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Abstract—In the literature various kinds of mappings between 

topological spaces have been defined. We introduce the notion of 

a new class of mappings called alpha-weakly continuous 
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I. INTRODUCTION 

The notion of open   set (originally called sets  ) in 

topological space was introduced by Njastad  1965 .  Since 

then, it has been widely investigated in the literature. 

Throughout this paper,  ,X    simply X  always mean 

topological space. A subset  of  ,X   is called 

open   ;  1965Njastad  if  ( .A Int Cl Int A   
The complement of an open   set is called an 

closed   set. The intersection of all closed   sets 

containing  is called the closure   of  , denoted by 

 .Cl A  A subset  is closed   if and only if 

 .A Cl A  A point  is said  to be an 

int erior   point of A  if there exists an open   set 

U  containing x  such that  U A . The set of all 

 points of A  is said to be  of  

  &  - ;  1983Mashhour El Deeb  and denoted by 

 .Int A  We denote the family of all open   sets of 

 ,X   by .  It is shown in  ;  1965Njastad

    & ;  2000see also Ohba Umehara  that each of 

   and 
  is a topology on .X  

II. ALPHA – WEAKLY CONTINUOUS MAPPINGS 

Definition 1. A mapping    : , ,f X Y   is said to be 

weakly   continuous if for each x X  and each open 

sets V containing  f x , there exists an open   set U  

containing x  such that    .f U Cl V  

Definition 2.   &  - ;  1983Mashhour El Deeb . A 

mapping    : , ,f X Y   is said to be 

continuous    if   1f V    for every V   , and, 

equivalently, if for each x X  and each open sets V  of Y  

containing  f x , there exists  U   with  x U such 

that    .f U V  

We remark that every continuous   mapping is 

weakly   continuous, but the converse  is not true as the 

following example shows. 

Example 3. Let X  and Y  be both the set of real numbers. 

Let   be the usual topology for X  and   the cocountable 

topology for Y . Then the identity mapping 

   : , ,f X Y   is weakly   continuous and not 

continuous  . Firstly we show that f  is not 

continuous  . Let 2 I   the set of irrational 

numbers. Then I   as R I  is countable. Let U I  

such that 2 .U  Then    .Int Cl Int U      Hence 

.U   Thus f  is not continuous  . 

Now we show that f  is weakly   continuous. Let 

x V andV  . Then R V  is countable.  We show that 

A

A A

A

x X

int erior  int erior 

A
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  .Cl V Y   Let .y W    If W  is countable, then 

  .Int W   Hence    .Int Cl Int W     This shows 

that .W   Hence W  is uncountable. Since Y V  is 

countable. Hence .W V    It shows that   .Cl V Y 

Now by definition it follows that f  is weakly   

continuous.  

Definition 4. ;  1987Noiri . A function 

   : , ,f X Y   is said to be weakly 

continuous   continuous   if for each x X  and each 

open set  V  of Y containing  f x , there exists U   

containing x  such that    .f U Cl V  

Theorem 5.  Every weakly   continuous function is 

weakly continuous  . 

Proof.  We know that .   Hence    .Cl V Cl V 

The theorem follows. 

Theorem 6. A mapping    : , ,f X Y   is 

weakly   continuous if and only if for every open set V

in Y ,   

Proof.  Let  x X  and V  an open set containing   f x . 

Then      1 1 .x f V Int f Cl V 

       Put 

  1 .U Int f Cl V 

     Then  U  is open   and 

   .f U Cl V  Conversely, let V  be an open set of Y  

and   1 .x f V  Then there exists an open set  U  in X  

such that x U  and    .f U Cl V  Therefore, we 

have   1x U f Cl V

       and hence 

  1 .x Int f Cl V 

     This proves that 

 

Theorem 7. Let     : , ,f X Y    be  weakly   

continuous. If  V  is a clopen (both closed and open) subset of 

Y  such that  f x V , then  1f V
 is clopen in 

 ,X  . 

Proof. Let  x X  and V  be a clopen subset of ( , )Y   

such that  f x V . Then there exists U   containing 

x  such that    .f U Cl V  Since  
   implies 

every clopen subset of ( , )Y   is also a clopen subset of  

( , )Y  . Hence x U  and  f U V and so 

 1 .x U f V   This shows that  1 .f V    Since 

Y V  is a clopen in ( , )Y  , so  1 .f Y V     But 

 Therefore  1f V
 is closed 

in  , .X   Hence  1f V
 is an  (both 

closed   and )open   set in  , .X   

Theorem 8.  The following are equivalent for a mapping 

   : , ,f X Y  . 

(1) f  is weakly   continuous. 

