1 − 𝑍(𝜏) 
 

 ∴ d 𝜏  = ∝  𝑍2 𝜏 −  𝑍 𝜏   𝑑𝑍(𝜏) 

𝜏 =  𝛼 𝑍2(𝜏) − 𝑍 𝜏  𝑑 𝑍(𝜏)
𝑍(𝜏)

1

 

=𝛼  
𝑍3(𝜏)

3
−

𝑍2(𝜏)

2
  

Approximate time for complete solidification (for inside 

solidification only, when Z(τ) =0) is given by 𝜏𝑠 = 𝛼/6 =
1/6 𝑆𝑡𝑒. 
The equation for heat flow rate through the wall of spherical 

vessel can be formulated as : 

    𝑄 =  −𝐾𝑠𝐴 (𝑑 𝑇𝑠/𝑑𝑟) 

=
−4𝜋𝐾𝑠𝑎

2(𝑇𝑚 − 𝑇𝑤 )

𝑎

𝑑𝑢(𝑧)

𝑑𝑧
 

∵ 𝑑𝑧/𝑑𝑟 =  1/𝑎, 𝑎𝑛𝑑 
𝑑𝑢 (𝑧)

𝑑(𝑧)
⃒z=1 = −

𝑍(𝜏)

 1−𝑍(𝜏)  

 ∴ 𝑄 = 4𝜋𝐾𝑠𝑎(𝑇𝑚 − 𝑇𝑤 )
𝑍(𝜏)

 1−𝑍(𝜏) 
 

∴ 𝑄

=
1

𝐶𝑠𝛼
4𝜋𝐾𝑠𝐿𝑠𝑎

𝑍(𝜏)

 1 − 𝑍(𝜏) 
                                                                                                   (2.6𝑎) 

Eqns. (2.6) and (2.6a) are applicable for both cases of inside 

and outside solidification processes. 

.  RESULTS AND DISCUSSION 

VARIATION OF THICKNESS OF SOLIDIFICATION 
REGION WITH TIME 

The position of interface was found by the approximate 

solution given by equation (2.4) for spherical vessel and 

equation (2.6) for spherical vessel at different times for 

five different values of latent heat parameter (𝛼). The 

systems of equations (2.8a) to (2.8b) for cylindrical 

vessel  obtained by heat balance integral method has 

been solved numerically using fourth order Runga-Kutta 

method for five different values of 𝛼. The procedure 

adopted in solution by numerical method is followed by 

subdividing temperature in to seven equal divisions. 

Starting values of Z0,Z1,……………Z7 was supplied for 

Z7=0.95 (inner solidification) and for Z7=1.05 (outer 

solidification) given in tables (2.4a) to (2.4b). Initially we 

have started with a time increment of ∆𝜏 = 2 × 10−12  

for the purpose of stabilizing the results. Once the results 

are stabilized a time increment of ∆𝜏 = 2 × 10−8 gave 

stable results up to 0.9. After the lapse of time t=1.2 a 

time increment of 𝜏 = 2 × 10−5 gave quite accurate 

results. 

4.1 a Inside solidification: 

               The results obtained by spherical approximate 

method show the solidified region thickness (1-z(𝜏)) as a 
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function of time. The results given by approximate method 

show higher values of complete solidification times as 

compared to those given by numerical method for 𝛼 =
21.689 and 17.351 and lower values of complete 

solidification times for 𝛼 = 8.675, 5.784 𝑎𝑛𝑑 4.338 

(tables to 5.2a to 5.5e). By numerical method 𝜏𝑠 

corresponding to Z(𝜏) =0.02 could have been calculated 

after which the results show the negative values of Z(𝜏).  

Table-5.2a Variation of Thickness of solidified region with 

time and rate of heat out through the wall of spherical vessel 

for inside solidification for (∝= 21.689). 

