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Abstract— In this paper, we describe a Cyber-Physical system 

approach to Photovoltaic (PV) array control. A machine learning  

and computer vision framework is proposed for improving the 

reliability of utility scale PV arrays by leveraging video analysis of 

local skyline imagery, customized machine learning methods for 

fault detection, and monitoring devices that sense data and actuate 

at each individual panel. Our approach promises to improve 

efficiency in renewable energy systems using cyberenabled sensory 

analysis and fusion.  

I. INTRODUCTION 

 

The efficiency of solar energy farms requires detailed analytics 

and information on each panel regarding voltage, current, 

temperature and irradiance. We describe machine learning and 

computer vision approaches for improving the efficiency and 

reliability of utility scale solar arrays. Efficiency improvements 

are accomplished through prediction of complex dynamical 

system parameters using sensors and sensor fusion. The methods 

presented in this paper will be implemented on state of the art 

testbed shown in Figure 1. This testbed was developed by the 

Sensor Signal and Information Processing (SenSIP) Center and 

involves an 18kW array of 104 panels. Cyber-physical methods 

that include imaging and machine learning algorithms for 

shading prediction and fault detection are being developed to 

improve efficiency. These methods will be validated on the 

SenSIP Solar facility.  

 

 

 
 

Figure 1. The SenSIP 18kw (104 panel) experimental facility 

established at ASU with industry collaborators.  

 

 

 

Camera and satellite sensing of skyline features as well as 

parameter sensing at each panel provides information for 

fault detection and power output optimization through 

sensor fusion and appropriate actuator programming. 

Machine learning and fusion enables us to implement 

robust shading prediction.   

 

II. PROPOSED SYSTEM                       

 

   Networked PV Array Concept enabling the weather 

feature correlations,  local shading prediction, decision 

support, and fault detection.  

 

 

 

    Figure 2. Networked PV Array Concept.  

 

 

A utility-scale PV array consists of solar panels that are 

connected in series, forming strings, which are in turn 

connected in parallel. The DC output of the array is 

converted to AC using inverters. Shading, weather 

patterns and temperature can severely affect power 

output. To minimize these effects, individual panel 

current-voltage (IV) measurements, weather information 

, and imaging data are essential. Moreover, controlling 

the power output is possible through matrix switching 

(i.e., changing array topology enabled by SMD relays) of 

PV panels allowing for different interconnection options. 

We optimize utility scale PV array systems by exploiting 
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the measured I-V, imaging, and weather data. The smart 

monitoring devices connected to each PV panel collect 

the individual panel metrics (current, voltage, and 

temperature) periodically (about every 8 seconds). The 

cameras provide updates at the rate of 20-30 frames per 

second. The algorithmic and image/data analysis unit are 

equipped with various state of the art algorithms for 

imaging, data mining and prediction that identify and 

track various important timevarying events and patterns. 

The algorithms operate on PV array measurements and 

on parametric models to detect and remedy faults using 

SMD panel switching (Fig. 2) or bypassing if necessary.  

 

A.FAULT DETECTION USING MACHINE LEARNING  

IN PV ARRAYS  

 

Several faults occur in PV Arrays. These are caused by 

shading, soiling, inverter faults and manufacturing 

mismatches. Data acquired during faults tends to luster in 

the feature space consisting of current, voltage and 

temperature measurements.Certain aspects of our 

algorithmic and experimental research using this facility 

will focus on modeling faults interns of clusters and using 

machine learning algorithm to form and track these clusters.  

PV arrays are reliable, but any fault which does occur is 

difficult to detect and repair. Studies of PV faults have 

shown a mean time to repair (MTTR) of between 3 and 19 

days for conventional arrays with data collected only at the 

inverter. Clearly there is an opportunity to improve fault 

handling in PV arrays, using statistical signal processing 

methods, on SMD data and which can lead to automated 

early detection and precise diagnosis of PV problems.  

 i. Machine Learning in fault detection   

 

The use of machine learning in fault diagnosis can be 

formulated as a multiple hypothesis testing problem. 

Machine learning is useful for the detection and the 

identification of the type of the fault. For example, if one of 

the arrays receives less sunlight due to shading, machine 

learning could help identify the error in the shading 

conditions.  

     A classification algorithm for fault detection must have 

the following properties. First it must accurately classify the 

PV array's condition. It must be adaptable to different array 

configurations without extensive data collection for each 

individual array. It must be able to recognize each fault class 

from a very small number of examples.Itshould take 

advantage of our prior knowledge of the electrical behavior 

of PV arrays (e.g. equal current within a string), rather than 

having to learn these relationships through the training data. 

It should be capable of reacting to the 'unknown unknowns' 

i.e. faults the system designers did not anticipate.  

 

 ii. Using a simple K-means clustering algorithm   

      The k-means algorithm was chosen as an initial 

approach to machine learning-based fault detection. K-

means clustering aims to partition n observations into k 

clusters in which each observation belongs to the cluster 

with the nearest mean, serving as a prototype of the cluster. 

Simulated fault data were obtained using the UW-Madison 

PV module performance module and a SPICE circuit 

simulation package. K-means algorithm was applied on 

these data.   

 

    The dataset was gathered under normal (well irradiated) 

conditions of temperature with high levels of current 

flowing through each panel. To simulate a shaded panel, 

one of the panels was assigned a lower irradiance value. 

