
International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.149-169

149

LQR Based Optimal Control Scheduler for

Optimizing Performance of Server Virtualization in

Cloud Data Center Environment

Vedula Venkateswara Rao

Research Scholar/Department of CSE

Gitam Institute of Technology, Gitam University,

Visakhapatnam, India

Associate Professor/Department of CSE

Sri Vasavi Engineering College, Tadepalligudem

Dr.Mandapati.Venkateswara Rao

Professor/Department of IT

Gitam Institute of Technology, Gitam University,

Visakhapatnam, India

Abstract— Data centers of today are rapidly moving towards the

use of server virtualization as a preferred way of sharing a pool

of server hardware resources between multiple ‘guest domains’

that host different applications. The hypervisors of the

virtualized servers, such as the Xen use fair schedulers to

schedule the guest domains, according to priorities or weights

assigned to the domain by administrators. The hosted

application’s performance is sensitive to the scheduling

parameters of the domain on which the application runs.

However, the exact relationship between these parameters of the

domain and the application performance measures such as

response time or throughput is not obvious and not static as well.

Furthermore, due to the dynamics present in the system there is

need for continuous tuning of the scheduling parameters. The

main contribution of our work is the design and implementation

of a controller that optimizes the performance of applications

running on guest domains. The main objective of our work is to

devise a mechanism to dynamically set resource management

parameters for the virtual machines in such a way that the

specified goals are satisfied. We focus on a scenario where a

specific target for the response time of an application may not be

provided. The goal is to dynamically compute the CPU shares for

the virtual machines in such a way that the application

throughput should be maximized, while keeping the response

time as low as possible, with the minimum possible allocation of

CPU share for the guest domain. The optimizing controller

design is based on the feedback control theoretic concept called

Linear Quadratic Regulator (LQR). The controller computes the

values of the scheduling parameters for every guest domain in

such a way that it minimizes the CPU usage and response time,

and maximizes throughput of the applications. To evaluate our

work, we deployed multi-tier application in virtual machines

hosted on the Xen virtual machine monitor. The performance

evaluation results show that the controller brings the cap value

close to the expected optimal value. The optimizing controller

also rapidly responds to changes in the system when a

disturbance task is introduced or load on the application is

changed.

Index terms -Cloud Computing, Data Center, Virtualization,

hypervisor, Xen, virtual machine, Green IT, scheduler,

Performance, Response Time, Throughput, Feedback Control

Theory, Linear Quadratic Regulator, CAP Value, Weight Value,

Optimized Value.

I. INTRODUCTION

The task of predicting & maintaining the system

performance and capacity planning is becoming difficult due

to increased complexity in the it applications and

infrastructure. Service providers host the applications from

different enterprise clients on the shared pool of hardware

resources. Clients negotiate the service contract in the form of

service level agreement (SLA) with service providers which

depict all the related formal information about the contract and

the performance guarantees. The performance guarantees

include QoS (quality of service) requirements [6] [37] like

desired response time or throughput of the application.

Degraded performance leads to penalty cost due to SLA

violation as well as dissatisfied clients which ultimately results

in financial loss for the service providers. Over-provisioning

of hardware resources has always been the easiest choice for

service providers to avoid any performance problems. But it

leads to inefficient and costlier resource management.

Cloud computing is a technology that numerous it

organizations extend their hands in order to improve their

financial ability. This is done by improving the various QoS

parameters such as performance, throughput, reliability,

scalability, load balancing, persistence, etc. The services such

as disk storage, virtual servers, application design,

development, testing environment are added advantages of the

cloud computing technology. The cloud computing technology

makes the resource as a single point of access to the client and

is implemented as pay per usage [1][2]. Though there are

various advantages in cloud computing such as prescribed and

abstracted infrastructure, completely virtualized environment,

equipped with dynamic infrastructure, pay per consumption,

free of software and hardware installations, the major concern

is the order in which the requests are satisfied. This evolves

the scheduling of the resources. This allocation of resources

must be made efficiently that maximizes the system utilization

and overall performance. Cloud computing is sold on demand

on the basis of time constrains basically specified in minutes

or hours. Thus scheduling should be made in such a way that

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.149-169

150

the resource should be utilized. Nowadays server

virtualization[26][46] is heavily used to build it infrastructure

is it allows sharing of resources among different applications

while at the same time providing isolated environment called

virtual machine for each application[7] [10] [13]. Virtual

machine hosts an OS (operating system) in its secured isolated

environment consisting of virtual CPU, main memory and IO

devices. Virtual machine monitors (vmm) like VMware, Xen

[26] [46] does the task of protection and resource allocation

among individual virtual machines. Some of the benefits of

server virtualization include consolidation of multiple OS on

single physical server, live migration of a virtual machine

from one physical server to another physical server. With

these capabilities offered by server virtualization, managing a

server farm becomes easier and cost effective. Sharing of the

resources should not cause performance of an application

adversely getting affected by the other applications running on

the same hardware. Gupta et al[16] [17] describes the term

performance isolation as the scenario in which performance of

the client application remains same regardless of type and

amount of workload of other applications sharing the

resources. Performance isolation is an important goal in any

shared hosting environment such as virtualized environment.

Performance isolation can be achieved by properly allocating

the resources among competing virtual machines [18] [27]

[28] [31]. Vmm allocates the share of resources like CPU,

main memory to each virtual machine [37]. For example, CPU

scheduler in Xen [46] accepts two parameters named weight

and cap for each of the virtual machine. Weight represents the

relative share of a virtual machine, whereas cap represents the

upper bound on CPU consumption by the virtual machine.

Performance isolation can be achieved by setting the

appropriate values of resource management parameters like

weight and cap for each virtual machine. Dynamic nature of

the workload should be considered while modelling the

performance behavior of the applications residing in virtual

machines. Client SLA’s keep on changing very frequently.

Addition or removal of clients is also a continuous process.

Same is the case with underlying hardware infrastructure

which frequently gets scaled or upgraded with new hardware

components. With these many sources of dynamics, delivering

QOS to the applications hosted in the virtual machines

becomes more complex. Our study focuses on devising a

mechanism for computing the share of the resources to be

allocated to each virtual machine in such a way that desired

QoS is delivered to the applications running inside virtual

machines.

In this paper, we are applying feedback control theory

[35] to maintain the performance of the applications running

inside virtual machines. Feedback control theory does online

analysis of the system and attempts to maintain the output of

the system around the desired values [17]. In virtualized

environment scenario, output refers to the QoS requirements

of the clients which need to get satisfied. Controller in a

feedback system computes the values of input parameters

which affect the working of the system which in turn affects

the output delivered by the system. In virtualized environment,

input parameters refer to the resource management parameters

like main memory allocation to guest OS, or some scheduler

specific parameters like weight, cap, time-slice for a guest OS.

II. EXISTING SYSTEM AND RELATED WORK

A. Background

Cloud computing is a recent technology and a lot of

research are made in that domain to improve it. Also due to

the relation between cloud and virtualization there are as well

many researches on virtualization to enhance virtualization

performances. Cloud computing is more and more popular and

most of the enterprise begin to adopt it. However there are still

some obstacles which can restrained the adoption of cloud

services by enterprise such as the lack of standardization,

reliability associate to the cloud, the security and so on. The

reason of the adoption of cloud computing by enterprise is

principally for economical reasons because cloud computing

allow customers to reduce their hardware cost as well as

energy consumption [1] and so on. Also there is no waste

because customers only pay for what they are using. As seen

previously there are many different type of virtualization. To

be able to provide the best performances cloud computing is

using para-virtualization as well as hardware-assisted

virtualization. Full virtualization is not used in cloud

computing due to poor performances cause by its considerable

overhead. Virtualization technology is not a new technology

however it has regain popularity in 2005 with the apparition of

and Intel processors which had support for virtualization.

Virtualization brings many advantages such as the

improvement of security, the enhancement of the efficiency of

server utilisation and so on. Also during the past few years due

to the popularity of virtualization and its utilisation in the

cloud computing many researchers have been made. From that

research, lot of improvement has been made to try to obtain

performances near to native performances.
B. Cloud Computing

Cloud computing is a new technology and evolve

rapidly also it is difficult to match a good definition of cloud

computing [1] [2] [5]. Because cloud computing is an evolving

technology the definition is changes over the time. The U.S.

Government's National Institute of Standards and Technology

(NIST) tries to give an up to date definition of the cloud

computing. The actual version of their definition is the version

15 in date of 10 July 2009 (Mell et al, 2009). According to the

NIST cloud computing is on demand service which shares a

pool of computer resources over a network. Cloud computing

matches five essential characteristics which define the main

functionalities provided by the cloud, three service models

which give the level of service provided and four deployment

models which indicate where the cloud is deployed and who

can access to it. The main characteristics of the clouds are the

following (Mell et al, 2009):

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.149-169

151

 On demand self-service: Users of the cloud

can manage the resources in on demand basis and they only

paid for what they consume.

 Broad network access: The resources

provided by the cloud can be access by as any normal services

through thin or thick clients such as laptop, PDA, mobile

phones and so on.

 Resource pooling: The cloud provider serves

pool of resources over multiple customers according to the

demand. Client which access the service have no knowledge

of the exact location of the cloud but may be able to provide a

location at higher abstraction level such as country, state, data

center and so on [18].