(2) for every  open 

subset V  of ( , ).Y   

(3)     1 1Cl f Int V f V 

     for every closed  

subset V  of  ( , ).Y   

Proof.    1 2 :  Follows from Theorem 6. 

   2 3 :  Let V  be a closed subset  of ( , ).Y   Then 

Y V  is an open set in ( , ).Y   So by hypothesis 

    1 1f Y V Int f Cl Y V 

     

  1Int f Y Int V 

   

  1 .X Cl f Int V 

      

Thus  

   3 1 :  Let  x X  and let   .f x V    So Y V  

is a closed  set in ( , ).Y   So by hypothesis  

    1 1Cl f Int Y V f Y V 

      . Thus 

  1 .x Cl f Int Y V 

    Hence there exists U   

such that x U and   1U f Int Y V     which 

implies that     .f U Int Y V    

   f U Y Int Y V       .f U Cl V  This 

shows that f  is weakly   continuous.. 

    1 1 .f V Int f Cl V 

    

    1 1 .f V Int f Cl V 

    

   1 1 .f Y V X f V   

clopen 

    1 1f V Int f Cl V 

    

    1 1 .Cl f Int V f V 

    
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Theorem 9.  Let   and 

   : , ,g Y Z   be any mappings and let 

 be the composition.  

(1). If     : , ,g X Y    is an open surjection and 

 is  continuous, then g  is weakly   

continuous.  

(2). If     : , ,g X Y   is continuous and g  is 

weakly   continuous, then g f  is weakly   

continuous. 

 Proof. (1) Let  Since f  is a surjection, there exists 

x X  such that  Let V  contain 

  g f x .  Since g f  is weakly   continuous, there 

exists, U   containing x  such that 

    .g f U Cl V   By hypothesis, it follows that 

 W f U    and contains  Thus 

   .g W Cl V  Hence g  is weakly   continuous. 

 

(2)  Let  x X  and W   such that  

      .g f x g f x W   Let  .y f x  Since g  is 

weakly   continuous. So there exists V   such that 

 g y V  and    .g V Cl W  Let  1 .U g V  

Then U  is open in  ,X   as f  is .continuous   

Now         1 .g f U g f f V g V   Then 

x U    and     .g f U Cl W  Hence g f  is 

 continuous 

Theorem 10.   Let   be a mapping  and

:g X X Y   be the graph mapping of  ,  given by 

    ,g x x f x  for every point .x X  Then f  is 

weakly   continuous if and only if g   is weakly   

continuous. 

Proof.  Necessity.  Suppose that f  is  weakly   

continuous. Let  x X  and    .g x W      There 

exist 1U   and  V   such that 

   1, .x f x U V W   Since  f  is weakly   

continuous, there exists 2U   containing x  such that 

   2 .f U Cl V  Put 1 2U U U  , then we have 

x U    and    .g U Cl W  This indicates that g   

is weakly   continuous. 

Sufficiency. Suppose that g   is weakly   continuous. 

Let x X  and V  be any open set containing  .f x  Then 

X V  is an open set in containing  .g x  Since g  

is weakly   continuous, there exists an open   set U  

in X  containing x  such that  It 

follows from Lemma 4 of  ;1978Noiri ,  that 

   .Cl X V X Cl V     Since g  is the graph 

mapping of f ,  we have    .f U Cl V  This shows 

that f  is  continuous. 

  Let    , :x    and    , :y    be any 

two families of spaces with the same index set  . Let 

   : , ,f X Y       be a function for each .  

Let    : , ,f X Y          denote the product 

function defined by     : :f x f x      for 

every  : .x X    Moreover, let 

:p X X  

   and  :q Y Y  


   be the natural 

projections. Then, we have the following result. 

 

Theorem 11. The product function 

   : , ,f X Y          is   

continuous if and only if    : , ,f X Y       is 

 continuous for each  .  

Proof. Necessity.  Suppose that  that f  is  

continuous. Let    be an arbitrary fixed index of .  Since 

q  is continuous,  by  Theorem 9 q f f p     is 

 continuous. Moreover,  p  is an open 

continuous surjection and hence by Theorem 9 f  is  

 continuous. 

Sufficiency. Suppose that f  is  continuous for 

each .  Let  :x x X     and 

  .f x W    There exists a basic open set V  

   : , ,f X Y 

   : , ,g f X Z  

g f weakly 

.y Y

  .f x y

  .f x y

weakly 

:f X Y

f

X Y

   .g U Cl X V 

weakly 

weakly 

weakly 

weakly 

weakly 

weakly 

weakly 
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such that  f x V W   and  

1
i i

i

n n

i

V V Y  

  

    , 

where V   for each 1 2, ,..., .n     Since  f  is 

 continuous, for each 1 2, ,..., n     there 

exists U 

   containing x  such that 

   .f U Cl V    Now, let us put  

1
i i

i

n n

i

U U X 

  

   , then we have ( )x U 

    and 

   .f U Cl W  This indicates that f  is  

continuous. 

