
International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.5, No.9, September 2016 DOI:10.15693/ijaist/2016.v5i9.28-32

28

HOMOMORPHIC ENCRYPTION SCHEME
USING HILL CIPHER FOR CLOUD DATA

SECURITY
D.Chandravathi┼ Dr.P.V.Lakshmi††

GVP College for Degree and PG courses(A), GITAM University,

Rushikonda, Viakhapatnam-45 Rushikonda, Viakhapatnam-45

ABSTRACT-Cloud computing usage has increased

rapidly in both industries and in research. It is a broad

and diverse phenomenon where users are allowed to

store large amount of data on cloud storage for futureuse.

Data security, privacy, confidentiality, integrity and

authentication are the various security issues which are

to beaddressed. As the data is stored and processed away

from the user and the cloud service provider, privacy and

integrity of the data plays a crucial role.Most of the

cloud service provider stores the data in plaintext format

and user need to use their own encryptionalgorithm to

secure their data if required. The data needs to be

decrypted whenever it is to be processed. This paper

aims at Homomorphic encryption using Hill cipher

encryption algorithm for the security of data in cloud

environment. Encrypted data is stored in cloud .The

cipher key which is generated for encrypting the data

plays a major role.It focuses onstoring data on the cloud

in the encrypted format using additive homomorphic

encryption.
Keywords: Data security, Hill cipher , homomorphic

encryption, Cloud, additive homomorphic encryption.

I INTRODUCTION

In recent scenario the concept of public-key

cryptography reconsiders is Homomorphic Encryption.

This technology expanded with the concern of security

of data in federated cloud networks[1][3]. It has been

revealed that the security of data is a major hindrance to

implement theservices in cloud. The need for innovative

security models for user access to cloud resources is

highly required as data is moved between disparate

networks which allow companies or organizations to

offload the data in a secured manner. Many algorithms

have evolved based on homomorphic techniques the

provides very strong security requirements for data in

the past few years[4]. The proposed model aims to

improve the security during data retrieval in cloud

scenario without the need to use a centralized control

over the encryption and decryption techniques.

Both these party shares their work on top of

the encrypted data. The proposed model aims at

performing arbitrary computations on the encrypted data

called, homomorphic techniques, which give rise to

privacy; the model tends to perform critical operation on

encrypted data. Homomorphic encryption is evolved to

solve such critical issues. Usingoperations over

encrypted bits homomorphic encryption data protection

is achieved through additive and multiplicative [5]. The

cloud service provider, without being aware of its

content accepts encrypted user query data to perform

processing. The resultant cipher is generated which is

sent to the user in the encrypted form. The user decrypts

the data alone and views the result. The public-key and

private-key cryptosystems are designed with various

fault attacks.Construction of an encryption scheme that

is both additively and multiplicatively homomorphic is a

major challenge[4][5]. Partial homomorphic and Fully

homomorphic are the major concern which uses additive

and multiplicative homomorphism respectivelyas set of

operations. The first cipher key generation takes place

atthe user level using Hill cipher key algorithm.

Homomorphic Encryption

Encryption has traditionally been viewed as a

mechanism that enables secure communication [4]. In

particular, Public-key Encryption provides a way for Alice

to encrypt a message into a ciphertext using Bob’s public

key, and for Bob to decrypt the ciphertext to obtain the

message using his secret key. In this view of encryption

schemes, access to encrypted data is all or nothing –

having the secret decryption key enables one to learn the

entire message, but without the decryption key, the

ciphertext is completely useless [8].

Can we do arbitrary computations on data while

it remains encrypted, without ever decrypting it? This

state of affairs raises an intriguing question, first posed by

Rivest, Adleman and Dertouzos in 1978, which promoted

the idea of performing computations on encrypted data

without being able to “see” the data. Such ability also

gives rise to a number of useful applications including the

ability to privately outsource arbitrary computations to the

“cloud” and the ability to store all data encrypted and

perform computations on encrypted data, decrypting only

when necessary[1][2].

Fully Homomorphic encryption is a special type of

encryption system that permits arbitrarily complex

computation on encrypted data. Homomorphic encryption

is the conversion of data into ciphertext that can be

analyzed and worked with as if it were still in its original

form. Homomorphic encryption is expected to play an

important part in cloud computing, allowing companies to

store encrypted data in a public cloud and take advantage

of the cloud provider’s analytic services.

Homomorphic encryption permits computing on

encrypted data. That is, the client can encrypt his data x

and send the encryption Enc(x) to the server. The server

can then take the ciphertext Enc(x) and evaluate a

function f on the underlying x obtaining the

encryptedresult Enc(f(x)) The client can decrypt this

result achieving the wanted functionality, but the server

learns nothing about the data that he computed on.