 Rapid elasticity: The resources provided by

the cloud are highly scalable. Customer can rapidly scale up

the resources that they need and then scale them down if there

is no need to use it anymore. The scalability of the cloud gives

a real modularity to the cloud. Also resources appear as

infinite and customers have no need to make plan for

provisioning (Armbrust et al, 2010) [28].

 Measured service: The resources provided

by the cloud are controlled and optimized according to the

resources capabilities. Also resources usage can be monitored

control and reported to be able to provide transparency for

both provider and consumer of the resources [32] [45].

C. Virtualization for Resource Sharing

Data centers of today are rapidly moving towards the

use of server virtualization as a preferred way of sharing a

pool of server hardware resources. The journey of

virtualization technology started in 1960s when IBM first

invented the concept of virtual machine to divide the

computing power of mainframe servers into logical partitions.

Virtual Machine Facility/370 better known as VM/370[10]

and was one of the initial successful implementations of

virtual machines by IBM which was based on their mainframe

server IBM System/370. VM/370 had been in wide use inside

IBM for mainly time-sharing purpose and operating system

development. The emergence of virtual machines was due to

expensive mainframe systems. Virtual machines provided a

convenient way to share the mainframe among multiple users

so as to effectively use the otherwise wasted resources. Later

virtualization became unnecessary as inexpensive x86 based

machines came into markets around 1980s and 1990s. Also the

client-server model of the applications helped in building

distributed model for computing which was cheaper than

computing using mainframes. Then came the era of World

Wide Web in late 1990s, where the computing needs started to

increase exponentially. Around the same period, many

organizations started the use of IT applications at massive

scale for various operations. The under-utilized machines

became major source of concern as the operational and

management cost of the infrastructure was rising without

actually leveraging the resources to significant extent. Many

of the studies reported average use of the servers and desktop

machines around 5-15%. This situation resulted in making a

call to old virtualization technology in this era. In 1999

VMware[34] became the first company to release a

virtualization product for x86 based machines which was

named “VMware Virtual Platform”. At present, VMware

server [34], VMware ESX [32], Xen Server [28], Microsoft

Virtual server [34] are some of the popular server

virtualization solutions available in the market. Server

virtualization provides a way of sharing a resource pool

between multiple guest domains that host different

applications. An isolated execution environment called virtual

machine (VM) which is also referred as a domain is provided.

The virtual machine hosts an operating system (OS) which is

provided with a virtual set of CPU, main memory and IO

devices. Virtual machine monitor (VMM) is a software layer

between these virtual machines and the hardware. VMMs

carry out the task of protection, isolation and resource

allocation among the individual virtual machines. Some of the

benefits of adopting server virtualization include consolidation

of multiple OS’s on a single physical server, pooling of the

resources, uniform interface to the resource pool, and live

migration of a virtual machine from one physical server to

another physical server. With these and many more

capabilities offered by server virtualization, managing a server

farm becomes easier and cost effective.

D. Application Performance in Data Centers

The task of predicting and maintaining the system

performance and doing capacity planning is becoming difficult

due to increased complexity in the IT applications and

infrastructure. Service providers host applications from

different enterprise clients on a shared pool of hardware

resources in data centers. Clients negotiate a service contract

in the form of a Service Level Agreement (SLA) with service

providers which include a description of the performance

guarantees. The performance guarantees may include Quality

of Service (QoS) requirements such as desired response time

or throughput of the application. Degraded performance leads

to SLA violation which results in penalty cost for the service

providers[1]. It also results into dissatisfied clients which

ultimately results in financial loss for the service providers.

Over-provisioning of hardware resources has always been the

easiest choice for service providers to avoid such performance

problems. But it leads to inefficient resource management and

costlier infrastructure. Resource allocation needs to be done

dynamically so that shared resources can be reused among the

application more effectively.

One interesting situation arises when there are no pre-

specified desired values of performance metrics. The clients

may not specify the desired values; instead they require the

maximized performance at minimal cost. For example,

response time of an application decreases with increase in

CPU capacity with certain rate for some range of capacity.

This rate starts to drop after certain CPU capacity. So utilizing

more CPU does not yield performance at the same rate, hence

the cost to benefit ratio goes up.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.149-169

152

E. Application Performance in Virtual Machines
The performance of an application should not get

adversely affected by the other applications running on the

same hardware. Gupta et al [12] described the term

performance isolation as the scenario in which performance of

an application remains the same regardless of type and amount

of the workload of other applications sharing the same

resources. Performance isolation is an important goal in any

shared hosting environment such as a virtualized environment.

As we have seen in the example of the previous section, CPU

capacity allocated to the application has a major impact on the

performance of the application. To achieve performance

isolation, appropriate resource allocation need to be done

among the competing virtual machines. For deciding the

resource shares for an application we need to understand how

the resource scheduling process works in VMMs. A VMM

allocates the share of resources such as CPU, main memory to

each virtual machine. For example, the CPU scheduler in Xen

named credit scheduler accepts two parameters weight and cap

for each virtual machine. Weight represents the relative share

of a virtual machine, whereas cap represents the upper bound

on CPU consumption by a virtual machine. The value of cap

puts the limit on CPU usage by a virtual machine. If sum of

cap of all virtual machines running on the given CPU is less

than the CPU capacity then CPU remains idle even if there is

some runnable work present in the system. The performance

of a hosted application is sensitive to the weight or cap given

to the domain on which the application is running. However,

the exact relationship between the value of the weight or cap

of the domain, and the application performance metrics such

as response time or throughput is not obvious. Therefore,

determining the appropriate parameter values that would

provide a certain QoS for an application is a difficult problem.

To make things worse, there are many sources of dynamics

which makes the task of delivering QoS to the applications

hosted in the virtual machines much more complex. e.g. the

dynamic nature of the workload, or changing client SLAs.

Addition or removal of clients is also a continuous process.

This is also the case with underlying hardware infrastructure

which frequently gets scaled or upgraded with new hardware

components. With all this dynamics, the exact relationship

between application performance and the amount of resource

allocated to the application is not so obvious and is not static.

From this scenario we infer that performance isolation can

only be achieved by monitoring the running system and tuning

the appropriate values dynamically.

F. Feedback Control Theory

Feedback control has been in the history much longer

than the virtualization. One of the known initial applications of

feedback control can be found in windmills of 17th centuries

[35]. The very famous invention of James Watt, the steam

engine [35] had a centrifugal governor to control over-

speeding of the mover. Another legendary example is of

control mechanism in first controlled human flight by Wright

brothers [35]. Some of the widely used applications of

feedback control theoretic approach involves automobile

cruise control, aircraft cruise control, temperature maintenance

using thermostat[29][17][35]. A feedback control system

monitors the values of output metrics of the system, processes

it and computes the new values of input parameters to be set.

These input parameters should be some configuration

parameters of the system which have influence on the working

of the system. Thus, setting the value of input parameter to a

new value can result in change in the output. As there is this

interdependency between input and output of the system, it is

called as feedback system. An important feature of the

feedback control system is that it does online analysis of the

system and responds to changes in the system dynamically.

Feedback control system design can be done in two steps. In

the first step, the mathematical model of the system is

constructed which relates the output to its past values and to

the past as well as present values of input parameters. From

the constructed system model, a most important part of

feedback control system named controller is designed. The

controller computes the values of input parameters to be set. A

typical feedback control system takes the input called

reference input which specifies the objective for control. This

input may or may not be present in every case. If system

accepts the reference input, the controller tries to compute the

values of input parameters in such a way that the output

delivered will be equal to the reference input. In some

scenarios there is no reference input provided to the system. In

such scenarios, the objective for feedback control is to tune the

input parameters in such a way that certain metrics are

optimized.

These metrics may include the values of some output

or input parameters. A feedback control system also consists

of other components which monitor and process the values of

the output metrics of the system. The output in the context of

applications running inside the virtual machines refers to the

QoS requirements such as response time and throughput,

where as the input parameters can be comprised of resource

management parameters such as CPU scheduling parameters

of VMs, or main memory allocation to the VMs. In this work,

we focused only on CPU sharing. The CPU scheduling

parameter weight is the relative share of a VM whereas the

value of cap is the absolute limit on CPU consumption of a

VM. As the value of cap provides direct control over the CPU

usage by a VM, we are using the cap of VM as the input

parameter to be tuned.

III. PROBLEM DESCRIPTION

 This section starts with describing the basics

of the virtualization. Subsequently we discuss the performance

issues occurring in the virtualized environment. Then we

define the problem statement

A. Virtualization

The term virtualization refers to the abstraction of

resources. The user or the software process is not aware of the

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.149-169

153

actual characteristics of the resource. Rather, they get a view

of resource which is more familiar to them or which is more

manageable by them. Our concern over here is about

server/software virtualization which is more popularly known

as virtual machine environment. Figure 1 shows a virtualized

environment. Let us see some of the basic terms in server

virtualization.

• Virtual Machine (VM): this is a virtual environment

created by vmm (described below), which simulates all the

hardware resources needed by an operating system. The OS

running in such environment is called a guest OS. Guest OS

has a virtual view of the underlying hardware.

• Virtual Machine Monitor (VMM/HYPERVISOR):

this is the interface between the guest OS and the underlying

hardware. All the administrative tasks like adding a new guest

OS, allocation of resources to each of guest OS is done

through vmm. Some popular examples of vmm are vmware

[46], Xen [47]. In our study, we have used open source vmm

solution Xen [25] [26] [47].

