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   Abstract - A novel technology is used to design and 

implement the Non-binary iterative codes are robust to 

different channel losses. However, based on the existing EMS 

decoding algorithms, the decoder design and 

implementations are very expensive because of their 

excessive computational density and memory usage. Based 

on the Simplified Min-Sum algorithm (SMSA), we present a 

proposed method for the check node processing. The 

simulation results demonstrate and analysis the bit error rate 

(BER), block error rate (BLER) over the signal to noise ratio 

(SNR) in the channel. The proposed system design and 

implementation using cadence encounter simulator. 

Furthermore, the proposed reduced design complexity issues 

and its provide significant savings on hardware, so it 

produces a good performance to reduce the bit error rate. 

 

Keywords - Low-density parity-check (LDPC) codes, non-

binary codes, iterative decoding, extended min-sum algorithm. 

 

I.INTRODUCTION 

     

Binary low-density parity-check (LDPC) codes, 

discovered by Gallager in 1962 [1], were rediscovered and 

shown to approach Shannon capacity in the late 1990s [2]. 

Since their rediscovery, a great deal of research has been 

conducted in the study of code construction methods 

decoding techniques, and performance analysis. With 

hardware-efficient decoding algorithms such as the min-

sum algorithm [3], practical decoders can be implemented 

for effective error-control. Therefore, binary LDPC codes 

have been considered for a wide range of applications 

such as satellite broadcasting, wireless communications, 

optical communications, and high-density storage systems  

As the extension of the binary LDPC codes over the 

Galois field of order q, non-binary LDPC (NB-LDPC) 

codes, also known as q-ary LDPC codes, were first 

investigated by Davey and MacKay in 1998 [4].  

 They extended the sum-product algorithm (SPA) 

for binary LDPC codes to decode q-ary LDPC codes and 

referred to this extension as the q-ary SPA (QSPA). Based 

on the fast Fourier transform (FFT), they devised an 

equivalent realization called FFT-QSPA to reduce the 

computational complexity of QSPA for codes with q as a 

power of 2 [4]. With good construction methods [5]–[9], 

NB-LDPC codes decoded with the FFT-QSPA outperform 

Reed-Solomon codes decoded with the algebraic soft-

decision Koetter-Vardy algorithm [10]. As a class of 

capacity approaching codes, NB-LDPC codes are capable 

of correcting symbol-wise errors and have recently been 

actively studied by numerous researchers. However, 

despite the excellent error performance of NB-LDPC 

codes, very little research contribution has been made for 

VLSI decoder implementations due to the lack of 

hardware-efficient decoding algorithms.  

 Even though the FFT-QSPA significantly reduces 

the number of computations for the QSPA, its complexity 

is still too high for practical applications, since it 

incorporates a great number of multiplications in 

probability domain for both check node (CN) and variable 

node (VN) processing. Thus logarithmic domain 

approaches were developed to approximate the QSPA, 

such as the extended min-sum algorithm (EMSA), which 

applies message truncation and sorting to further reduce 

complexity and memory requirements [11], [12]. The 

second widely used algorithm is the min-max algorithm 

(MMA) [13], which replaces the sum operations in the CN 

processing by max operations. With an optimal scaling or 

offset factor, the EMSA and MMA can cause less than 0.2 

dB performance loss in terms of signal-to-noise ratio 

(SNR) compared to the QSPA.  

 However, implementing the EMSA and MMA 

still requires excessive silicon area, making the decoder 

considerably expensive for practical designs [14]–[17]. 