Homomorphic encryption is functional encryption,

where our goal is to reveal the result of the computation to

the server, but protect all other information about our

encrypted input.

For example, a user sends a request to add the

numbers 1 and 2, which are encrypted to become the

numbers 33 and 54, respectively. The server in the cloud

processes the sum as 87, which is downloaded from the

cloud and decrypted to the final answer, 3.A normal

symmetric cipher -- DES, AES is not homomorphic. The

RSA algorithm is homomorphic but only with respect to

multiplication.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.5, No.9, September 2016 DOI:10.15693/ijaist/2016.v5i9.28-32

29

Homomorphic encryption schemes are

malleable by design. Malleability is a property of some

cryptographic algorithms[3]. An encryption algorithm is

malleable if it is possible for an adversary to transform a

ciphertext into another ciphertext which decrypts to a

related plaintext.

 II Related work
Homomorphic Encryption

In 1978, the notion of encryption schemes that

permits nontrivial computation on encrypted data was first

proposed by Rivest, Adleman and Dertouzos. Rivest

proposed the exponentiation function and the RSA

function as additive and multiplicative privacy

homomorphisms, respectively. Note, however, that neither

of these functions by themselves provides even chosen

plaintext security[11].

There are several partially homomorphic

cryptosystems, and also a number of fully homomorphic

cryptosystems. Although a cryptosystem which is

unintentionally malleable can be subject to attacks on this

basis, if treated carefully homomorphism can also be used

to perform computations securely.

The main difference between partial

homomorphic cryptosystem and fully homomorphic

cryptosystem is, in partial homomorphism padding of

data will not be done while in fully homomorphic

cryptosystems padding of data is implemented.

1. Partially homomorphic cryptosystems

 Unpadded RSA

 ElGamal

 Goldwasser–Micali

 Benaloh

 Paillier

 Other partially homomorphic cryptosystems

2. Fully homomorphic encryption

 Early homomorphic cryptosystems

 Gentry's cryptosystems

 Cryptosystem over the integers

 The 2nd generation of homomorphic cryptosystems

Cloud Computing

 The information technology model for

computing is composed of all the IT components like

hardware, software, networking, and services. It is

necessary to enable the development and delivery of cloud

services via the Internet or a private network. Cloud

Provider and Cloud User are the prominent actors in

Cloud Computing. Cloud Provider is the enterprise that

provides cloud services[9]. A Cloud Users are

organizations, educational institutes, individuals utilizing

the cloud services. Hence, there is a necessity for security,

confidentiality and visibility with respect to the cloud

providers. The main aspect is to protect the data from

hacking.

Cloud Security

At present both in Public Cloud and Private

Cloud, security should be provided to encrypt data that is

stored and also to provide secure transmission from a local

machine to a cloud data store. The stored data is encrypted

and the channel of data transmission is well secured with

key exchanges. But actually performing computations on

the data stored in the cloud requires decrypting it first,

which makes critical data available to the cloud provider.

Data Mining and other Data Analysis onto the Encrypted

Database is a far distant thing to achieve by using

available encryption standards. The proposal here is to

encrypt data before sending to the cloud providers.

Thereby performing computations on clients’ data at their

request, such as analyzing sales patterns, without exposing

the original data[10]. To achieve this it is also necessary to

hold the cryptosystems based on Homomorphic

Encryption either a Fully Homomorphic Encryption

(FHE) or Somewhat Homomorphic Encryption (SHE).

III SYSTEM MODEL
The system framework for the proposed model is as

shown in Figure-1. The framework explains about

encryption process with encrypted data along with the

keys that are shared between the clouds in the federated

network[4]. The framework explains about the

components involved and their functionalities. The user

uploads the data in an encryptedform. The key

generation for encryption technique is doneby using a

random key for Hill cipher algorithm. The encrypted

data is stored in the data server. Key Generation is

performed with the encrypted data on the file using

matrix cipher keygeneration algorithm where the plain

text from the user istaken as input in the form of

matrices. This model proposes a modified cipher key

function F which introduces the novel obfuscations in the

matrix along withthe key matrix and hence this cipher

cannot be broken by the brute force attack which

provides an additional strength to the cipher.

 Fig 1

Decryption is carried with the inverse of the

key . Let m and c denote theplaintext/message and cipher

text of the integer respectively. Here is an additive cipher

that encrypts a block of four letters. Our plaintext

messages split into blocks Numbers are substituted for

letters by a = 1, b = 2, … , z = 26. The key adds to each

component of the block – thought of as a column vector

– component-wise. Decryption is accomplished by

adding the additive inverse of the (vector) key to the

ciphertext.