• Host OS: the native OS running on the given

hardware is called the host OS. The vmm is installed on host

OS. This OS has all the privileges on the given hardware.

In simpler terms we can describe the virtualization as

follows. The actual physical resources are divided into logical

partitions. Each of the logical partition is allocated to some

guest OS. Each guest OS runs independently on a given

partition. For host OS, guest OS’s are like the normal

processes running on it. The vmm interface is available in host

OS through which guest OS’s are managed.

Figure 1. Virtualized Environment

B. Scheduling of Virtual Machines

There are number alternatives for CPU scheduling in

Xen like Borrowed Virtual Time (BVT), Simple Earliest

Deadline First (SEDF) and Credit scheduler [5] which

schedule the virtual machines on available set of processors.

The latest scheduler for Xen is credit scheduler which is a

proportional fair share SMP (Symmetric multiprocessor)

scheduler. Each domain (including host OS) is assigned with

number of virtual CPUs (VCPU), weight and cap values.

Weight denotes share of a domain and is directly proportional

to CPU requirement of a domain. The cap specifies the

maximum amount of CPU a domain will be able to consume

even if there is idle CPU. Thus credit scheduler works in non-

work conserving mode when sum of cap of all domains is less

than available CPU capacity. Each CPU manages a local run

queue of runnable VCPUs sorted by VCPU priority. A

VCPU’s priority can be over or under depending upon

whether that VCPU has exceeded its fair share of CPU in the

ongoing accounting period. Accounting thread computes how

many credits each virtual machine has earned and re computes

the credits. Until a VCPU consumes its allotted credits,

priority of VCPU is under. Scheduling decision is taken when

a VCPU blocks or completes its time slice which is 30ms by

default. On each CPU, the next VCPU to run is picked up

from head of the run queue. When a CPU doesn’t find a

VCPU of priority under on its local run queue, it looks on

other CPUs for VCPU with priority under. This load balancing

mechanism guarantees each domain receives its fair share of

CPU. No CPU remains idle when there is runnable work in the

system.

C. Performance Isolation and Application QoS

In a virtualized environment, multiple software servers are

hosted together on a single shared platform. Each server may

belong to different owner. For each server, the QoS

requirements are expressed by the client through Service Level

Agreement (SLA) with the service provider. The task of the

service provider is to maintain the performance such that SLA

of any of the client does not get violated. SLA violations have

pre-specified penalty costs associated with them. QoS

crosstalk [20] occurs in a situation when maintaining QoS for

some client results into degraded QoS for another client.

Performance guarantees for the applications running inside the

virtual machines can be fulfilled only if there is performance

isolation across virtual machines. Figure 2 pictorially depicts

the scenario of virtual machine environment.
Figure 2. Applications running inside virtualized Environment

Performance Isolation as described by [16] [17] is as

follows: ”Resource consumption by any of the virtual

machines should not affect the promised performance

guarantees to other virtual machines running on the same

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.149-169

154

hardware” . Over-provisioning of the resources can be

simplest solution to achieve performance isolation but then the

whole essence of using virtualization can be lost. The ultimate

aim is actually to increase the benefit of the service provider

through better resource utilization with constraint of delivering

QoS for each of the client. Hence some better solution other

than over-provisioning is required. Let us see one example

which describes this problem. In an earlier study we have

shown that the behavior of the applications running inside the

virtual machines remains unpredictable when there is IO load

running on at least one virtual machine.

Effect on Mixed workload on the performance of

applications in virtualized Environment in table 1.

The experiment as described in above table was done

to analyze the effect of mixed load applications on the

performance of each other. One application is a CPU intensive

application and the other application is a web server. We

carried out first experiment only with web server running in

virtual machine vm3. Next experiment was carried out with

CPU intensive application running in vm2 and vm3 is hosting

the web server. In both the experiments we have not set the

value of cap for the virtual machines. As shown in the

following table, in both cases, CPU consumption by vm3 is

the same which is 180% whereas in second experiment vm2

consumed 100% CPU. The test bed consisted of four cores of

processor; hence there was still some CPU capacity left. But

the readings show there is drastic change in throughput of the

web server in the second experiment. Although CPU

consumption is same in both experiments, the quality of

service (QoS) delivered has gotten affected by the presence of

the other virtual machine. The experiment described above

was done with a simple setup. In a real life scenario, the

situation can get worse in presence of tens or hundreds of

virtual machines sharing the pool of resources. Each of the

virtual machines may be hosting different kind of application

with different kind of workload patterns and with different

levels of desired quality of service. A change in any of the

software components such as the virtual machine, or

application characteristic or a change in any of the hardware

resource can affect the performance adversely. Several studies

[16] [17] [22] [27] [42] revealed that there is compelling need

of having better performance isolation mechanism in Xen.

This is also evident from the fact that three schedulers [47]

named Borrowed Virtual Time (BVT), Simple Earliest

Deadline First (SEDF) and Credit scheduler have been

proposed for virtual machine scheduling in Xen in past four

years. Lack of performance isolation causes degraded and

unpredictable application performance. With this motivation,

we define the problem in the following way.

D. Problem Definition

Our work is in the context of providing performance

isolation across virtual machines sharing the resources.

Specifically most important objective of our work is to devise

a mechanism to set resource management parameters for the

virtual machines in such a way that the applications running

inside virtualized environment can deliver client QoS

guarantees. The client QoS requirements need to be translated

in resource management parameters. Another important

objective is to improve resource utilization with constraint of

maintaining client QoS. This objective is important from the

perspective of the service providers. For example, the client

QoS requirements can be expressed in terms of desired

response time of the application. The resource management

parameter to be tuned can be scheduler parameter cap of a

virtual machine hosting the application. The value of cap

represents the upper limit on CPU consumption by a virtual

machine. The challenge is to design robust mechanism for

setting up the cap of virtual machine in order to maintain the

response time of the application even in presence of the other

workloads or with the variations in the operating environment.

IV. PROPOSED METHOD

In this section we present our mechanism to compute

the resource management parameters of the virtual machines

so as to deliver QoS to the applications running inside

virtualized environment. We applied the feedback control

theoretic approach [35] for developing the solution. The basic

idea of feedback control systems is that they work on the basis

of the feedback they receive from the system at runtime.

Therefore building a very accurate model of the system is not

necessary. Also, as it works on feedback from a running

system, it can respond quickly to the variations occurring in

the system. Other alternative for developing the solution

include queuing theory. But the queuing model does not

handle feedback and it is not good at characterizing transient

behavior in overload. Also a queuing model does off-line

predictive analysis, whereas feedback control theory does

online analysis which makes.

Statistics of web server running in virtualized environment
 Weight CAP Load CPU

usage

Requests

per sec

Transfer

rate
(Kbytes

per sec)

Experiment1: With Web Server running
Domain0 256 400 - - NA

VM2 256 400 - - NA

VM3
256 400

Web

Server
180 797.61 1035.17

Experiment1: Mixed Load 1 VM CPU Load,1 With Web

Server running
Domain0 256 400 - - NA

VM2 256 400 CPU 100 NA

VM3
256 400

Web

Server
180

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.149-169

155

A. Feedback Control Theoretic Approach

As famous mathematician GEP Box said, all models

are wrong, but some models are useful. As suggested by this

quote [8], a mathematical model of a system may not be

completely correct, but often the model is adequate enough to

solve the specific problem. In control theoretic approach, we

build the system models which approximately represent the

effect of input parameters on the output metrics of the system.

Using the system model, a feedback control system is

designed. The online feedback from the system is monitored

by feedback control system and accordingly the appropriate

action to be taken is decided. The designed feedback control

system can quickly react to any changes in the target system or

in the environment by virtue of feedback supplied. Hence

feedback control can be a good approach in the scenarios

where a system is having several sources of dynamics. Let us

go through the basics of feedback control theory to understand

the solution approach in detail.

1. Elements of Feedback Control System

This subsection presents the working of a feedback

control system. Figure 3 shows a basic feedback control

system. A control system diagram is very different from a

architectural diagram of a system. Control diagrams depict

flow of the data and control signals through the system and the

various transformations the signal undergoes. Architectural

diagrams depict the functional components involved in the

system. Some of the keywords used in feedback control theory

are as follows:

 Target system: the system which is being

controlled.

 Reference input: the desired value of the

output metric from the system. This input may not be present

in some scenarios. The subsequent part of this chapter will

discuss that scenario in detail.

 Control error: difference between the values

of reference input and measured output.

 Control input: variable whose value affects

the behavior of the target system.

 Controller: controller is the most important

component of a feedback control system. It computes the

value of control input so as to maintain the measured output

equal to reference input.

 Disturbance input: other factors that may

affect the target system e.g. administrative tasks running on

the same system as of target application under work.

 Noise input: noise represents an effect that

changes the value of measured output produced by the target

system.

 Transducer: Transforms measured output in

some desired form. Transducer may be used for averaging of

the output depending upon design of the feedback control

system.

Figure 3. Typical feedback control system

The purpose of a controller which is called as control

objective can be of following types.

• Regulatory control

• Disturbance rejection

• Optimization

Let us see how the control systems are developed

with keeping these objectives into consideration. The control

input parameters are the system variables or the configuration

parameters which affects the working of the system which

results in variations in the values of output from the system.

