
International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.10, No.06, June 2021

13

Hadoop Heterogeneous Environments:

Analysis on Map Reduce Scheduling

Algorithms

Valiki Vijayabhaser

Assoc. Prof.

Department of ECE

Siddhartha Institute of Technology and Sciences

Narapally, Hyderabad, Telangana, India

Abstract - In the last few years, computer technology is

maximized has resulted in a massive data flow (i.e., Big

Data) that exceeds the capacity of standard processing

methods. The processing demands of Big Data in real-time

applications make achieving the appropriate levels of

performance a significant task. Map Reduce is one of the

most efficient parallel distributed programming

frameworks for managing large, unstructured datasets in

cloud applications. This Map Reduce methodology is

implemented in Hadoop, an open source Java-based

programming framework widely used in Big Data for

large-scale data processing with fast response times.

Hadoop is implemented in a homogeneous environment

because it saves data transmission costs and ensures that

each cluster node has the optimal computational

performance and workload. In real-time applications,

however, processing nodes may have specialized

computing capabilities and workloads that emerge in a

heterogeneous environment. In this diverse context, the

standard Hadoop implementation fails to deliver the

requisite performance.

Keywords: Big Data, cloud Applications, Hadoop, Java,

Map Reduce

1. INTRODUCTION

Most popular real-time applications have become data-

intensive in recent years because of its increased growth

in data exponentially. The act of storing, processing,

and analyzing such large amounts of data is known as

Big Data, and it has become a key responsibility in

recent years. The World Wide Web (WWWW) has

been chosen as a great platform for developing data-

intensive real-time applications in recent decades since

the web's communication prototype is sufficiently open

and dynamic. Data mining, online analytics, and web

indexing are examples of data-intensive applications.

Immadisetty Venkata Prakash

Assoc. Prof.

Department of ECE

Siddhartha Institute of Technology and Sciences

Narapally, Hyderabad, Telangana, India

that are required to handle ever-growing data volumes

ranging from a few gigabytes to a few terabytes or even

petabytes. One of the most well-known examples is

Google, which uses its Map Reduce structure to process

20 petabytes of data per day. In high-performance and

large-scale cluster computing systems, Map Reduce is

seen as an appealing programming model for effective

parallel data processing prototype. Map Reduce runs on

a large cluster of product machines and provides fault

tolerance that is transparent to programmers [1]. Map

Reduce is implemented in Hadoop, a well-known open-

source framework [2] designed primarily by Yahoo Inc,

which runs tasks yielding several terabytes of data on

no less than 10,000 cores [3]. Amazon and Facebook

[4] are two more companies that use Hadoop. The Map

Reduce model runs on a huge cluster with

homogeneous cluster nodes and takes a homogeneous

workload into account when making scheduling

decisions. Map Reduce is concerned with the intricacies

of partitioning input data, fault tolerance, programme

scheduling among a group of processors, and handling

expected communication between two machines (i.e.,

inter-machine communication). Map Reduce's

performance is based on previous features that are

visible in a homogeneous setting. As a result, using the

Map Reduce programming model in a heterogeneous

environment becomes critical, as the Map Reduce

algorithm's execution is influenced by heterogeneity.

Several academics [5-9] have looked into the

performance degradation of Map Reduce in

heterogeneous contexts and offered different algorithms

to improve the Map Reduce algorithm's performance.

In this study, we examine the strategies for improving

the performance of the Map Reduce model in diverse

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.10, No.06, June 2021

14

contexts, as well as their relative benefits and

drawbacks.

The remainder of this work is structured as follows:

The second portion discusses the background, including

an overview of Map Reduce algorithms, Hadoop,

HDFS, Hadoop Map Reduce, and Map Reduce

Scheduling Issues. Table 1 lists the pros and

disadvantages of several Map Reduce scheduling

algorithms outlined in section 3, as well as their

taxonomy. Section 4 discussed the performance of

adaptive and non-adaptive scheduling algorithms, while

section 5 concluded the analysis.

