
International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.12, December 2014 DOI:10.15693/ijaist/2014.v3i12.80-87

80

A New Approach to

Optimal Memory Partitioning Technique in

Android Mobile Platform

Jadhav Manoj Bajaj Sarveshwar Pratik Patrikar
SCSE, VIT University SCSE, VIT University, SCSE, VIT University

Vellore(India) Vellore(India) Vellore(India)

Abstract - App-market is a type of digital distribution platform

to launch newly developed application software, which is

delivered as a component of an operating system on a tablet or

smartphone. Application store contributes to run numerous

applications in mobile platform. Internal memory is a very

limited resource particularly in embedded systems like tablets

and mobiles. Out of memory killer (OOMK), Activity service

manager (ASM) and Low memory killer (LMK) is widely

memory management techniques used in mobile platform. They

forcibly terminate the application if physical memory becomes

insufficient. Memory shortage incurs thrashing and

fragmentation, thus slowing down the application performance.

In this paper, we have proposed well-organized memory

partitioning technique that resolves degradation of existing

application life cycle induced by LMK, ASM and OOMK. This

paper proposed the complete conception of virtual memory nodes

in operating systems of Android devices.

Keywords: Low memory killer, Activity Service Manager,

Out of memory killer.

1. INTRODUCTION

Now days, many mobile phone user’s uses built-in

software or applications that the manufacturer includes into

the mobile phone as well as the third-party applications

downloaded from various app-markets. The App-market or

app-store is a type of digital distribution platform designed to

release application software. In those types of systems, the

memory consumption of the third-party applications leads to

insufficient memory space to run those applications

resourcefully. As we know, low–end devices don’t have

sufficient memory so memory shortage may occur repeatedly.

The term Memory management in mobile devices is very

essential because the devices have relatively small memory

capacity with no ad-hoc expansion, and the memory

management of downloaded applications cannot be controlled

or tested at the time of manufacturing. To cope up with the

memory shortage, low memory killer (LMK) [1], [2]-[3] is the

most widely adopted solution. In case of memory shortage, it

forcibly terminates less important applications until the

operating system (OS) secures enough free memory space to

run a new application. The list of the order of application

importance is managed by user-space daemons, like thread

manager and an activity manager. The activity manager acts as

a traffic controller for the overall activities (e.g. foreground

and background processes and system resources) running on

the mobile device. The functionality of the activity service

manager is to receive the request from user and handle them.

The frequent operations of LMK and out-of memory killer

(OOMK) could seriously degenerate user perceived

performance in two ways. First, because the memory space of

a victim application [4] is unloaded, the unloaded memory

should be reloaded at the next launching of the victim

application and it could slow down the application

performance. To select a victim application, OS considers the

following criteria: the number of threads, the CPU running

time, the scheduling priority of victim, and whether it directly

accesses the hardware or not. Second, the built-in applications,

such as Phone, short message service (SMS), and Contacts,

can be forcibly terminated.
When memory shortage occurs frequently the page fault

induced and it leads to increase in the cost of page

replacement. It makes application more prone to miss to

require deadline [5] [6] and as a result encounters thrashing
[7]. Consequently, a user experiences slow down performance
even for built in application.

In this paper, we have proposed new memory partitioning

technique to improve application performance which saves the

efforts of Out-of-Memory Killer (OOMK) and Low Memory

Killer (LMK). We explained new memory partitioning at the

OS level, which limits the page reclamation within the

partitioned memory range based on the well-defined hierarchy

importance of applications. The application hierarchy is

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.12, December 2014 DOI:10.15693/ijaist/2014.v3i12.80-87

81

classified into built-in applications, applications from trusted
sources, and unknown applications from untrusted sources.

2. LITERATURE SURVEY

The operating system generally supports the feature likes
page reclamation [8], swap in/out [2], OOMK [3], Activity

Manager Service (ASM) and Low Memory Killer (LMK) to

secure free memory space under insufficient memory. There

are some issues involved in implementation of those features:

2.1 Page Reclamation and swap in/out mechanism:

This mechanism uses heuristic methods to find victim

process among the available and helps to obtain available

memory in the system. However, it finds target pages based

on least recently used page (LRU) replacement algorithm. It

blindly handles all the processes without the platform level

semantics, which are important systems application in mobile

platform.

The swap in/out mechanism [9] is widely used to run

applications that require larger memory than the physical

memory capacity. Because swapping operations work with a

slow storage device with limited durability, they fail to

provide reasonably predictable performance [10][11].So, swap

in/out mechanism is not used in most of the mobile device

manufacturers [12][13].