The main idea in feedback control system is to monitor the

output from the system and compute the new value of input

parameters depending upon value of the current output. Task

of controller is to model the input-output relationship for the

system so that the desired responses from system can be

achieved by setting up the proper values of input parameters.

B. Architecture of QoS aware Environment

Architecture proposed in our work is independent of

virtual machine monitor (VMM) used, so we can use any Of

the VMM solutions like VMware workstation, Xen, MS

Virtual server. Figure 4.2 shows the architecture of QOS

(quality of Service) Aware virtualized environment. Data

centers host number of physical servers which are shared

among multiple Client applications.

As shown in Figure 4 all the virtual machines

consisting of tier1 of the application are placed on the physical

server1, virtual machines of Tier2 on the physical server 2 and

so on. Hence for n tier applications there will be at least n

physical servers. Placement of these tiers is subject to resource

availability on the given physical server. A virtual machine

monitor will be running on each of the physical servers which

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.149-169

156

do management of virtual machines on the given server. For

simplicity we haven’t shown the host OS or VMM in the

given architecture. Please refer to figure 4.2 for the

Architecture of the virtualized environment with VMM and

host OS. Apart from these usual components of the virtualized

environment, we add three modules named controller, capacity

Analyzer and sensors. Sensor module is deployed in the tier 1

of all applications. As the name suggests, the Task of the

sensor is to carry out measurements. Sensor will monitor each

request coming to the application and Measure the values of

interest. The measured values can include QOS parameters

like response time delivered to each request, throughput of the

application. The other task of the sensor will include

transforming the measured Output in some form which is

further being used by controller. The transformation can

include summarizing the measured data, storing the history

data etc. The controller and capacity analyzer modules are

deployed in the host OS on each of the physical server.

Controller module receives the values of the QOS parameters

from the sensors. Task of the controller is to compute the new

values of the resource management parameters for the virtual

machine. In this architecture, we compute the Resource

management parameter values for each virtual machine

separately. The computed values for each of the Virtual

machine are then supplied to capacity analyzer. Capacity

analyzer verify whether the resource demands of All virtual

machines together will get satisfied on the given physical

server or not. Note that each physical server will have separate

instances of controller and capacity analyzer running. After

verification from the capacity analyzer, The resource

management parameter values are then forwarded to the

virtual machine monitor which acts as actuator to set these

values. Following subsection describes the feedback control

system covering these three Modules in depth.

Figure 4. Architetcure of QoS aware environment

C. Feedback Control System

The following figure 5 depicts the design of the

feedback control system for virtualized environment. For

simplicity we are assuming number of applications and

number of tiers of every application to be 2 each. Note that

each physical server will have separate instance of this

feedback control system. For this study we focus on

maintaining the response time delivered by application.

Response time is the measurement of time between arrival of

the request at the server and departure of the request after

successful service from the server. Delay over the network

between the server and the client is not included in the

response time measurement. Hence we are having one

reference input in the form of desired response time for an

application. In this study we are using cap of the virtual

machine hosting the application as control input. Cap of the

virtual machine puts the upper limit on the CPU consumption

by a virtual machine. We are modelling the system using

multiple SISOs. SISO stands for single input single output

system. There will be one SISO for one virtual machine of

each application running on a physical server.

Figure 5. Feedback control system for virtualized environment.

As shown in the figure, virtual machine environment

is hosting two applications in different virtual machines.

Feedback control system gets desired response time for each

of the application as the reference input from the user. This

input is entirely choice of the user which describes desired

Quality of Service. Response time delivered by each of the

application is measured with sensors present in the virtual

machines. This measured output is then given to transducer

which computes exponential average of the response time.

Exponential averaging is useful in order to avoid responding

to the temporary fluctuations in the system. Exponential

averaging technique updates the average response time value

in following manner:

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.149-169

157

Avg_response_time = α * current_response_time + (1 - α) *

old_avg_response_time.

where α denoted exponential factor. Value of α can be

configured by the system administrator depending desired

responsiveness to the changes in the system.

The exponentially averaged response time value is

provided to the controller along with the desired response time

value. We implemented a PID (Proportional-Integral-

Derivative) controller. The controller computes the new value

of cap for the virtual machine. The controller computes the

cap for the two applications separately. Hence logically there

are two controllers running on a given physical server, so we

have shown two controllers in this figure. The values

computed by both controllers is feed to the capacity analyzer

which verifies whether the resource demands of the virtual

machines running on same physical server are feasible or not.

If the resource demands exceed the capacity of the physical

server then we need allocate some more hardware resources or

we should discard some workloads. Allocating new hardware

resources can be done by migrating the virtual machines on

different physical server. The virtual machine migration

technology is supported by many of the virtual machine

monitors. Virtual machine migration allows runtime migration

of a virtual machine from one physical server to other physical

server.

D. Optimal Control Design using Linear Quadratic

Regulator

According to feedback control system there is pre-

specified QoS requirement for each application. However, in

many situations these requirements may not be explicitly

specified by the client of the data center. Rather the explicit

requirement can be to maximize the application performance

at minimal cost. The cost in the context of these software

applications is the amount of resources used by the

application. The service providers charge the clients according

to usage of resources by the client application. Hence goal

here is to maximize the application performance with minimal

usage of resources. Here we are focusing on cpu sharing

among the virtual machines. Hence the goal of this work is to

maximize the application performance with minimal cpu

usage by an application.

1. Optimal Resource Allocation

Our goal is to develop a mechanism to find optimal

resource allocations for the virtual machines hosting the

applications. Let us go through the scenario of virtual

machines in detail. As we discussed earlier, the credit cpu

scheduler of Xen accepts two parameters per virtual machine:

the weight and the cap. The cap of a virtual machine is the

upper limit on cpu consumption by the virtual machine. Hence

an increase in the cap of a virtual machine may improve the

performance of the application running inside the virtual

machine. We need to compute the value of cap where the

application performance is maximized with respect to resource

usage. The ratio of client interest can be expressed in

following form:
(𝒄𝟏∗𝒕𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕)

 𝒄𝟐∗𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆𝒕𝒊𝒎𝒆 + 𝒄𝟑∗𝒂𝒍𝒍𝒐𝒄𝒂𝒕𝒆𝒅−𝒄𝒑𝒖−𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚 (1)

Our aim is to compute the value of cap of virtual

machine for which this Ratio is maximized. Note that the

variables c1, c2, c3 represents the relative weight of each

metric. Hence for every set of values of relative weights we

may have different values Of cap at which the this ratio is

maximized. The application performance metrics considered

in this work are response time and throughput of the

application. The objective of this work is to dynamically

compute the value of Cap of a virtual machine hosting an

application such that:

 The response time of the application is

minimized.

 The throughput of the application is

maximized.

 The value of cap allocated to the virtual

machine is minimized.

Hence we need to design a control system which will

continuously monitor the virtualized Environment and set the

cap of a virtual machine in such a way that the application.

Performance is always maximized. This control system needs

to be capable of discarding the effect of disturbance tasks

running on the same system. We use the LQR (Linear

Quadratic Regulator) to develop the solution for this problem.

2. Linear Quadratic Regulator

The LQR (Linear Quadratic Regulator) [28] [16] is

suitable for solving optimization problems using control

theoretic approach. The name LQR comes from the fact that

the dynamics of the system can be represented by linear

difference equations and the goal for LQR controller is to

minimize a quadratic cost function. The cost function is

generally expressed in terms of control error and control

effort. The LQR controller computes the values of control

input in such a way that the cost function is minimized. Let us

go through an example to understand the details of LQR.

Consider a MIMO (multiple input multiple output)

system which can be represented by a linear difference

equation such as: x(k + 1) = Ax(k) + Bu(k). Here x(k)

represents the value of state space vector of the system at time

instant k and u(k) represents the value of the control input

vector at time instant k. A,B are the system model parameters.

The cost function to minimize for this system is given as

follows:

𝐽 =
1

2
 [𝑥𝑇 𝑘 ∗ 𝑄 ∗ 𝑥 𝑘 + 𝑢𝑇 𝑘 ∗ 𝑅 ∗ 𝑢(𝑘)]∞

0

 (2)

Here Q, R are the matrices representing the relative

cost of control error and control effort respectively. Q must be

a positive semi definite matrix and R needs to be a positive

definite matrix. This condition ensures that the value of J will

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.149-169

158

be non-negative. R is relative weight of the control effort

which should not be neglected in the cost function, hence R

matrix need to be positive definite. The LQR algorithm

computes the value of controller gain using the values of

matrices Q,R and system model parameters A,B. However,

LQR needs the input of weighting matrices Q and R values

which ultimately affects the controller parameters. In this

work, we used the some simple techniques to set the values of

Q and R matrices.

3. Feedback Control Design for Optimal Control

Let us describe the proposed method for providing optimal

control to the applications running inside the virtual machines.

The solution is proposed for a single application hosted in a

virtualized environment. Figure 4.1 shows the testbed setup

for the proposed solution. We deployed the two-tier Web

application using two virtual machines located on two

different physical servers. The Apache server is running on

virtual machine VM1 which is hosted on physical Server 1.

MySQL server is running on virtual machine VM2 which is

hosted on physical Server 2. As described in earlier chapter,

this setup also contains the sensor in the form of a Muffin

proxy server running on VM1. The controller is running on

physical Server 1. The utilization of database server is very

low, hence we have not considered tuning of cap of

corresponding VM2. Random request URLs are generated

using a client machine running httperf load generator.