To encrypt a four-letter block, the key is a 4 X

1matrix. There are 4, 26, 456076 = possible keys – one

of which produces plaintext. If we know one

plaintext/ciphertext block correspondence, we can solve

for the key. This additive cipher is not truly a block

cipher because changing one plaintext letter of a

plaintext block changes only one letter of the

corresponding ciphertext block. A multiplicative cipher

using matrices produces a true block cipher.

𝑎 𝑏
𝑐 𝑑

 =

𝑑

𝑎𝑑 − 𝑎𝑐

−𝑏

𝑎𝑑 − 𝑏𝑐
−𝑐

𝑎𝑑 − 𝑏𝑐

𝑎

𝑎𝑑 − 𝑏𝑐

IV METHODOLOGY

Algorithm:

http://en.wikipedia.org/wiki/Homomorphic_encryption#ElGamal
http://en.wikipedia.org/wiki/Homomorphic_encryption#Goldwasser.E2.80.93Micali
http://en.wikipedia.org/wiki/Homomorphic_encryption#Benaloh
http://en.wikipedia.org/wiki/Homomorphic_encryption#Paillier
http://en.wikipedia.org/wiki/Homomorphic_encryption#Other_partially_homomorphic_cryptosystems
http://en.wikipedia.org/wiki/Homomorphic_encryption#Fully_homomorphic_encryption
http://en.wikipedia.org/wiki/Homomorphic_encryption#Early_homomorphic_cryptosystems
http://en.wikipedia.org/wiki/Homomorphic_encryption#Gentry.27s_cryptosystem
http://en.wikipedia.org/wiki/Homomorphic_encryption#Cryptosystem_over_the_integers
http://en.wikipedia.org/wiki/Homomorphic_encryption#The_2nd_generation_of_homomorphic_cryptosystems

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.5, No.9, September 2016 DOI:10.15693/ijaist/2016.v5i9.28-32

30

1. Encryption Algorithm

 The steps of the encryption algorithm are as follows:

Step1: Start

Step 2: Input: Plaintext, Key Matrix.

Step 3: Convert the plaintext characters in to matrix

form .

Step 4:Partitions input block into two halves mxn

[(mxn/2) and (mxn/2)]

Step 5: Perform Encryption using C = KP MOD26

Where C & P are the matrices of order1 X N. Also K is

a matrix of the order NXN.

2. Homomorphic encryption:

Step 1: Multiply with the left half data of inputmatrix

with the key matrix.

Step 2: Similarly perform on right half of the dataof

input matrix with key matrix to getcipher matrix.

Step 3: Perform permutation by swapping halves.Then

the two halves pass through n roundsof processing then

Combine Then the twohalves pass through n rounds of

processing then combine to produce the cipher block.

Step 4: Each round i has as input Li-1 & Ri-1 derived

from the previous round as well as a sub-key ki derived

Step 5: Computation is done for each round.

3. Decryption Algorithm

The steps of the Decryption algorithm are as follows:

Step1: Start

Step 2: Input : Ciphertext, Key matrix

Step 3: Calculate inverse key. If the determinant ofthe

Key matrix is> zero Then set offset as follows:

If (Determinant > =0) Then set offset =1 Else Set offset

= -1 .

Step 4: Decryption: P = CK-1 Mod 26.

Example:

Plaintext : gvpg

Converted into Matrix form:

𝑔 𝑣
𝑝 𝑔 =

6 21
15 6

MOD Operation:

Perform the MOD operation by using the value 26, will get

the result

𝑲𝒆𝒚 =
3 3
2 5

1. Homomorphic Encryption:

 Take the left half of the matrix

3 3
2 5

 *
6

15
 =

63
87

 mod 26

C1=
11
9

 Right Half =
3 3
2 5

 *
6

21
 =

81
72

 Mod 26

C2=
3

20

 Cipher Text is joining C1 and C2

C=
11 3
9 20

2. Homomorphic Decryption:

We will take the cipher text and key

Inverse = 𝐾. 𝐾−1 = 𝐾−1. 𝐾 = 𝐼

 𝑎𝑑 − 𝑏𝑐 ∗
𝑑 −𝑏
−𝑐 𝑎

 = 9−1
5 −3

−2 3

= 9−1
5 −3

−2 3
 *

3 3
2 5

 Mod 26

= 9−1
5 23

24 3

 𝑎𝑥 =1 mod m

 x= 𝑎−1 mod m

 9x=mod 26

 9(3)=(1) mod 26

 27=mod 26

 27/26=1 (remainder)

=3 ∗
5 23

24 3
 Mod 26

 =
15 17
20 9

 ∗
11 3
9 20

=
15 17
20 9

 ∗
11
9

 =
318
301

 Mod 26

=
6

15

15 17
20 9

 ∗
3

20
 =

385
240

 Mod 26

=
21
6

 =
6 21

15 6
 =

𝑔 𝑣
𝑝 𝑔

Finally, we get the plaintext.