2. BACKGROUND

2.1. Overview of MapReduce techniques

The Map Reduce methodology [1] was created by

Google to run real-time data-intensive applications in a

distributed framework like a commodity cluster. The

map and reduce primitives demonstrated in Lisp and

various other useful languages inspired the Map Reduce

concept [1]. Map Reduce allows developers who aren't

familiar with distributed programming to create Map

Reduce functions that run in parallel across multiple

nodes in the cluster by identifying two key functions,

one of which is the map function, which executes

key/value pairs to produce a set of transitional

key/value pairs. The reduction function, on the other

hand, consolidates all intermediate measures associated

with the relevant intermediate key. Map and reduce

functions are executed in parallel by Map Reduce at

each cluster node. Because the MapReduce

programming model can assist with a few operations

like grouping and sorting on a group of key/value pairs,

programmers must develop map and reduce functions.

Map Reduce is a simple programming approach since

programmers just need to focus on data processing

operations rather than parallelism aspects.

2.2. Hadoop

Hadoop, an open source software framework supported

by the Apache Software Foundation, implements the

Map Reduce methodology [10]. Hadoop is broken

down into two main components: Hadoop Map Reduce

and Hadoop Distributed File System (HDFS). Map

Reduce and HDFS, respectively, perform parallel

processing and data management. Jobs are divided into

tasks, which are then processed in parallel using Map

Reduce. The HDFS divides the stored data into blocks

that it manages. Cluster nodes are assigned to those data

blocks and jobs. Hadoop adopts a master/slave

architecture, with the master and slave being referred to

as Job Tracker and Task Tracker, respectively. Job

Tracker handles work distribution and job scheduling,

whereas Task Tracker handles the actual tasks and

returns the results to Job Tracker. It makes use of

heartbeat messages for communication. When using

Hadoop, high-performance computing does not

necessitate the use of higher-end processors. A few

ordinary machines can be used in conjunction with

Hadoop to create a high-performance platform that

saves a significant amount of money.

2.3 HDFS

HDFS is based entirely on the Google File System

(GFS), an open source file system designed to run on

inexpensive hardware. In comparison to other Hadoop

technologies, HDFS has emerged as a critical tool for

managing large data pools and defending big data

analytics applications. It's also designed to be

implemented on low-cost technology and is highly

fault-tolerant. The Master/Slaver design of HDFS is

shown in Fig 1 and consists of a Master Name Node, a

Secondary Name Node known as checkpoint, and a few

Data Nodes known as slaves. Any requests that arrive

in the file system, such as file creation, deletion, and

read, pass through the controller named Name Node.

The meta-data for access times, licenses, modifications,

and disc space allotment is stored in the Name Node.

The Name Node is also responsible for block mappings.

The file is divided into blocks, each of which has a

default size of 64 MB and is freely replicated

throughout Data Node to ensure redundancy, as well as

sending a report of each current block to the Name

Node on a regular basis. The Data Node is in charge of

creating, cancelling, and replicating blocks based on the

Name Node's instructions. Given that each Data Node

can conduct many application jobs at the same time,

each cluster may have hundreds of Data Nodes and

thousands of HDFS clients. In addition, the Name Node

receives a Heartbeat message from the Data Node on a

regular basis, with a 3.5s interval by default. If the Data

Node and Name Node lose contact, the Name Node will

be unable to detect heartbeat messages.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.10, No.06, June 2021

15

The Data Node hosts the block replicas that are

unreachable or dead, and that specific Data Node does

not receive any new requests since the Name Node is

out of service. The Name Node creates a schedule that

includes new replicas of the above-mentioned blocks on

separate Data Nodes. At the same time, the Name Node

does not see the job of the secondary Name Node as

secondary, but rather reads changes in the file system

on a regular basis and renders backups for earlier files,

completing the updating process. When the cluster

environment is large, the secondary Name Node is

usually run on a different machine than the primary

Name Node and has the same memory needs. Name

Node will be able to initiate faster the following time

because of this process.