The performance metrics considered in this solution are

response time and throughput of the application. Hence the

state space of the system can be given by:

𝑥 =

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒
1

𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

As there is only one virtual machine whose cap needs to be

tuned, the control input vector is given by:

𝑢 =
𝐶𝑎𝑝
𝑣𝑚1

The system model is given by the equation: X(k + 1) =

AX(k) + Bu(k). The model parameters A,B can be computed

using a system identification process.

The proposed feedback control system for optimal control

is shown in the following diagram.

Figure 6 Architecture of Optimal Control using LQR

As shown in the Figure6.1, there is no reference input to the

system. The goal here is to set the value of cap such that the

cost function given in Equation 4.2 is minimized. Hence the

measured output here is the response time and throughput of

the application. These values are provided to the transducer

which in turn computes the exponential average of both the

metrics using the formula given by Equation 3.2 in Chapter 4.

These averaged values are then provided to LQR controller

which computes the value of cap to set in order to minimize

the cost function for the system which can be given as follows:

𝐽 =
1

2
 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇(𝑘)

1

𝑡ℎ𝑟𝑜𝑢𝑔 ℎ𝑝𝑢𝑡 (𝑘)
 ∗ 𝑄 ∗∞

0

 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑇(𝑘)1𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡(𝑘)+ 𝐶𝑎𝑝 𝑣𝑚1
𝑘∗𝑅∗𝐶𝑎𝑝𝑣𝑚1(𝑘) (3)

Where response T(k) represents the value of response time

at time instant k and throughput(k) is the value of throughput

of the application at time instant k. Note that instead of control

error, the -state space of the system represents the actual

values of output of the system. Also the control effort capvm1

is the absolute value of the control input and not the deviation

from some steady state value. Q needs to be 2 × 2 matrix and

R needs to be 1×1 matrix. We can see that this Equation 6.3

gives the effect similar to maximizing our example ratio 6.1.

Ratio=

(𝒄𝟏∗𝒕𝒉𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕)

 𝒄𝟐∗𝒓𝒆𝒔𝒑𝒐𝒏𝒔𝒆𝒕𝒊𝒎𝒆 + 𝒄𝟑∗𝒂𝒍𝒍𝒐𝒄𝒂𝒕𝒆𝒅−𝒄𝒑𝒖−𝒄𝒂𝒑𝒂𝒄𝒊𝒕𝒚

The control law used in this controller is given by:

𝑢 𝑘 = −𝐾 ∗ 𝑋(𝑘)

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.149-169

159

The value of feedback gain matrix K is computed using the

LQR algorithm. The algorithm takes the values of system

model parameters A,B and weighting factors of cost function

Q,R matrices as the input. The MATLAB [23] command dlqr

implements the LQR algorithm. We used this command to get

the value of K matrix. Hence for developing the feedback

control system for optimal control following steps need to be

followed:

1. Perform the system identification experiments to

construct the system model. This step gives us the A and B

matrices.

2. Assign the values to weighting matrices Q,R

according to desired tradeoff between CPU usage and the

application performance to be delivered.

3. Compute the value of feedback gain matrix K

using LQR algorithm. The first three steps can be done offline

whereas the fourth step is online.

4. Implement the LQR controller with the value of K

matrix computed in previous step.

Hence with these steps, the LQR controller can be

deployed in the host OS of physical Server 1.

V. EXPERIMENTAL SETUP

This section describes the Experimental setup

(testbed deployed) for carrying out the experiments. We

designed and deployed components in the testbed in a way so

as to resemble to real world scenario. For building the testbed,

we have used open source solution Xen3.0.3.

A. Components of Testbed

For demonstration of the work we have used two-tier

systems with apache web server at frontend and MySQL

database server connected at the backend. Apache server

hosted the two-tier Web application which has web and

database tiers. We used httperf for load generation. We have

used two instances of the same two-tier system to demonstrate

how we can deliver differential quality of service to each of

the application. We created four virtual machines by using

Xen. Two of the virtual machines are hosting one apache

server each and two other virtual machines are hosting one

MySQL server each. Fig 5.1 explains the Testbed for QoS

aware virtualized environment.

Following describes the hardware components of the

testbed and how the software components are deployed on the

hardware. The testbed setup is shown in the figure 7. Our

testbed consists of two machines each with following

configurations are used for hosting the servers.

• Server1: Intel(R) Xeon(TM) dual CPU 2.80GHz

processor, 2 GB main memory.

• Server2: AMD Athlon(tm) dual core processor

3.0GHz, 1 GB of main memory.

Figure 7. Testbed for QoS aware virtualized environment.

Generally data centers put same tiers of different

applications on the same physical server. We adopted this

design by putting virtual machines hosting the web tiers on

server1 and virtual machines hosting the database tiers on

server2. Apart from the above data center design, we have

used 2 client machines to emulate behavior of real workload

with the help of continuous load generation using httperf [47].

Requests are having exponential distribution. All of the

machines are running with linux2.6. All of the machines are

connected with 100Mbps Ethernet. we designed two

controllers each of which is running in the host OS on each of

the physical servers. Each of the virtual machine hosting the

web tier also hosts a http proxy named Muffin which acts as

sensor. Muffin simply forwards the requests coming from the

clients to the web server. We have modified the source code of

Muffin to measure the response time of the web server. This

proxy acting as sensor gives the response time measurement to

the controller running in the host OS. This controller also

communicates these response time values with other controller

running in the host OS on server2 hosting the virtual machines

corresponding to the database servers. The proxy Muffin is

written in java, whereas all the utilities required for extracting

the response time values from muffin log files, controller

design is done by coding in C and shells script.

Communication among the machines for exchange of the

values and parameters is done using sockets programming. For

deploying Web application, we installed apache web server,

php on the virtual machines hosting the web tier. Also we

installed MySQL on the virtual machines hosting the database

tiers.

Following diagram shows flow of a request coming

to a application1 running inside our testbed. As shown in last

figure of testbed, application1 has its web tier running inside

the vm1 and database tier running inside vm3. The virtual

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.149-169

160

machines vm1 and vm3 are running on two different physical

servers.

Figure 8. Response time measurement and flow of a request through the
testbed

B. Workload Description

The nature of the workload deployed in the virtual

Machines has an impact on the behavior of the QoS delivered.

The resource usage pattern of one VM affects the performance

of application running in other VMs. Hence we deployed Web

application which is two tier applications. We deployed the

two tiers in two separate virtual machines which are hosted on

two different physical machines which depicts the practical

scenario in the data-centers. This workload exercises different

IO tasks like querying database, flow of requests through

network as two tiers of a application are located in two

different virtual machines.

VI. PERFORMANCE EVALUATION

A. Execution Architecture of Optimal Control System using

LQR

Figure 9. Optimal Control System design Architecture

This section describes the he Execution Architecture

(testbed deployed) for carrying out the experiments. The

following diagram explains the architecture of Optimal

Control System using Linear Quadratic Regulator (LQR).

The Figure 9 explains Optimal Control System

architecture.

We carried out the system identification experiments on the

testbed described in Figure 11. The physical Server 1 has two

core CPU, hence the maximum cap of a virtual machine can

be set to 200. Here in the1se experiments, the cap of virtual

machine VM1 is varied between 10 to 190%. Each value of

cap is set for a period 20 cycles of 10 second duration each.

During this period, the values of response time and throughput

are monitored and recorded to the log files.

The plot in Figure 10 shows the results of this experiment.

Some observations can be made from this plot:

• The response time and throughput curves are linear in the

cap range of 10-110%. The response time values decrease

linearly whereas the throughput values increase linearly in this

region.

• The response time and throughput values remain almost

constant during the cap range of 120-180%.

• The response time and throughput degrade rapidly when

the cap value is below 50%.

Fig 10 System identification experiment results on Test bed for self tuning
optimal control

Using the measurements recorded in this experiment

we computed the values of system model parameters A,B

which are used in the system model

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.149-169

161

X(k+1) = A*X(k)+B*u(k).

The values obtained are: A = [0.9910 0.0501; 0.0987

0.5551] and B = [−0.0052; 0.0048]. Subsequently we need to

assign the values to the weighting matrices Q, R so that

controller parameters can be computed.

B. Performance Analysis of Optimal Control using LQR

The last step for designing the LQR controller

involves fixing the values of weighting matrices Q,R. This is

the most important step and it directly affects the controller

behavior. The values of Q,R represents the trade-off between

the application performance and the cpu usage. We choose the

matrix q as [2 0; 0 50] and matrix r as 2.

The following diagram explains the cost function for

optimal control in virtualized environment.

Figure 11. Cost function for self tuning optimal control in virtualized
environment-setting1

Let us call this set of values of Q and R as setting-1.

The plot in figure 7.3 shows the cost function curve against the

cap of virtual machine. For simplicity while plotting and

analyzing the graphs, all the cost function curves are scaled

down in the plots. The values plotted in this graph are

instantaneous values of the cost function and not the value of

actual cost function j which is given by equation 6.2 which

involves summation of all terms. The cost function, the

response time curve and the throughput are plotted on y-axis

against the values of cap of virtual machine vm1 on x-axis in

increasing order. It can be observed from this graph, that the

value of response time is very high for the initial part. Also the

throughput is very low in the same region. Hence the value of

cost function is also high in that region. As the application

performance is not good enough, the cost function has higher

value in this region. As the response time starts decreasing and

throughput starts increasing, the value of cost function also

goes down. In the region where the cap value is between 70 to

110% the cost function has the minimum cost. The cost

function curve rises after this region. This rise is due to the

fact that increasing the cap of virtual machine does not result

in significant improvement in performance. The cost function

curve correctly depicts the cost factor from client perspective.