2.2 Memory management of OOMK

OOMK endeavours to overcome the memory shortage

from the out-of-memory status by terminating a lower priority

process. The original role of OOMK is to kill unimportant

processes based on the memory score of processes

heuristically when the memory capacity is deficient. OOMK

calculates the score using following heuristics:

1) High score is assigned to process who occupied large

memory space.

2) Low score is assigned to the process that runs for

longer time.

3) Killed the process which have large no of child

process.
4) Do not kill super user’s process.

In case of embedded operating systems like android, we

need to assign priority according to their repeatedly accessed

applications. As OOM killer do not give any priority to

frequently accessed applications, it simply kills the processes

even though enough memory space available in the system. It

proves that killing the processes based upon some heuristics

leads to unfairness in order of killing.

However, the operation of OOMK seriously degrades the

execution speed of new applications due to the thrashing [9].

When a new application is launched under a high memory

pressure, OOMK forcibly terminates a process based on the

relative severity in order to retrieve additional memory space.

OOMK attempts to retrieve the available memory by killing

the processes of the lower memory score as a victim process to

avoid an out-of-memory situation. It heuristically determines

the victim processes according to the number of execution

frequencies of the application, the execution time of the

application, the scheduling priority of the process, the

application to access devices, and the application authorized

by the root user.

2.3 Low Memory Killer Management:

OOM killer does not give any priority to frequently

accessed applications and during the lifetime of process

priority value is set as static. Because of limitations of flash

memory, Android doesn’t have swap space. Android main

memory contains so many empty processes, so order of killing

should be different unlike OOM killer. So, Low Memory

Killer is another approach used in Android to avoid some of

the problems in OOM killer. The existing mobile platforms

manage the memory Management of the applications in a

single memory space. These applications mainly consist of

built-in applications by the manufacturer and external

applications downloaded from the application store by the

user.

The original role of LMK is to automatically terminate

the applications in an LRU list [1]-[3] when the available

memory reaches a specified threshold of the system. The

operating system starts to kill the oldest unneeded processes in

the LRU list to retrieve the free memory space for the

execution of new applications. If the system reaches the

threshold of free physical memory, LMK terminates the

applications that are relatively less important among the

running applications.

However, the memory fragmentation gradually increases

because the operating system reclaims the memory blocks of

unimportant processes with the unit of page from a physical

memory. As the more memory fragmentation occurs, the small

size memory blocks gradually increase further, which leads to

an additional memory management costs such as the merging

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.12, December 2014 DOI:10.15693/ijaist/2014.v3i12.80-87

82

of small blocks by a memory allocator, the time required to

read all the non-adjacent memory blocks at once, and the

scheduling cost between the memory blocks because of the

formation of too many small blocks. These too many small

blocks increase the memory scheduling cost to determine

whether the higher priority processes are waiting or running

during the allocation and the release of the small blocks in the

pre-emptive operating system.

2.4 Causes Of Low Memory Circumstances:

There are many reasons; those leads to low memory

situations, some of the reasons are availability of empty

application in memory, infrequently accessing applications in

memory and unwanted system applications into memory. This

section focuses on different types of reasons that cause to low

memory scenarios

A. Empty Process Management:

In Linux, whenever the application is terminated by user

all associated information related to that application is

removed from main memory. But in android the associated

information is not removed from main memory, because if

user accesses same application in future we do not need to

load it again from secondary memory

Advantages of Empty Applications:

1. Reduces response time due to decreasing the loading
time of applications available in the main memory.

2. We can save the power consumption, if we avoid too
many loads of application from secondary memory.

Disadvantages of Empty Applications:
1. It increases the response time of applications which

are not there in main memory.
2. Too much of empty applications lead to repeated low

memory scenarios.

B. Loading System Apps:

Generally, there are two types of applications are

available in Android. They are system applications (installed

in/system/app folder) and third party applications (installed

in/data/app folder). To access internal resources, System

application has more privileges than third party application.

During the boot time ASM loads some of system applications

like phone, contacts, email, and messages etc. in to the main

memory irrespective of their usage.