Definition 12. A function    : , ,f X Y   is said to be 

weakly continuous if for each x X  and each V 

containing  f x , there exists U   containing x  such that 

   .f U Cl V  

Every weakly continuous function is  continuous 

but the converse is not true by the following example. 

Example 13.  Let     , , , , ,X Y a b c c X     and  

      , , , , , .a b a b Y   Let    : , ,f X Y   

be the identity function. Then f  is  continuous 

but it is not weakly continuous.  

Lemma 14. A function    : , ,f X Y  is 

 continuous if and only if 

   : , ,f X Y   is weakly continuous.  

Theorem 15.  A function    : , ,f X Y      is 

 continuous if and only if 

   : , ,q f X Y     is  continuous for 

each  .  

Proof. This follows immediately from Lemma 14 and the fact 

that a function    : , ,f X Y      is weakly 

continuous if and only if     : , ,q f X Y     is 

continuous for each .  

Theorem 16. If     : , ,f X Y   is  

continuous and  ,Y   is regular, then f  is continuous. 

Proof.  Let x  be any point of X  and V  any open set of  

 ,Y   containing  .f x  Since  ,Y   is regular, there 

exists W   such that     .f x W Cl W V    Since 

f  is  continuous, there exists U   

containing x  such that       .f U Cl W Cl W V    

Therefore, f  is continuous   by Theorem 1 in 

[Mashhour et al; 1983] and hence it is continuou by the 

remark of   [Mashhour et al; 1983]. 

Theorem 17.   If   is an weakly   continuous 

mapping and Y  is Hausdorff, then the graph  G f  is an 

closed   set of .X Y  

Proof.  Let   Then, we have  .y f x  

Since Y  is Hausdorff, there exist disjoint open sets  and 

 such that  f x W  and .y V  Since  is 

weakly   continuous, there exists an open   set U  

containing  such that    .f U Cl W  Since W  and 

 are disjoint, we have   V Cl W    and hence 

  .V f U    This shows that     .U V G f     It 

follows that  G f  is . 

Definition 18. By an weakly   continuous retraction, we 

mean an weakly   continuous mapping :f X A , 

where  and Af  f A  is the identity mapping on 

 
Theorem 19.  Let  and  :f X Y  be an 

 continuous retraction of  onto  If   is 

a Hausdorff space, then  is an  set in .  

Proof. Suppose that A  is not an  set in . 

Then there exists a point  x Cl A A  .   Since f  is 

weakly   continuous retraction, we have   

Since   is Hausdorff, there exist disjoint open sets  and 

V  such that  and    .f x V  Thus we get  

 Now, let W  be any open   set in  

containing .  Then U W  is an open   set 

containing  and hence  U W A     because 

 .x Cl A  Let   .y U W A    Since ,y A

 f y y U   and hence    .f y Cl V  This gives 

that    .f W Cl V  This contradicts that f  is 

weakly   continuous. Hence A  is closed  in . 

weakly 

weakly 

weakly 

weakly 

weakly 

weakly 

weakly 

weakly 

weakly 

:f X Y

   , .x y G f

W

V f

x

V

closed 

A X

.A

A X

weakly  X .A X

A closed  X

closed  X

  .f x x

X U

x U

  .U Cl V  

X x

x

X



International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682  

Vol.5, No.7, July 2016                                    DOI:10.15693/ijaist/2016.v5i7.12-18 

 

 

16 

 

Theorem 20. Let    : , ,f X Y   be weakly   

continuous and A  a subset of   such that if either 

 ,A PO X  or  ,A SO X  . Then the restriction 

   : , ,A Af A Y  is weakly   continuous. 

Proof. Since either  ,A PO X  or   ,A SO X  . It 

follows from lemma 1.1 of    ;1983Mashhour et al  and 

 Reilly & vamanamurthy;1984  

that   .A A
  Since f  is weakly   continuous, 

for each x A  and each V   containing  f x , there 

exists U   containing  such that    .f U Cl V  

Put ,AU U A   then we have  Ax U A


   and 

    .Af A U Cl V  This indicates that f A  is 

weakly   continuous. 

 
III. ALPHA – CONNECTED SPACES 

Definition 21. A space  X   is said to be   if  

X can not be written as the disjoint union of two non-empty 

open   sets.  

Every connected  space is connected but the converse 

may not be true. 