Hence the region of cap around 70 to 110% is the one with the

minimum cost for the client application. This is the optimal

region which satisfies the desired properties we stated in the

problem statement. The feedback gain matrix K is computed

using the system model parameters and a few initial iterations

the response time and throughput value settles down.

Irrespective of starting value of cap, controller sets the cap to

its optimal value in a few iterations. In this experiment the

initial value of cap was 80. Weighting matrices are Q, R. The

computed gain matrix k is [-1.9920 -0.1423]. We implemented

the LQR controller with this value of feedback control gain

and performed the experiments to evaluate the controller. The

graph in figure 12 shows the values of response time and

throughput delivered by the application.

Figure 12. Performance evaluation of self tuning optimal control in

virtualized environment (response time throughput delivered by application)-

setting1

The graph also shows the plot of cap of vm1. The iterations

are plotted on the x-axis whereas the application performance

metrics and the cap is plotted on y-axis. It can be observed

from the graph that after a few initial iterations the response

time and throughput value settles down. Irrespective of

starting value of cap, controller sets the cap to its optimal

value in a few iterations. In this experiment the initial value of

cap was 80. We may verify whether the state of the system is

optimal by comparing the controller results from figure 12

with cost function curve in figure 11. As we can see that the

cost function has the minimal value in the region of cap values

between 70 to 110%. The optimal value of the cap set using

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.149-169

162

the LQR controller is 103-105% which is under the minimal

cost range. It can also be observed that the response time

values delivered are around 52-55msec which is the same

range of values we observed in the optimal region in the figure

7.4. Throughput is also observed to be around 65-67 req/10sec

which is the same range of values delivered in the optimal

region in the figure 7.3. This verifies that LQR controller is

able to drive the system near to the optimal state. We

introduced a disturbance task on the virtual machine vm1

where the application is running. The disturbance task is a

cpu-intensive task which alternately executes some

computation and sleeps. As we can see from the graph, the

disturbance task was introduced around the 150th iteration.

Due to this disturbance task, the value of response time

increased and the throughput decreased. The controller reacts

to this change in the system and the value of cap is increased

due to increased cpu demand. However, due to the presence of

disturbance the application performance does not remain same

as its previous value. The system enters into a new state where

the values of cap and application performance are different

from the ones before the disturbance. As we can see the graph

in figure 12, the disturbance task is removed after 300th

iteration and the cap value is restored to its previous optimal

value. The application performance metrics also attain the

previous optimal values.

C. Sensitivity Study of Optimal Control

The controller behavior depends on number of factors

such as the values of weighting factor, incoming load on the

application. A change in any such factor may cause the change

in value of optimal cap set by the controller. Here we carry out

experiments with different settings to find the effect of change

in these factors. We also compare the controller results with

the cost function curves for each setting to verify whether the

controller has been able to keep the system near optimal

region or not. In this work, we considered weighting factors

and load levels as the parameters to carry out the sensitivity

analysis.

1. Sensitivity of optimal controller to weighting

factors of cost function

As we have discussed in earlier sections, the value of

cost function and ultimately the controller parameters are

sensitive to the values of Q, R matrices. To gain some insight

into the cost function value, we have plotted values of

individual terms in the cost function. There are three terms

involved in cost function given in Equation 4.2, which are the

response time, throughput and cap respectively. For simplicity,

we kept values of elements Q12 and Q21 of Q matrix to 0.

Following are the three terms:

• Response time term: Q11 * response time2

• Throughput term: 𝑄22 ∗ (
1

𝑡ℎ𝑟𝑜𝑢𝑔 ℎ𝑝𝑢𝑡
)2

• Cap term: R *cap2

Figure 13. Decomposition of cost function for self tuning optimal control in

virtualized environment- Setting1

The graph in Figure 13 shows the plots of these three

terms. The response time term, the throughput term and the

cap term are plotted on Y-axis against the cap on the X-axis. It

can be observed from the graph that in the cap range of 10-

50% the significant part of cost comes from the response time

and throughput terms. In the cap region of 60-100% all the

three terms equally contribute to the value of cost function.

For the cap values above 110%, the cap term is major part of

the cost function. These plots of individual terms have these

specific curves due to the values of Q,R matrices. These plots

and as well as the total cost function plot show sensitivity to

changes in Q,R matrices. Let us go through some different

sets of Q, R matrices and their effect on the cost function

curve and the overall controller behavior. We will now see the

effect of change in the value of cap term by changing value of

R from 2 in setting-1 to 10 in setting-2. For observing the

effect of change in response term, we change the value of Q11

from 2 in setting-1 to 0.5 in setting-3. Table 2 lists out these

three settings. Let us now go through each of these settings.
Experiment settings for studying the sensitivity of controller to weighting

factors described in table2

Setting

No

Q Matrix R K Expected

Optimal Cap

region

1 [2 0; 0 50] 2 [-1.9920

-0.1423]

70-110%

2 [2 0; 0 50] 10 [-1.2379

-0.1224]

50-70%

3 [0.5 0; 0 50] 2 [-1.7416

-0.1145]

60-90%

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.149-169

163

In the setting-2, we changed the values of Q and R matrices

as Q = [2 0; 0 50] and R = 10. The new value of feedback

control gain K matrix is [−1.2379 − 0.1224]. The graph in

Figure 7.7 shows the cost function curve, along with plots of

response time and throughput values against the cap values

plotted on the X-axis. It can be observed from the graph that

the cost function has minimal values around the region of cap

values 50-70%. We evaluated the system performance with

the new controller parameters. The graph in Figure 15 shows

the plots of application performance metrics and the value of

cap set by the controller against the iterations on the X-axis. It

can be observed from the graph that the cap value is settled

around the value of 82% which is slightly higher than the

expected minimal cost region of 50-70%.

In setting-3 we changed the values of Q, R matrices with Q

= [0.5 0; 0 50] and R = 2. The new value of feedback control

gain K matrix is [−1.7416 − 0.1145]. The graph in Figure 7.9

shows the cost function curve, along with plots of response

time and throughput values against the cap values plotted on

the X-axis. It can be observed from the graph that the cost

function has the minimal values in the cap region of 60-90%.

The graph in Figure 7.10 shows the plots of application

performance metrics and the values of cap set by the controller

against the iterations on X-axis. It can be observed from the

graph that the cap value is settled around the value of 100%

which is slightly higher than the expected minimal value

region of 60-90%.

Figure 14. Cost function for self tuning optimal control in virtualized
environment - setting-2

Figure 15. Performance evaluation of Self tuning Optimal control in

virtualized environment : setting-2

Figure 16. Cost function for self tuning optimal control in virtualized

environment: setting-3

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.149-169

164

Figure 17. Performance evaluation of self tuning optimal control in virtualized
environment: setting-3

The following Table 3 shows the summary of the different

settings of Q and R matrices and the sensitivity of application

performance to these settings. Let us discuss these different

settings and their effect on controller behavior.

Performance evaluation of optimal controller with different settings of

weighting factors explained in table3

Set

tin

g

No

Q

Matrix

R K Expected

Optimal

Cap

region

Optimal

Cap

Value

Set in

Experim

ents

1 [2 0; 0

50]

2 [-1.9920 -

0.1423]

70-

110%

107-

108%

2 [2 0; 0

50]

10 [-1.2379 -

0.1224]

50-70% 72-

74%

3 [0.5 0;

0 50]

2 [-1.7416 -

0.1145]

60-90% 100%

In the setting-2, the value of R is increased to 10 from 2 in

the setting-1. This caused the cap term to become more

significant. Hence the cost function value started to rise just

after the value of cap reached 70%. In setting-1, the cost

function was less sensitive to the cap value compared to

setting-2. Hence cost function had minimal value in higher cap

region which is 70-110%. In setting-3, the value of parameter

Q11 associated with the response time was decreased from 2

in setting-1 to 0.5. Hence now the cost function became lesser

sensitive to the response time and the other two terms

dominated over the response time term. This resulted in new

optimal region where the response time is slightly poor than its

value in setting-1.

 The choice of values of weighting factors Q and R has an

impact on controller behavior. As the weighting factors Q and

R matrices are relative to each other, modifying the value of

one of the elements has the effect on all other terms. To

understand the effect of individual terms in these matrices it is

important to perform the experiments with different settings of

these matrices. The starting point for choosing the values for

Q and R matrices can be based on two things -

• The possible range of values of the state space vector

elements and of the control input.

• The desired trade-off between the CPU usage and the

application performance. Among these two things, the desired

trade-off needs to be set by the administrator of the system.

However it can be difficult to quantify this trade off. Hence

some experimentation is needed to come up with the

quantified trade-off. Also the experimentation is needed to

know the range of the state space elements.