Problems with ASM:

i. ASM does not consider user infrequently accessing

applications for killing and it does not consider free
memory size while killing.

ii. Irrespective of free memory available ASM kills

applications based on LRU list. From ASM kills

applications before low memory scenarios will occur,

because it does not allow number of empty applications

more than some threshold. So we need consider free

memory available in main memory and to do not kill

applications aggressively. Finally we can reduce

number of applications gets killed in a period of time.
iii. ASM does not consider an application is interested to

user or not before killing that Application. Because it

simply kills application based on LRU and it does not

consider the frequency of that application. If ASM kills

user interested applications then we need to reload such

application. So if we can predict the user future

accessing applications based on frequency. Finally, we

can protect such kinds of applications get killed in low

memory scenarios, and then we can reduce number of

applications get killed and number of load operation.

3. SYSTEM DESIGN:

The figure represents the list of empty applications along with
their states.
The advantages and disadvantages of empty applications are
as follows.

This section describes the design and implementation

details of the proposed system. The implementation of optimal
memory partitioning will be done at OS level to solve the

problem of insufficient physical memory for the applications

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.12, December 2014 DOI:10.15693/ijaist/2014.v3i12.80-87

83

which results in poor user responsiveness of inbuilt

applications in mobile phones. This technique dynamically

sets the memory layout at boot time based on permission

privilege given to the root user, which supports various mobile

devices range in between from low-end and high-end. The

technique named as a Virtual Markov memory Node

(VMNODE) which is enhancement of Virtual memory Node

followed by Markov Algorithm applied on it.

3.1 Design of VMNODE:

Figure 1.Architecture of optimal memory partitioning

Figure 1. shows the overall architectural design of proposed

optimal memory partitioning technique for the mobile
applications that have limited memory space. The new

optimal memory partitioning technique consists of following

three components:
1. vnode_setup_memblock it manages the mapping

between the physical memory address and a virtual
node to separate the physical memory

2. vnode_generation it generates the specified no. of

virtual memory nodes from physical memory node
and also determines the size of table to hold the

address range of physical memory
3. vnode_set_cpumaskIt allocates the CPU masks for

mapping between a virtual memory node and a
specified CPU.

VMNODE has following two main advantages for mobile
phones with limited memory capacity:

1. Memory Isolation: as it splits physical memory,

VMNODE controls unnecessary consumption of

memory by untrusted applications. e.g. VMNODE0

for trusted applications i.e. built in apps and

VMNODE1 for untrusted applications like malware
software and memory hog software, and

2. Reduction in the no. of LMK/OOMK operations:
VMNODE minimizes the frequency of LMK/OOMK
operations whenever memory shortage occurs.

The idea is to allocate and release the memory area of the

applications in physical memory area to avoid unknown

applications from untrusted resources. Memory techniques

like on demand paging, page reclamation, and page

defragmentation does the task of memory allocation and de-

allocation and release of the applications. This means that the

core built in applications encounters the performance

degradation more often because of unknown applications from

the untrusted sources, given below:

1. Thrashing: it affects the execution time of the

applications due to page fault and page replacements.

2. Memory Fragmentation: it increases the cost of

maintaining too small memory fragments which in

turn increases the scheduling cost while allocating or
releasing the scattered small memory fragments.

With this proposed idea, the operating system can reduce

the cost of thrashing and fragmentation of physical memory.

The virtual memory partitioning technique protects untrusted

applications from harming the execution time of core built in

applications.

The existing system is not able to determine a page

boundary region to reclaim pages because the existing

approach maintains the memory’s usage based on the amount

of memory of the processes without the virtual memory access

area. Therefore, the operating system can be equipped ad

implemented with a mechanism to allocate the memory pages

of the processes such as the virtual memory nodes that appear

to be a physical memory.

 The allocate_page_vma function shown in Figure 1

manages the pages of the applications in the virtual
memory space. It connects the memory pages of the
process to the allocate_page_interleave function.

 The allocate_page_interleave function executes the low-
level operation to interconnect an application and a
memory area. If the operating system needs to find the
allocated memory address currently according to the
process request

 Theallocate_pagefunctioncallsthe

allocate_page_inteleave function via the
allocate_page_current function.

 At the end _allocate_pages function allocates/releases the
memory area of the process using the processing result of

VNODE’s three components:

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.12, December 2014 DOI:10.15693/ijaist/2014.v3i12.80-87

84

1) vnode_setup_memblock,

2) vnode_generation, and
3) vnode_set_cpumask.