 

Approximate method Runga-Kutta Method 

Z(𝜏) 𝜏 Q(watts) Z(𝜏) 𝜏 Q(watts) 

0 3.61483 0 0.02062 3.51796 185.64 

0.1 3.51362 7.03691 0.10009 3.41596 241.48 

0.2 3.23889 15.83305 0.21074 3.10996 359.67 

0.3 2.83403 27.14237 0.29949 2.75996 486.79 

0.4 2.34241 42.22147 0.40541 2.25996 691.5 

0.5 1.80742 63.3322 0.50248 1.75996 957.81 

0.6 1.27242 94.99831 0.60897 1.20996 1403.85 

0.7 0.7808 147.7751 0.70003 0.77496 2037.78 

0.8 0.37594 253.3288 0.80017 0.37496 3403.27 

0.9 0.10122 569.9897 0.90019 0.10096 7502.73 

1 0  1 0  

 

Table-5.2b Variation of Thickness of solidified region with 

time and rate of heat out through the wall of spherical vessel 

for inside solidification for (∝= 17.351). 

 

Approximate method Runga-Kutta Method 

Z(𝜏) 𝜏 Q(watts) Z(𝜏) 𝜏 Q(watts) 

0 2.89183 0  0.01973 2.84272 44.83 

0.1 2.81086 8.79624 0.10092 2.75672 57.36 

0.2 2.59108 19.79154 0.21205 2.50472 84.37 

0.3 2.2672 33.92836 0.30509 2.20472 115.17 

0.4 1.87391 52.77744 0.40926 1.80472 162.02 

0.5 1.44592 79.16616 0.50538 1.40472 223.4 

0.6 1.01793 118.7493 0.60012 1.00972 313.14 

0.7 0.62464 184.721 0.70113 0.61972 471.86 

0.8 0.30075 316.6647 0.80099 0.29972 787.53 

0.9 0.08097 712.4953 0.90017 0.08172 1726.89 

1 0  1 0  

 

Table-5.2c  Variation of Thickness of solidified region with 

time and rate of heat out through the wall of spherical vessel 

for inside solidification for (∝= 8.675). 

 

Approximate method Runga-Kutta Method 

Z(𝜏) 𝜏 Q(watts) Z(𝜏) 𝜏 Q(watts) 

0 1.44583 0 0.01325 1.48759 45.24 

0.1 1.40535 17.59349 0.10049 1.43759 54.74 

0.2 1.29547 39.58536 0.2003 1.31759 73.94 

0.3 1.13353 67.86063 0.30763 1.13559 103.15 

0.4 0.9369 105.561 0.40209 0.94559 138.66 

0.5 0.72292 158.3415 0.50157 0.73059 191.4 

0.6 0.50893 237.5122 0.60125 0.51559 271.3 

0.7 0.3123 369.4634 0.70195 0.31559 406.88 

0.8 0.15037 633.3658 0.80261 0.15059 681.31 

0.9 0.04048 1425.073 0.90041 0.04109 1480.27 

1 0  1 0  

 

Table-5.2d  Variation of Thickness of solidified region with 

time and rate of heat out through the wall of spherical vessel 

for inside solidification for (∝= 5.784). 

 

Approximate method Runga-Kutta Method 

Z(𝜏) 𝜏 Q(watts) Z(𝜏) 𝜏 Q(watts) 

0 0.964 0 0.01879 1.03209 76.78 

0.1 0.93701 26.3872 0.10646 0.99209 91.05 

0.2 0.86374 59.3712 0.20311 0.90709 118.61 

0.3 0.75578 101.7792 0.30363 0.78709 159.12 

0.4 0.62467 158.3232 0.40022 0.65209 212.92 

0.5 0.482 237.4848 0.50057 0.50209 292.42 

0.6 0.33933 356.2272 0.60155 0.35209 414.16 

0.7 0.20822 554.1312 0.70059 0.21709 614.53 

0.8 0.10026 949.9393 0.8005 0.10459 1019.48 

0.9 0.02699 2137.363 0.90007 0.02809 2230.31 

1 0  1 0  

 

Table-5.2e Variation of Thickness of solidified region with 

time and rate of heat out through the wall of spherical vessel 

for inside solidification for (∝= 4.338). 