2 Sensitivity of optimal controller to different levels of load

In this section, we will discuss the experiments carried out

to study the effect of different levels of load on optimal

controller behavior. We carried out the experiments with four

different levels of load. The experiment setup is same here as

described in previous section. We are using setting-1 of the Q

and R matrices in which the values of these matrices are given

by Q = [2 0; 0 50] and R = 2. The value of feedback gain

matrix K is K = [−1.9920 − 0.1423]. Table 4.3 gives the

summary of these experiments.

The first entry represents the experiment carried out in

setting-1 in previous section. The rest of the entries belong to

different load levels such as 85 req/10sec, 69 req/10sec and 25

req/10sec. We also carried out experiments without any

controller running to find out optimal cap value for each load

level. We applied the cost function to the measured values of

each experiment and plotted the values. The optimal cap value

obtained from these cost function curves is used to verify

whether the controller is able to set cap to the optimal value

corresponding to each load level.

 Performance evaluation of controller with different levels of load explained

in table4

Setti

ng

No

Average

load

(Throughput

in req/sec)

Average

Response

time

(msec)

Expected

Optimal

Cap

Average

Cap Set By

Controller

1 73.68 52.07 70-110% 106.47

2 85 55.15 70-110% 112.42

3 68.90 50.72 50-100% 103.96

4 25 46.55 70-100% 99.02

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.149-169

165

The setting-1 has already been covered in last section.

We observed that the expected optimal cap value was 70-

110% and the average cap value set by the controller was

106.47%. In case of setting-2 the load has been increased to 85

req/10sec. It can be observed from the graph in Figure 18 that

the cost function has minimal value in the region of 70-110%

cap. The graph in Figure 19 shows the cap values set by the

controller when the load of 85 req/10sec is applied to the

system. The average value of cap set by the controller is

112.42%. In setting-3, the load on the application is reduced to

65 req/10sec. The optimal cap value in this scenario is in the

range of 50-100% whereas the average value of cap set by the

controller is 103.96%. The graphs in Figures 20 and 21 shows

the plots of the values observed with the setting-3. We reduced

the load to 25 req/10sec in setting-4. The offline experiments

show that the optimal cap value is in the range of 70-100%.

The average value of cap set by the controller is 99.09%. The

graphs in Figures 22 and 23 shows the plots for cost function

and controller evaluation for setting-4. The cap values tuned

by the controller in each of these setting are very close to the

expected optimal values in the respective case. At each load

level, the controller is able to drive to the system near to the

optimal state. It can also be observed that at each load level,

for the given optimal cap value the average response time for

the application is also different. The average response time

values are in the range of 55 to 46 msec. Hence from all these

observations we can conclude that this feedback control

system is able adjust the cap of the virtual machine near to its

expected optimal value even with the changes in the load

levels.

Figure 18. Cost function for optimal control in virtualized environment:

setting-2

Figure 19. Performance evaluation of Optimal control in virtualized

environment : setting-2

Figure 20. Cost function for optimal control in virtualized environment:

setting-3

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.149-169

166

Figure 21 Performance evaluation of Optimal control in virtualized

environment:
setting-3

Figure 22. Cost function for optimal control in virtualized environment :

setting-4

Figure 23 Performance evaluation of Optimal control in virtualized

environment : setting-4

VII. RESEARCH HIGHLIGHTS

The main goals of our work are

 To monitor various performances issues in

Server Virtualization.

 To Study the optimization process and

various issues in analyzing the performance of Server

Virtualization.

 To identify various parameters and issues

for evaluating performance of virtualization in cloud

computing environment in terms of CPU, memory

performances.

 To study various issues to understand

effectiveness of existing Quality of Service (QoS) controls on

resource usage and thereby application performance.

 To design and implement a controller that

optimizes the performance of applications running on guest

domains.

 The goal is to dynamically compute the CPU

shares for the virtual machine in such a way that the

application through put is maximized, while keeping the

response time as low as possible with minimum possible

allocation of CPU share for the guest domain.

 To maintain the QoS of the applications

running inside the VMs around some desired value. And also

 To minimize the resource usage by the

application running inside the VMs while maximizing the

application performance. This goal can also be called as

optimal control.

 The goal is to consolidate the Data Center

and increase its performance.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.149-169

167

VIII. CONCLUSION

In this paper, we described the problem of delivering

QoS to the applications running inside the virtualized

environment. Our work focused on devising a mechanism for

computing the share of the resources to be allocated to each

virtual machine in such a way that desired QoS is delivered to

the applications running inside virtual machines. We designed

the feedback control system for virtualized environment. We

designed and implemented controller, sensor, and capacity

analyzer modules as a part of the control system. Sensors

measure the QoS delivered by the applications. Controller uses

these QoS values to decide new values of resource

management parameters like cap of a virtual machine.

Capacity analyzer verifies whether the resource demands of all

applications can be fulfilled with the given physical server or

not. We evaluated the performance of the proposed control

system by deploying two tier applications in the virtualized

environment test bed. We carried out the experiments with

desired response time of the application as reference input and

cap of the virtual machines in which application resides as the

control input. We implemented the sensor for carrying out

response time measurements at the servers. The results of the

experiments shows that control system is able to set the values

of cap accurately even in the presence of disturbance.

REFERENCES

[1] Anton Belglazov, Jemal Abawajy and Rajakumar Buyya,
“Energy-aware resource allocation heuristics for efficient
management of data centers for Cloud computing”,
International Journal of Future Generation Computer
Systems”, Elsevier publications, 755-768, 2012.

[2] Abirami S.P. and Shalini Ramanathan, ” Linear Scheduling
Strategy for Resource Allocation in Cloud Environment
“,International Journal on Cloud Computing: Services and
Architecture(IJCCSA),Vol.2, No.1,February 2012.

[3] Abhinav Kamra, Vishal Misra, and Erich M. Nahum.
Yaksha: “A self-tuning controller for managing the
performance of 3-tiered web sites”. Proceedings of 12th
International Workshop on Quality of Service(IWQoS),
2004.

[4] Andrew J. Younge, Robert Henschel, James T. Brown,
Gregor von Laszewski, Judy Qiu, Geoffrey C. Fox,
”Analysis of Virtualization Technologies for High
Performance Computing Environments”, Pervasive
Technology Institute, Indiana University 2729 E 10th St.,
Bloomington, IN
47408,U.S.A.ajyounge,henschel,jatbrown,gvonlasz,xqiu,gcf
}@indiana.edu. Proceedings of the IEEE 4th International
Conference on Cloud Computing (CLOUD. 9-16.

[5] Andrea Arcangeli, Izik Eidus, Chris Wright, ” Increasing
memory density by using KSM”, Red Hat, Inc.
aarcange@redhat.com, ieidus@redhat.com,
chrisw@redhat.com.

[6] Anton Beloglazov, Jemal Abawajy, Rajkumar Buyya,
”Energy–aware resource allocation heuristics for efficient
management of Data Centers for Cloud Computing”,
Future Beneration Computer Systems(2012), Elsevier, also
available at Science Direct, Sponsored by Cloud
Computing and Distributed Systems(CLOUDS).

[7] Aravind Menon, Jose Renato, Yoshio Turner,G. (John)
Janakiraman, Palo Alto john,Willy Zwaenepoel, ”
Diagnosing Performance Overheads in the Andrzej Kochut
and Kirk Beaty. On strategies for dynamic resource
management in virtualized server environments”.
MASCOTS 2007: IEEE / ACM International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), October 2007.

[8] “Xen Virtual Machine Environment”, VEE’05, June 11-12,
2005, Chicago, Illinois, USA. Copyright2005ACM1-59593-
047- 7/05/0006...$5.00.

[9] B.Thirumala Rao, N.V.Sridevi, V.Krishna Reddy,
L.S.S.Reddy, ”Performance Issues of Heterogeneous
Hadoop Clusters in Cloud Computing “, Global Journal of
Computer Science and Technology Volume XI Issue VIII
May 2011 .

[10] Bao Rong Chang, Hsiu-Fen Tsai, Chi-Ming Chen, ”
Evaluation of Virtual Machine Performance and Virtualized
Consolidation Ratio in Cloud Computing System”, Journal
of Information Hiding and Multimedia Signal Processing c
⃝2013 ISSN 2073-4212 Ubiquitous International Volume 4,
Number 3, July 2013.

[11] Bhukya, D.P. ; Ramachandram, S. ; Reeta Sony, A.L ,“IO
Performance Prediction in Consolidated Virtualized
Environments”.

[12] Carl A. Waldspurger, ” Memory Resource Management in
VMware ESX Server”, VMware, Inc. Palo Alto, CA 94304
USA carl@vmware.com, Proceedings of the 5th
Symposium on Operating Systems Design and
Implementation.

[13] Diego Ongaro Alan L. Cox Scott Rixner, “ Scheduling I/O
in Virtual Machine Monitors”, VEE’08, March 5–7, 2008,
Seattle, Washington, USA.

[14] Diogo M. F. Mattos, Lyno Henrique G. Ferraz, ” Virtual
Network Performance Evaluation for Future Internet
Architectures” JOURNAL OF EMERGING
TECHNOLOGIES IN WEB INTELLIGENCE, VOL. 4, NO.
4, NOVEMBER 2012.”

[15] Diego Ongaro Alan L. Cox Scott Rixner, ” Scheduling I/O in
Virtual Machine Monitors”, VEE’08, March 5–7, 2008,
Seattle, Washington, USA. Copyright c 2008 ACM 978-1-
59593-796-4/08/03...$5.00.