3.2 INTELLIGENT MEMORY

MANAGEMENT SERVICE

90% of the smartphone users have stationary usage

patterns for session lengths. Some empirical studies have

shown that many people have their regular user behavior

patterns of using smartphones and mobile phones. From this

aspect, more accurate memory reclamation can be performed

on the basis of these regular temporal patterns. In this paper,

we are presenting the design of an intelligent memory

reclamation service to tackle this memory management issue

using the Markov Decision Process (MDP) model [5] to

decide the reclamation priorities of activities based on the user

behavior patterns. The MDP model has shown its prominence

in dealing with many dynamic decision-making problems,

such as power saving [6] and intrusion detection [7], by

recognizing system behavior patterns at run time. In the

proposed system service, MDP predicts the survival

probabilities of the running activities which reside in the

system stop queue. The reclamation priorities of running

activities are then decided according to their reclamation

rewards, which are the products of their survival probabilities

and their allocated memory space. When the volume of the

free memory space is lower than the user defined threshold,

activities with high priorities will be killed to release their

memory space. Therefore, the proposed memory reclamation

service can reduce the probability of killing an activity that

will be re-invoked in a very short time.

The proposed intelligent memory reclamation service

employs an MDP model to learn the stationary user behavior

patterns and automatically kill activities with high reclamation

rewards. Since the user behavior patterns of user are learned,

the MDP-based service can reduce the possibility of

erroneously killing applications that should actually be

executed in memory. This section will first introduce the

system operation model of the MDP-based service. Then, the

details of the MDP-based prediction scheme are described.

A. System Model

Figure 2 shows the system operation model for the

proposed MDP-based memory reclamation service. When an

activity executes its onStop() callback method, it will enter the

stop queue in Android. For deciding which Stopped activity

can be killed to return memory space back to the system, the

MDPbased service periodically inspects the execution status

of each in-memory activity and calculates its reclamation

reward Rr for the next inspection.

Figure. 2. System model in the intelligent memory management

service.
The reclamation reward Rri of an background running

activity acti is decided according to two factors: its survival

probability at the next inspection (Psi), and its allocated

memory size (mi). Since Android maintains the stop queue to

keep track of activities having entered the Stopped state, the

MDP-based service calculates the survival probability of each

activity according to the historical queuing time in the stop

queue. With the MDP-based service, Android now has two

different situations to reclaim memory from the activities in

the system. For the first case, the MDP-based service

proactively decides whether it needs to trigger the reclamation

process during the inspection according to the volume of free

memory space (Mf) and a user-defined threshold (Mu). If the

MDP based service finds Mf ≤ Mu, it will start the MDP-based

reclamation process and continues to kill the applications with

high reclamation rewards until Mf > Mu. However, between

two inspections the MDP-based service cannot make the

reclamation decision and the user may suddenly launch

applications to consume much free memory space. In this

case, the build-in LRU-based reclamation scheme will be

invoked when Mf is lower than the system-defined threshold

Ms. Therefore, two thresholds Mu and Ms control the initiation

timings of the MDP-based reclamation and the LRU-based

reclamation.

B. MDP-based Prediction

To learn the user behavior patterns, the kernel of the

proposed intelligent memory reclamation service is
constructed using the Markov Decision Process (MDP) model
[5]. For a given finite discrete-time fully apparent MDP

model, characteristics of the system are observed and recorded

as the element states at each discrete time. The MDP is thus a

tuple _S, A,D, T,R_, where S is the state space, A is the action

set, D denotes the set of the decision points at time 99 steps, T

(si, aj, si+1, tk) is a transition function specifying the

probability of going to state si+1 from si if action aj is

executed at time tk, and R(si, aj, si+1, tk) is the reward

function to obtain the reward as the action aj is executed at tk

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.12, December 2014 DOI:10.15693/ijaist/2014.v3i12.80-87

85

when the system state goes from si to si+1. The memory

reclamation problem in this work is modeled as a three-state

MDP problem: s0 in which Android has enough free memory

space (Mf >Mu), s1 in which the free memory space size is

lower than a user-defined threshold Mu but larger than the

system-defined threshold Ms (Ms <Mf ≤Mu), and s2 in which

the free memory space size is lower than the system-defined

threshold Ms (Mf ≤ Ms). If Android is in state s1, the MDP-

based service will start the MDP-based reclamation process in

its periodic inspection such that the system can go back to

state s0. If Android is in state s2, the build-in LRU-based

reclamation scheme will be invoked to keep the system safe

such that the system can go back to state s1.

3.3 Slab Algorithm

For handling low memory (bytes) requests, we need an

efficient algorithm which supports less fragmentation and less

time while initializing an object. Slab algorithm reduces

internal fragmentation, inside pages and within frames. It

works on the concepts of Buddy algorithm. Also it is used for

handling memory requests for small bytes [3]. Slab allocator

in Linux creates a cache for each object of distinct sizes. It

maintains a list of caches for frequently accessed and used

kernel data structures like inode, task struct, mm struct etc.