2.4. Hadoop Map Reduce

The Map Reduce engine is depicted in Figure 2 as a

collection of components, with the job client serving as

the central component that submits the job to the

network cluster. The job tracker regulates the task

tracker by giving execution plans, organizing the jobs,

and scheduling them throughout the task tracker. The

task tracker breaks down the jobs into Map and Reduce

tasks at the same time. Every task record includes slot

execution maps. It reduces and reports the execution

progress on a regular basis. All input data is divided

into input splits based on the format of the input. The

input splits are used to equalize the map jobs, which are

conducted in parallel. The way the documents are

parsed into the Map Reduce pipeline is determined by

the input design. The map transforms input splits into

intermediate key/value pairs based on user-defined

code. The output of the intermediate key/value pairs is

transported to the reducers and then sorted through the

key in a shuffle and sort operation. The reducer joins all

pairs of related objects that have the same intermediate

key and generates an output based on the user-defined

code.

3. SCHEDULING ALGORITHMS

Because of the challenges discussed in the preceding

section, scheduling is regarded as the most important

part of Map Reduce. There are various algorithms that

address these concerns by recommending various

approaches and methodologies, which are mentioned

further below.

3.1. Hadoop Default scheduling algorithm

The default scheduler in Hadoop is First in First Out

(FIFO), which operates in the order of first-come, first-

serve, i.e., if the Job Tracker drags the oldest job from

the job queue, it ignores its priority or size [11]. A work

is divided into distinct tasks, which are then placed into

a job queue and assigned to available slots on Task

Tracker. Support for priority assignment of jobs that

aren't done by default is required. In most cases, every

job would use the entire cluster, thus jobs would have

to wait their time. Despite the fact that a shared cluster

has tremendous potential for providing large amounts

of resources to a large number of users, the issue of

efficiently sharing resources among users necessitates

the employment of a superior scheduler. When allowing

users who are causing lower ad hoc inquiries to acquire

outputs in an average time, production jobs must be

completed in a timely manner.

4. DISCUSSION AND ANALYSIS

In this work, benefits, demerits, and taxonomy of

scheduling algorithms are discussed from several

literature [12 - 17]. These are clearly listed in Table 1,

where the taxonomy describes the runtime flexibility of

algorithms in two categories: adoptive and non-

adoptive. When making a decision, the adaptive

scheduling algorithm uses the past, current, and future

parameter values. Non adaptive scheduling algorithms

do not take into account changes in the environment

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.10, No.06, June 2021

16

while scheduling tasks, regardless of whether they are

performed according to policy or not. The algorithm is

implemented using several ideas in order to achieve its

goal, but it is still unable to reach the goal. The

disadvantage column represents the algorithm

performance with null values as a result. According to

the suggested scheduling algorithm and the results of

these papers [18-22] [31], [33], [34], [37], [38], [39],

we can conclude that the proposed scheduling

algorithm is devoid of flaws that reduce overall

performance. These algorithms are useful for solving

one or two difficulties, but they are inefficient for

achieving all of our goals.

5. CONLUSION

We explored several Hadoop Map Reduce difficulties,

as well as their overall scheduling tasks, in this study.

We examine eleven well-known scheduling algorithms

in terms of their areas in this research. Every algorithm

was discussed in terms of its taxonomy, benefits, and

drawbacks. The majority of the methods described in

this study were only applicable to one or two problems.

The user determines how a particular job is scheduled,

and no algorithm can meet all of our needs. We used

Map Reduce in a heterogeneous setting, together with

COSHH and SAMR algorithms, to improve overall

performance. It reduces network traffic and Map

Reduce network traffic, making CREST one of its best

works.

6.REFERENCES

[1] J. Dean and S. Ghemawat. Map reduce: simplified data
processing on large clusters. In Proceedings of the 6th
conference on Symposium on Operating Systems Design &
Implementation - Volume 6, pages 10–10, Berkeley, CA,
USA, 2004. USENIX Association.
[2] Hadoop, http://lucene.apache.org/hadoop, (last view June
30, 2012).
[3]Yahoo! launches world’s largest hadoop production
application,
http://developer.yahoo.com/blogs/hadoop/posts/2008/02/yaho
o-worlds- largest-production-hadoop/, (last view June 30,
2012).
[4]Applications powered by Hadoop,
http://wiki.apache.org/hadoop/PoweredBy, (last view June 30,
2012).
[5] M.Zaharia, A.Konwinski, A.Joseph, Y.zatz, and I.Stoica.
Improving mapre- duce performance in heterogeneous
environments. In OSDI’08: 8th USENIX Symposium on
Operating Systems Design and Implementation, October
2008.