 

Approximate method Runga-Kutta Method 

Z(𝜏) 𝜏 Q(watts) Z(𝜏) 𝜏 Q(watts) 

0 0.723 0 0.02992 0.80135 112.98 

0.1 0.70276 35.18293 0.10188 0.77335 128.66 

0.2 0.64781 79.1616 0.20028 0.70535 164.84 

0.3 0.566883 135.7056 0.30077 0.61135 217.99 

0.4 0.4685 211.0976 0.40247 0.50035 293.44 

0.5 0.3615 316.6464 0.50146 0.38535 398.86 

0.6 0.2545 474.9697 0.60162 0.27035 560.88 

0.7 0.15617 738.8416 0.70169 0.16535 833.36 

0.8 0.07519 1266.586 0.80002 0.08035 1368.57 

0.9 0.02024 2849.817 0.90007 0.02135 2997.43 

1 0  1 0  

 

4.1 b Outside solidification: 

              The results by approximate methods have been 

shown in tables (5.2a)to (5.2e). The times for complete 

solidification have been calculated upto Z(𝜏)=3.0. The 

solidification times obtained by approximate method as 

compared to numerical method show higher values for 

𝛼 = 21.689 and17.351 and lower values for 𝛼 =
8.675 , 5.784 𝑎𝑛𝑑 4.338. Figures show that the results 
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obtained by both methods are similar for cylindrical upto  

Z(𝜏)=2.0..  
ERROR ANALYSIS 

                In tables (5.2a) to (5.2e) show complete 

solidification times by both approximate and numerical 

method at five different values of latent heat parameter (𝛼) for 

inside and outside solidification process of cylindrical and 

spherical problems. Approximate method is more correct. So 

assuming numerical method to be more correct one an 

estimate of errors in approximate method has been carried out. 

The percentage error is given by the formula: 

𝜀 =
𝜏𝑠 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 − 𝜏𝑠(𝑎𝑝𝑝𝑟𝑜𝑥)

𝜏𝑠 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 
× 100 

 

CONCLUSION 

The main aim of this work is to predict the time required for 

the completion of the solidification process and also to predict 

the temperature distribution in the solidified region of a liquid 

kept inside and outside spherical vessels. Whose walls are 

maintained at constant sub melting temperature. The 

approximate technique  has been used and the obtained 

systems of equations have been solved by fourth order Runga-

kutta method. Although a number of assumption have been 

made in the problem specification and change of flux has been 

approximated by the discontinues change in the adjacent 

profile gradients. The acceptable estimates of both the 

temperature and the flux have been obtained by using small 

sub-divisions (n=7) and incremental time (initially t=2 ×
10−12). An approximate analytical approach has been made to 

predict solid-liquid interface position at any time. Results 

obtained by both numerical and analytical methods, have been 

compared and an estimate of the errors has been established, 

assuming heat balance integral (numerical) method to be the 

more correct. 

    The results show that the percentage of error using 

approximate analytical method is less for higher values of 

latent parameters and high for lower values. The percentage 

error 𝜀 = 0% at 𝛼 = 9.4 and 𝜀 = 0% at 𝛼 = 12.3 for inside 

and outside solidification process of spherical vessel. The 

percentage error becomes infinite when 𝛼 is reduced below 4.0 

for spherical (inside) cases. For the only case of solidification 

outside spherical vessel, the percentage error is upto a 

maximum of 25.425% even for the lowest value of 𝛼 = 0. 

Thus, approximate analytical solution can be adopted for 

higher value of alpha with the maximum errors encountered: 

(i) 𝜀 = −2.3% when 𝛼 > 12.2 for inside spherical 

case and, 

(ii) 𝜀 = +25.42%  for outside spherical case. 

(Applicable for both higher and lower value of 

𝛼.) 
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