The figure 1.2 describes Homomorphic encryption for

plain text. The decryption is by taking the inverse of the

matrix.

V Results
The proposed model is analyzed by executing

setof experiments. The experimental results are as

shown inFigure-3 and Figure-4. With respect to Table 1

and Table 2.

File size (KB) Encryption Time (Msec)

13 0.23

28 0.28

32 0.37

45 0.47

49 0.49

56 0.54

67 0.59

80 0.77

Table 1

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.5, No.9, September 2016 DOI:10.15693/ijaist/2016.v5i9.28-32

31

Fig 3

File size (KB) Decryption Time (Msec)

13 0.43

28 0.52

32 0.56

45 0.67

49 0.74

56 0.98

67 1.24

80 1.45

 Table 2

Fig 4

VI CONCLUSION

This paper motivates and solves the problem of

data security in cloud environment using homomorphic

encryption technique. The proposed homomorphic based

encrypted technique preserves the data from invisibly

leaking the sensitive information. The mechanism of the

cloud devise a new technology which makes the data

owner confident on the security of the data stored in

cloud environment, since the encryption and decryption

keys cannot be compromised. By security analysis, we

show that the proposed scheme guarantees data privacy.

In future, this existing system can be further improved by

the use of variable length key and Unicode values.

VII References

1. Craig Gentry, A Fully Homomorphic Encryption
Scheme,http://crypto.stanford.edu/craig/craig-
thesis.pdf, 2009.

2. Understanding Homomorphic Encryption
http://en.wikipedia.org/wiki/Homomorphic_encryption
.Computing Blindfolded: New Developments in Fully
Homomorphic Encryption VinodVaikuntanatham.

3. Homomorphic encryption based Data Security on
Federated Cloud Computing by G Anitha and
Vijayakumar V. Computer Science and Engineering,
Sri Venkateswara College of Engineering,
Pennalur, Sriperumbudur, India School of Computing
Sciences and Engineering, VIT University,
Kelambakkam, India.

4. C. Cachin, I. Keidar and A. Shraer, Trusting the
cloud, ACM SIGACT News, Vol. 40, pp. 81-86, 2009.

5. J. Hendricks, G. R. Ganger and M. K. Reiter,
Lowoverhead byzantine fault-tolerant storage,
Proceedings oftwenty-first ACM SIGOPS symposium
on Operating systems principles, ACM, pp. 73-86,
2007.

6. ChiragModi, Dhiren Patel, Bhavesh Borisaniya, Avi
Patel, and Muttukrishnan Rajarajan, “A survey on
security issues and solutions at different layers of
Cloud computing”, Journal of Super Computers,
pp.561–592,2013.

7. J. Ravi kumar and M. Revati, “Efficient Data Storage
and Security in Cloud “, In Proc. International Journal
of Emerging trends in Engineering and Development,
vol.6, no.2, 2012.

8. Shizuka Kaneko, Toshiyuki Amagasa and Chiemi
Watanabe, “Semi-Shuffled BF: Performance
Improvement of a Privacy-Preserving Query Method
for a DaaS Model using a Bloom filter”, in Proc.
International Conference on Parallel and Distributed
Processing Techniques and Applications, 2011.

9. Aguilera, M. K, Lillibridge.m and Maccormick, “Block-
Level Security for Network-attached disks”, In Proc.
The 2nd Usenix conference on File and Storage
Technologies, pp.159–174, 2003.

10. Anitha, R, Pradeeban Paramjothi, and Saswati
Mukherjee, “Security as a Service using Data
Steganography in Cloud Computing”, in Proc. of
International Conference on Cloud Security
Management, pp. 81-89, 2013.

11. Sujitha. G, Rajeswaran, Thiagarajan, Vidya. K,
Mercy Shalinie. S, “Preserving Privacy of Cloud Data
Using Homomorphic Encryption in MapReduce,
“International Journal of Hybrid Information
Technology, vol. 7, no. 3, pp. 363-376, 2014.

12. C. Orencik, E. Sava, Efficient and Secure Ranked
Multi-Keyword Search on Encrypted Cloud Data, in
Proc. OfEDBT- ICDT, pp.186 -195, ACM: New York,
USA,2012.

Author Profile

0

20

40

60

80

1 2 3 4 5 6 7 8

File size (KB)

Encryption
Time (Msec)

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682
Vol.5, No.9, September 2016 DOI:10.15693/ijaist/2016.v5i9.28-32

32

D. Chandravathi is currently

working as a Assistant Professor at

Gayatri College for Degree and PG

courses .Visakhapatnam.

Specilaization: Cryptography and

Network Security, Bioinformatics.

Dr P.V.Lakshmi is currently

working as a Professor at Gitam

University,Viskhapatnam.Specilaz

ation: Cryptography and Network

Security, Bioinformatics.