The data for the same was obtained and trained with the k-

means algorithm.  

 

 

 

 
 

 

 

Figure 3: Flowchart demonstrating the operation of the 

KMeans algorithm.  

 

B.  DYNAMIC MODELS FOR SKYLINE VIDEOS  
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A. Riemannian geometric interpretation of dynamic model 

parameters  
 

 

 

 

Figure 4: Illustrates exponential and inverse exponential maps.  

 

Since we are interested in performing various statistical 

correlation analyses with the estimated skyline dynamical 

models, we need to first consider the challenges in performing a 

standard multivariate statistical analysis if the underlying state 

space is non-Euclidean. These analyses require the use of 

tangent-spaces and exponential/inverse exponential maps.        

We illustrate the notion of the exponential map in the Figure 3. 

This figure illustrates exponential and inverse exponential maps. 

These mappings extend the wealth of multivariate statistical 

machine learning algorithms to our general manifolds. The 

tangent vectors represent the final features that will be used in 

conjunction with other machine learning tools for mapping video 

features to skyline attributes.        These tools allow one to 

locally linearize the parameterspace, and employ classical multi-

variate statistical tools, such as computing probability densities 

from sample data and regression to relevant attributes.  

 

 

B. Temporal prediction of dynamical systems  

 

     Shown in Figure 5, is the general framework for constructing 

conditional probability density functions over linear dynamical 

model parameters for skyline attributes such as „clear‟, „light 

clouds‟, and „overcast‟.  

 

 

 

 

 

 

 
 

                figure 5. illustration of proposed algorithm  

 

 

         Figure 5 shows the  illustration of proposed algorithm 

for estimating conditional densities of skyline features from 

video measurements. Video streams are modeled as linear 

dynamical models, whose parameters are considered as 

points on a Grassmann manifold. Conditional pdfs of sky 

attributes are estimated using Riemannian geometric tools.  

        The classification methods of dynamic textures as 

described previously are effective in short durations of 

time, when one can assume that the dynamic texture has 

wide-sense statistical stationarity to further enhance 

prediction, we need to consider looking forward in time, 

and anticipating dynamical evolution. Assuming linear 

dynamics and wide sense stationarity is often an unrealistic 

assumption when faced with the task of predicting the 

evolution of a dynamical pattern. For long-term prediction, 

we consider the problem of studying the evolution using 

nonlinear tools, which avoids making restrictive 

assumptions on parametric forms. The basic principle we 

adopt is one of reconstructing the hidden phasespace of the 

true dynamic system using delay embeddings.          Note 

here, that the dynamical system under consideration is 

multi-variate to begin with, since the extracted features are 

of the order of pixels in the image. From the reconstructed 

phasespace, the prediction problem is tackled using simple 

regression models in the phase space. This contrasts with 

prediction using regression models in the observation 

space, which is much harder due to the nonsmooth 

properties of the observation sequence. If the phasespace 

reconstruction is properly achieved, the evolution in the 

phase space is much smoother, which will allow prediction 

of the next few phases. Mapping from predicted phases to 

expected pixel measurements can be achieved, which will 

allow us to use the previously developed linear models for 

classification into one of several shading categories.  
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III. RESULTS AND DISCUSSIONS 

 

 
               Figure 6. Image-based measures of sky-clarity  

 

         Image-based measures of sky-clarity , an attribute useful 

for predicting shading. This metric was created from dynamical 

models of image texture, with a manifold-based metric on 

dynamical model parameters. Sample images at various times 

show how the index separates „clear skies‟ and  

„hazy/cloudy skies‟. Using a small network of horizonviewing 

cameras it is possible to develop early warning systems.  

 

 
figure 7: separation between normally operating and faulty 

panels.  

 

Preliminary results indicate feature level separation between the 

data obtained from a faulty panel and data as obtained from a 

normal (working optimally) panel. This in the future could help 

in identifying the type of fault associated with each PV panel.  

       The results obtained at a preliminary stage are shown in 

Figure 7. Each data point in the feature space represents the 

measure of current by the PV panel. The faulty and non-

faulty panels can be separated by means of a linear 

classifier. Thecentroids in the preliminary simulation 

shown in Figure 7 separate out well and tend to separate 

faulty and normal conditions.  

 

IV. CONCLUSION AND FUTURE WORK  

       We addressed the problem of PV array monitoring and 

control using advanced imaging and machine learning 

algorithms. We proposed integration of machine learning, 

image processing and optimization techniques for real time 

monitoring of PV arrays. Preliminary results for fault 

detection demonstrated clustering successfully faults and 

our simulations with imaging prediction promise significant 

efficiency improvements.  

      The fault detection algorithm presented here promises 

the ability to detect the wide range of conditions affecting 

array output. The algorithm may be deployed as part of a 

compre- hensive monitoring system that improves array 

efficiency and availability with a minimum of human 

operator involvement.       Although the algorithm shows 

good performance in simulations,several opportunities for 

improvement exist.first, the sampling period of the 

monitoring system may be increased so that voltages and 

currents may be treated as quasi-stationary. The algorithm 

may then be altered to consider data over a short time 

window rather than a single snapshot. Another approach is 

to incorporate measurements of irradiance and/or module 

temperature in predicting array output.  
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