[6] J.Xie, S.Yin, X.Ruan, Z.Ding, Y.Tian, J.Majors,
A.Manzanares, and X.Qin. Improving MapReduce
Performance through Data Placement in Heteroge- neous
Hadoop Clusters. In proceedings of IEEE International
parallel and dis- tributed Processing Symposium, 2010.
[7] Q.Chen, D.Zhang, M.Guo, Q.Deng and S.Guo. SAMR: A
Self-adaptive MapReduce Scheduling Algorithm In
Heterogeneous Environment. In Pro- ceedings of IEEE 10th
International Conference on Computer and Infor- mation
Technology, 2010.
[8] X.Zhang, Y.Feng, S.Feng, J.Fan and Z.Ming. An Effective
Data Locality Aware Task Scheduling Method for MapReduce
Framework in Heterogeneous En- vironments. In International
Conference on Cloud and Service Computing, 2011.
[9] Z.Guo, G.Fox. Improving MapReduce Performance in
Heterogeneous Net-work Environments and Resource
Utilization. In proceeding of IEEE/ACM 12th International
Symposium on Cluster, Cloud and Grid Computing, 2012.
[10] Shvachko, K., Kuang, H., Radia, S., &Chansler, R.
(2010). The hadoop distributed file system. Paper presented
at the 2010 IEEE 26th symposium on mass storage systems
and technologies (MSST).
[11]Hadoop, “Hadoop home page.” http://hadoop.apache.org/.
[12] M. Zaharia, A. Konwinski, A.D. Joseph, R. Katz and I.
Stoica, “Improving MapReduce performance in
heterogeneous environments ” In: OSDI 2008: 8th USENIX
Symposium on Operating Systems Design and
Implementation 2008.
[13] B.P Andrews and A. Binu, “ Analysis on Job Schedulers
in Hadoop Cluster ”, IOSR Journal of Computer Engineering,
Vol.15, NO. 1, Sep. - Oct. 2013, pp. 46-50.
[14]Hadoop’sFairScheduler.https://hadoop.apache.org/docs/r
1.2.1/fair_sche duler.
[15] The Apache Hadoop Project. http://www.hadoop.org.
[16] Y. Tao Y, Q. Zhang, L. Shi and P. Chen, “ Job scheduling
optimization for multi-user MapReduce clusters ”, In: The
fourth international symposium on parallel architectures,
algorithms and programming. IEEE; 2011. p. 213–17.
[17] Q. Chen, D. Zhang, M. Guo, Q. Deng Q and S. Guo, “
SAMR: a self-adaptive MapReduce scheduling algorithm in
heterogeneous environment ” , In: The 10th international
conference on computer and information technology. IEEE;
2010. p. 2736–43.
[18] S. Khalil, S.A. Salem, S. Nassar and E.M. Saad, “
Mapreduce Performance in Heterogeneous Environments: A
Review ”, International Journal of Scientific & Engineering
Research, Vol. 4, NO. 4, April - 2013, pp. 410-416.
[19] A. Rasooli and D.G. Down, “ COSHH: A classification
and optimization based scheduler for heterogeneous Hadoop
systems”, Future Generation Computer Systems, 36, 2014,
pp. 1-15.
[20] M. Zaharia, D. Borthakur, J.S. Sarma, K. Elmeleegy, S.
Shenker and I. Stoica, “ Delay scheduling: a simple technique
for achieving locality and fairness in cluster scheduling”, In:
Proceedings of the fifth European conference on computer
systems. New York, NY, USA: ACM; 2010, p. 265–278.

http://www.hadoop.org/

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.10, No.06, June 2021

17

[21] A. N Nandakumar and Y. Nandita, “ AAnalysis on Data
Mining Algorithms on Apache Hadoop Platform”, International
Journal of Emerging Technology and Advanced Engineering,
Vol. 4, NO. 1, January 2014, pp. 563-566.
[22] Z. Tang, L. Jiang, J. Zhou, K. Li, and K. Li, “ A self-
adaptive scheduling algorithm for reduce start time ”, Future
Generation Computer Systems, 2014.