Cache is a collection of slabs. Slab contains the pages whose

size may be one or two pages. Slab contains a 19 group of

similar type of objects. Fig 3 depicts the clear idea of slab

allocator. It shows the relation among caches, slabs and

objects.

obtained. Objects are released using kmem cache
free(cacheptr,objp).

4. PROPOSED WORK

The arrows in Figure 4 show the operating structure

between CPU and memory. The root user can adjust the

generation procedure of the virtual memory nodes at boot

time. For example, it will be assumed that for the memory

layout, the trusted applications can be made to run in

VMNODE0 and the untrusted applications can run in

VMNODE1.
In the mobile devices, the definition of the typical two

types of software is as follows:

1) Trusted applications: These are the built-in applications

and downloaded applications from trusted sources.
2) Untrusted applications: These are downloaded

applications from untrusted sources. An untrusted

application potentially encompasses malicious code,

memory hog, high power consumption, and

unnecessary CPU usage. Abnormal system behavior

and system reboot mostly results from these

applications.

By adopting the proposed approach, the operating system

can controls the applications to avoid reaching memory

shortage while running the applications. The proposed

memory partitioning technique settles the problem of the

single memory space by running the trusted applications

within VMNODE0 only. That is, the built-in applications from

the trusted sources stay in the memory until users directly exit

their applications, as shown in Figure 4.

Figure 3: Slab allocation in Linux [5]

1. Slab Data Structures: Cache descriptor depicts the type of

object that could be cached. Slab keeps a list for all the caches.

Slab descriptor holds the pointers to actual memory address of

the object. Every slab has some state like full, partial, and

empty. Object descriptor holds two things; first one object is

free and holds a pointer to next free object and second one

holds contents of object.

2. Methods for allocating and de-allocating objects: Objects
are allocated using kmem cache alloc(cacheptr), where
cacheptr points to the cache from which the object must be

Figure. 4. This flow diagram describes the operation of
LMK/OOMK for the trusted applications and the untrusted

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.12, December 2014 DOI:10.15693/ijaist/2014.v3i12.80-87

86

applications. The external applications are the untrusted

applications that run in VMNODE1. ‘T’ denotes the trusted

applications of the official application store, and ‘U’ denotes the

the untrusted applications of the unofficial application store. The

threshold of free physical memory is 76 MB.

As mentioned in above section, the Markov Decision Process

(MDP) model [5] decides the reclamation priorities of

activities based on the user behavior patterns. After applying

the given scenario again if the system is facing the same

memory shortage problem and the OS decides to kill trusted

applications. To overcome this problem, for trusted

applications assigned to VMNODE0 we can apply the Markov

Decision Algorithm for calculating the least recently used

applications from the users observed behavior patterns. The

procedure how Markov Decision algorithm works is described

in Section 3.2 A. Along with it to avoid less fragmentation we

can apply Slab algorithm so that the problem of too many

small memory fragments can be resolved and we can have the

big enough room to accommodate the newly loading

applications. Section 3.3 describes the details of Slab

Algorithm.

5. PROPOSED ALGORITHM

1. Design of VNODE
1.1 vnode_setup_memblock

mapping of physical memory with virtual
node 1.2 vnode_generation

generation of specified no. of virtual memory
nodes from physical memory node and to
determine the size of the table for holding the
address range of the physical memory.

1.3 vnode_set_cpumask
allocating the CPU masks to support mapping
between a virtual memory node(s) and specified

CPU(s) to recognize CPU-Hotplug and CPU-
DVFS enabled multicore environments

2. Assignment of VNODE VMNODE0

for built-in applications. VMNODE1

for trusted applications
VMNODE2 for untrusted applications such as
Malware software, memory hog.

3. Management of the pages of the applications in

the virtual memory space

4. Finding the allocated memory address of

untrusted applications

5. Allocation and release of memory area by killing

the untrusted applications

6. Implementation of Markov Decision algorithm for

killing the applications

7. Implementation of Slab Algorithm

6. CONCLUSION

The conventional memory management features

frequently induce thrashing, page fault, and page replacement

to secure free memory. The proposed optimal memory

partitioning technique inhibits the performance degradation of

applications caused by thrashing, frequent page faults, and

page replacements. In addition, the proposed approach

supports complete virtual memory isolation based on a dis-

contiguous memory access model to separately run

applications from the trusted sources and the untrusted

sources. Markov Decision Process model helps to decide

reclamation priorities of activities based on user behaviour

pattern. It drastically reduces the number of LMK/OOMK

operations by reducing the number of page faults and page

replacements and also the recently used applications are not

killed. Slab algorithm also helps to improve the problem of too

many small fragments which reduces the cost of merging of

memory holes as it works on concept of Buddy algorithm.