[16] Diwaker Gupta1, Ludmila Cherkasova, Rob Gardner, Amin
Vahdat1,” Enforcing Performance Isolation Across Virtual
Machines in Xen”, Enterprise Software and Systems
Laboratory HP Laboratories Palo Alto HPL-2006-77 May 4,
2006*.

[17] Diwaker Gupta, Ludmila Cherkasova, Rob Gardner, and
Amin Vahdat. “Enforcing performance isolation across

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Bhukya,%20D.P..QT.&searchWithin=p_Author_Ids:37846619800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ramachandram,%20S..QT.&searchWithin=p_Author_Ids:37601690400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Reeta%20Sony,%20A.L..QT.&newsearch=true
mailto:carl@vmware.com

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.149-169

168

virtual machines in xen”. Middleware 2006: Proceedings of
ACM/IFIP/USENIX 7th International Middleware
Conference, 2006.

[18] Himanshu Raj, Ripal Nathuji, ” Resource Management for
Isolation Enhanced Cloud Services”, CCSW’09, November
13, 2009, Chicago, Illinois, USA. Copyright 2009 ACM 978-
1-60558-784-4/09/11 ...$10.00.

[19] Horacio GonAlez Velez, Maryam Kontagora, ”Performance
evaluation of mapreduce using full virtualization on a
departmental cloud”, Int. J. Appl. Math. Comput. Sci.,
2011, Vol. 21, No. 2, 275–284 DOI: 10.2478/v10006-011-
0020-3(AMCS).

[20] Indrani Paul, Sudhakar Yalamanchili, Lizy K. John, ”
Performance Impact of Virtual Machine Placement in a
Datacenter”.

[21] Leslie, I.M. McAuley, D. Black, R. Roscoe, T. Barham, P.
Evers, D.Fairbairns, and R. Hyden.”Design and
implementation of os to support distributed multimedia
applications (nemesis)”. IEEE Journal of Selected Areas in
Communications, 1996.

[22] Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat.
“When virtual is harder than real: Resource allocation
challenges in virtual machine based it environments.
Technical report”, HP Laboratories Palo Alto., February
2007.

[23] nikolaus huber, marcel von quast, Michael Hauck, Samuel
Kounev, ”Evaluating and modeling virtualization
performance overhead for cloud environments”, CLOSER
2011 - Proceedings of the 1st International Conference on
Cloud Computing and Services Science, Noordwijkerhout,
Netherlands, 7-9 May, 2011. SciTePress 2011 ISBN 978-
989-8425-52-2.

[24] Nikolaus Huber, Marcel von Quast, Michael Hauck, Samuel
Kounev, ” Evaluating and modeling virtualization
Performance overhead for cloud environments”, Journal of

Information Hiding and Multimedia Signal Processing c ⃝
2013 ISSN 2073-4212, Ubiquitous International Volume
4, Number 3, July 2013.

[25] Paul Barham∗, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebauer†, Ian Pratt, Andrew
Warfield, “Xen and the Art of Virtualization”, SOSP’03,
October 19–22, 2003, Bolton Landing, New York, USA.
Copyright 2003 ACM 1-58113-757-5/03/0010 ...$5.00.

[26] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebauery, Ian Pratt, and
AndrewWareld. “Xen and the art of virtualization.
nineteenth ACM symposium on Operating systems
principles”, 2003.

[27] Pradeep Padala, Xiaoyun Zhu, ZhikuiWang, Sharad
Singhal, and Kang G. Shin. “Performance evaluation of
virtualization technologies for server consolidation”.
Technical report, HP Laboratories Palo Alto., April 2007.

[28] Qingling Wang, Carlos A. Varela , “Impact of Cloud
Computing Virtualization Strategies on Workloads
’Performance”, Department of Computer Science

Rensselaer Polytechnic Institute, Troy, NY, USA
http://wcl.cs.rpi.edu/ {wangq9, cvarela}@cs.rpi.edu,
UCC, page 130-137. IEEE Computer Society, (2011).

[29] Rahul Gundecha. “Measurement-based evaluation of
virtualization platforms”. Technical report, Indian Institute of
Technology, Bombay, april 2007.

[30] Ratul K. Majumdar, Krithi Ramamritham, Ravi N. Banavar,
and Kannan M. Moudgalya. “Disseminating dynamic data
with qos guarantee in a wide area network: A practical
control theoretic approach”. 10th IEEE Real-Time and
Embedded Technology and Applications Symposium,
2004.

[31] Sajib Kundu, Raju Rangaswami, Kaushik Dutta, Ming
Zhao, “ Application Performance Modeling in a Virtualized
Environment”, School of Computing & Information
Sciences, College of Business Administration Florida
International University {skund001, raju}@cs.fiu.edu
kaushik.dutta@business.fiu.edu,zhaom@cs.fiu.edu,

[32] Shicong Meng, Ling Liu, “Monitoring-as-a-Service in The
Cloud”, ICPE’13, April 21–24, 2013, Prague, Czech
Republic. ACM 978-1-4503-1636-1/13/04.

[33] S. Keshav. “A control-theoretic approach to flow control”.
Proceedings of the ACM SigComm, 1991.

[34] Sriram Govindan, Jeonghwan Choi, Arjun R. Nath, Amitayu
Das, ” Xen and Co.: Communication-Aware CPU
Management in Consolidated”.

[35] “Xen-Based Hosting Platforms”, 0018-9340/09/$25.00 2009
IEEE Published by the IEEE Computer Society.

[36] Sujay Parekh, Dawn M. Tilbury, Joseph L. Hellerstein, and
Yixin Diao. “Feedback control of computing systems”. John
Wiley and Sons, Inc, 2004.

[37] Tarek Abdelzaher, Kang G. Shin, and Nina Bhatti. “User-
level qos-adaptive resource management in server end-
systems”, IEEE Transactions on Computers, 52.

[38] Xiao Zhang Eric Tune Robert Hagmann Rohit Jnagal Vrigo
Gokhale John Wilkes,” CPI2: CPU performance isolation for
shared compute clusters”, Google, Inc, 2013 ACM 978-1-
4503-1994-2/13/04. $15.00.

[39] .Xue Liu, Xiaoyun Zhu, Pradeep Padala, ZhikuiWang, and
Sharad Singhal. “Optimal multivariate control for
differentiated services on a shared hosting platform”.
Proceedings of the 46th IEEE Conference on Decision and
Control (CDC’07), December 2007.

[40] Ying Lu, Avneesh Saxena, and Tarek F. Abdelzaher.
“Differentiated caching services; a control-theoretical
approach”. International Conference on Distributed
Computing Systems, 2001.

[41] Zongjian He, Guanqing Liang, ” Research and Evaluation
of Network Virtualization in Cloud Computing
environment”, IEEE Third International Conference on
Networking and Distributed Computing (ICNDC), 2012 at
Hangzhou,40-45, ISSN :2165-5006,Print ISBN:978-1-4673-
2858-6,INSPEC Accession Number:13263829,Digital
Object Identifier :10.1109/ICNDC.2012.18.

[42] ZhikuiWang, Xiaoyun Zhu, Pradeep Padala, and Sharad
Singhal. “Capacity and performance overhead in dynamic

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6383190
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6383190
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6383190
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6383190
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6383190
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6383190

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.12, December 2015 DOI:10.15693/ijaist/2015.v4i12.149-169

169

resource allocation to virtual containers”. Technical report,
HP Laboratories Palo Alto., April 2007.

[43] “Application Performance Management in a Virtualized
Environment Growing “, WHITE PAPER: APPLICATION
PERFORMANCE MANAGEMENT.

[44] ” Better virtualization of XenApp and XenDesktop with
XenServer”, XenApp and XenDesktop with XenServer
White Paper.

[45] “Experimental Evaluation of the Performance-Influencing
Factors of Virtualized Storage Systems”,
Computational Intelligence and Computing Research
(ICCIC), 2010 IEEE International Conference on Digital
Object Identifier: 10.1109/ICCIC.2010.5705753, Publication
Year: 2010 , Page(s): 1 - 4

[46] VMware site. http://www.vmware.com/.
[47] Official Xen project site. http:/

/www.cl.cam.ac.uk/research/srg/netos/xen/.
[48] httperf. http://www.hpl.hp.com/research/linux/httperf/.
[49] Website of Muffin proxy server. http://muffin.doit.org.

Authors Profile

Vedula Venkateswara Rao is a Ph.D

Candidate in the Department of

Computer Science Engineering at Gitam

Institute of Technology, Gitam

University, Visakhapatnam, and Andhra

Pradesh, India. He received Masters

Degree in Computer Science

Engineering from Jawaharlal Nehru Technological University

Kakinada, Masters Degree In Information Technology from

Punjabi University, Patiayala, India. His research interests

include Cloud Computing and Distributed Systems, Data

Mining, Big Data and Image Processing. He published several

papers in International conferences and journals.

Dr. Mandapati Venkateswara Rao is

Professor in Department of Information

Technology at Gitam Institute of

Technology, Gitam University, and

Visakhapatnam, India. He Has received

M.Tech in CST and PhD in Robotics

from Andhra University. His Research

Interests includes Robotics, Cloud Computing and Image

processing. He published several papers in International

conferences and journals.

.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5701573
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5701573
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5701573
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5701573
http://dx.doi.org/10.1109/ICCIC.2010.5705753