It is shown in Theorem 4 of    et al;1973Long

  .  3  ;1974resp Theorem of Noiri  that connectedness 

is invariant  under almost continuous (resp. weakly 

continuous) surjections. It is also known that 

S cnnectedness is invariant under semi-continuous 

surjections.  In  & ;1985Noiri Ahmad  it is proved that 

the semi-weakly continuous image of an S connected  

space is connected.  In  ;1995Latif  we prove that  

S connectedness  is invariant semi-weakly semi-

continuous mapping. However, we have the following. 

Theorem 22. If X  is an connected   space and

:f X Y  is  connected surjection, then Y is 

connected. 

Proof. Suppose that  is not connected. Then there exist two 

non-empty open sets 1V  and 2V  of  Y  such that 1 2V V    

and 1 2 .V V Y   Hence, we have 

   1 1

1 2f V f V    ,     1 1

1 2f V f V X    and 

   1 1

1 2f V f V    because   is surjection. By 

Theorem 8, we have     1 1 ,i if V Int f Cl V 

      

for 1,2.i    Since each   is clopen and hence also 

.clopen   We obtain     1 1

i if V Int f V

      and 

hence  1

if V
 is open   for 1,2.i    This implies that  

X  is not . Therefore Y  is connected. 

Theorem 23.  If X  is an connected   space and 

 is  mapping with the closed 

graph, then  is constant.  

Proof. Suppose that  is not constant. Then there exist two 

distinct points  in  such that . 

Since the graph  G f  is closed and 

 there exist open sets  and V  

containing 1x  and  2f x , respectively, such that 

  .f U V    Since f  is continuous  ,  U  and 

 1f V
 are non-empty disjoint  sets. It follows 

that  X  is not . Therefore  f  is constant. 

Corollary 24.  hom ;1981 .T pson  

Let  be . If   is a continuous 

mapping with the closed graph, then f  is constant. 

Proof. Since every continuous mapping is ,continuous   

this is an immediate consequence of Theorem 23.  

Definition 25.  & ;1980 .Maheshwari Thakur  A 

function  is  an irresolue   

mapping if and only if the inverse image of every open   

set in Y  is an open   set in  .X  

Theorem 26.  If X  is an  space and 

 is an  irresolute   mapping with the 

closed  graph, then  is constant.  

Proof. Suppose that  is not constant. Then there exist two 

distinct points  in  such that . 

Since the graph  G f  is  and 

X

x

connected 

weakly 

Y

f

iV

connected 

:f X Y continuous 

f

f

1 2,x x X    1 2f x f x

    1 2, ,x f x G f U

open 

connected 

X connected  :f X Y

   : , ,f X Y 

connected 

:f X Y

f

f

1 2,x x X    1 2f x f x

closed 
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 there exist open  sets  and 

V  containing 1x  and  2f x , respectively, such that 

  .f U V    Since f  is ,irresolute  U  and 

 1f V
 are non-empty disjoint  sets. It follows 

that  X  is not . Therefore  f  is constant. 

IV.HAUSDORFF AND URYSOHN SPACES 

Definition 27. A space  is called a Urysohn space if for 

every pair of distinct points x  and  y in X , there exist open 

sets U  and V  in X  such that ,x U y V   and  

 

Theorem 28. Let   be an

continuous injection and  be a Urysohn space. Then 

 is a 2 .T space  

 

Proof. For any distinct points 1 2, ,x x X  we have 

   1 2f x f x  because  is injection.  Since Y  is 

Urysohn, there exist open sets  and 2V  in   such that 

 1 1f x V ,  2 2f x V  and   We 

know that 
   which implies that  

for It follows that     1 2 .Cl V Cl V     Hence 

we have 

 

Since  is weakly   continuous, so by Theorem 8,  we 

have     1 1

j j jx f V Int f Cl V 

   
 

 for 

1,2.j    This implies that  ,X   is   

Theorem 29.  Let   be an

continuous injection mapping and  ,Y   be a 

2 .T space  Then the graph  is an  set 

of  

Proof. Let   Then, we have  y f x . 

Since  ,Y   is 2 ,T  there exist disjoint open sets S  and T  

such that  f x S  and .y T  Since f  is weakly   

continuous, there exists an open   set R  containing x  

such that    .f R Cl S  Since S  and T  are disjoint, 

we have  T Cl S    and hence  T f R   . This 

shows that      .R T G f      It follows that  G f is 

. 
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    .Cl U Cl V 

   : , ,f X Y  weakly 

 ,Y 
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f

1V Y

   1 2 .Cl V Cl V  

   i iCl V Cl V 
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1 2 .Int f Cl V Int f Cl V            

f

2.T

   : , ,f X Y 

weakly 

 G f closed 

.X Y

   , .x y G f

closed 
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