Consequently, the proposed approach overcomes the low

performance of the trusted applications induced by

LMK/OOMK operations trusted applications induced by

LMK/OOMK operations during memory shortage.

7. REFERENCES

[1] G. Lim, C. Min, and Y. I. Eom, “Enhancing application

performance by memory partitioning in Android platforms,”

in Proc. IEEE International Conference on Consumer

Electronics, Jan. 2013.

[2] S. Nomura, Y. Nakamura, T. Hattori, K. Nagata, and S.
Yamaguchi, “Managing process memory size in smartphone,”

in Proc. ComputerSystem Symposium, Dec. 2012.

[3] J. Kook, S. Hong, W. Lee, E. Jae, and J. Kim,
“Optimization of out of memory killer for embedded Linux

environments,” in Proc. ACM Symposium on Applied

Computing, pp. 633-634, 2011.

[4] S. Jiang and X. Zhang “Adaptive page replacement to

protect thrashing in Linux,” in Proc. Annual Linux Showcase

& Conference, Nov. 2001.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.12, December 2014 DOI:10.15693/ijaist/2014.v3i12.80-87

87

[5] E. Lee, K. Koh, and H. Bahn, “Dynamic memory

allocation for real-time and interactive jobs in mobile

devices,” IET Electronics Letters, vol. 46, no. 6, pp. 401, Mar.

2010.

[6] S. Jung, Y. Lee, and Y. H. Song, “A process-aware

hot/cold identification scheme for flash memory storage

systems,” IEEETransactions on Consumer Electronics, vol.

56, pp. 339-347, May 2010.

[7] M. Lin, S. Chen, G. Lv, and Z. Zhou, “Optimised Linux

swap system for flash memory,” IET Electronics Letters, vol.

47, pp. 641-642, May 2011.

[8] R. Prodduturi, “Effective handling of low memory

scenarios in Android,” Indian Institute of Technology, Mar.
2013.

[9] O. Kwon and K. Koh, “Swap space management technique

for portable consumer electronics with NAND flash memory,”

IEEE Transactions on Consumer Electronics, vol. 56, pp.

1524-1531, Aug. 2010.

[10] K. S. Yim, H. Bahn, and K. Koh, “A flash compression
layer for SmartMedia card systems,” IEEE Transactions on
Consumer Electronics, vol. 50, pp. 192-197, Feb. 2004.
[11] Y. Feng and E. D. Berger, “A locality-improving

dynamic memory allocator,” in Proc. Workshop on Memory

System Performance, pp. 68-77, 2005

[12] S. Park, H. Lim, H. Chang, and W. Sung, “Compressed

swapping for NAND flash memory based embedded systems,”

in Proc. International Conference on Embedded Computer

Systems: Architectures, Modeling and Simulation, pp. 314-

323, Jul. 2005.

[13] O. Kwon, Y. Yoo, K. Koh, and H. Bahn, “Replacement
and swapping strategy to improve read performance of
portable consumer devices using compressed file systems,”
IEEE Transactions on Consumer Electronics, vol. 54, no. 2,
pp. 551-559, May 2008.

AUTHORS BIOGRAPHIES

Jadhav Manoj received the B.E. degree
in Computer Science and Engineering from

Walchand Institute of Technology, Solapur,

Solapur University, Solapur India in 2012.

He is pursuing the M.Tech. in Computer

Science and Engineering from VIT

University, Vellore, India. His research

interest includes Operating
Systems and design, Big Data Analysis and cloud Computing.

Pratik S. Patrikar received the B.E.
degree in Computer Science and

Engineering from Sant Gadge Baba

Amravati University, Amravati India in

2014. He is pursuing the M.Tech. in

Computer Science and Engineering from

VIT University, Vellore, India.

Bajaj Sarveshwar received the B.E.
degree in Computer Science and

Engineering from MMCOE, Pune, Pune

University, Pune, India in 2013. He is

pursuing the M.Tech. in Computer Science

and Engineering from VIT University,

Vellore, India.