Besides the QSPA and its approximations, two reliability-

based algorithms were proposed towards much lower 

complexity based on the concept of simple orthogonal 

check-sums used in the one-step majority-logic decoding 

[18]. Nevertheless, both algorithms incur at least 0.8 dB of 

SNR loss compared to the FFT-QSPA. Moreover, they are 

effective for decoding only when the parity-check matrix 

has a relatively large column weight. Consequently, the 

existing decoding algorithms are either too costly to 

implement or only applicable to limited code classes at 

cost of huge performance degradation. Therefore, we 

propose a reduced-complexity decoding algorithm, called 

the simplified min-sum algorithm (SMSA), which is 

derived from our analysis of the EMSA based on the 

combinatorial optimization. Compared to the QSPA, the 

SMSA shows small SNR loss, which is similar to that of 

the EMSA and MMA. Regarding the complexity of the 
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CN processing, the SMSA saves around 60% to 70% of 

computations compared to the EMSA. Also, the SMSA 

provides an exceptional saving of memory usage in the 

decoder design. According to our simulation results and 

complexity estimation, this decoding algorithm achieves a 

favorable tradeoff between error performance and 

implementation cost.  

 The rest of the paper is organized as follows. The 

NB-LDPC code and EMSA decoding are reviewed in 

Section II. The SMSA is derived and developed in Section 

III. The error performance simulation results are 

summarized in Section IV. In Section V, the SMSA is 

compared with the EMSA in terms of complexity and 

memory usage. At last, Section VI concludes this paper. 

II. NB-LDPC CODES AND ITERATIVE DECODING  

 

 Let GF(q) denote a finite field of q elements with 

addition and multiplication. We will focus on the field 

with characteristic 2, i.e., q = 2
p
. In such a field, each 

element has a binary representation, which is a vector of p 

bits and can be translated to a decimal number. Thus we 

label the elements in GF(2
p
) as {0,1,2,….2

p
-1}. An (n,r) 

q-ary LDPC code C is given by the null space of an m x n 

sparse parity-check matrix H = [hi,j] over GF(q), with the 

dimension r. 

 The parity-check matrix H can be represented 

graphical by a Tanner graph, which is a bipartite graph 

with two disjoint variable node (VN) and check node 

(CN) classes. The j
th

  VN represents the j
th

 column of H, 

which is associated with the j
th

 symbol of the q-ary 

codeword The i
th

 CN represents its i
th

 row, i.e., the i
th

 q-

ary parity check of H. The j
th

 VN and i
th

 CN are connected 

by an edge if hi,j 6 = 0. This implies that the j
th

 code 

symbol is checked by the i
th

 parity check. Thus for 0 <i < 

m and 0< j < n, we define Ni = {j : 0  ≤ j<n, h=i;j hij ≠ 0}, 

and Mj = {i : 0 ≤  i<n, hij ≤0}. The size of Ni is referred to 

as the CN degree of the i
-th

 CN, denoted as |Ni.|The size of 

Mj is referred to as the VN degree of the j
th

 VN, denoted 

as|Mj|. If both VN and CN degrees are invariable, letting 

dv = |Mj|. and dc=|Ni.|, such a codeis called a (dv, dc)-

regular code. Otherwise it is an irregular code.  

 Similarly as binary LDPC codes, q-ary LDPC 

codes can be decoded iteratively by the message passing 

algorithm, in which messages are passed through the 

edges between the CNs and VNs. In the QSPA, EMSA, 

and MMA, a message is a vector composed of q sub-

messages, or simply say, entries.Let ʎj=  [ʎj   (0),ʎj 

(1)…..ʎj(q-1) ]be the a priori information of the j -th code 

symbol from the channel. Assuming that Xj is the j 
-th

 

code symbol, the d
-th

 sub-message of ʎj is a log-likelihood 

reliability (LLR) defined as ʎj (d) = log(Prob(Xj=zj 

)/Prob(Xj=d)). Zj is the most likely (ML) symbol for , Xj 

i.e., zj = argmaxd€GF(q) Prob(Xj = d), and z = [zj]j =1…n The 

smaller  ʎj (d) is, the more likely xj = d is. Let  αi,j (d) and 

βij be the VN-to-CN (V2C) and CN-to-VN (C2V) soft 

messages between the i
-th

 CN and j
-th

 VN respectively. For 

all d€GF(q), the d-th entry of αi,j (d), denoted as  αi,j (d), is 

the logarithmic reliability of d from the VN perspective is 

the symbol with the smallest reliability, i.e., the ML 

symbol of the V2C message. With xi,j = xi,j* hi,j  we let  αi,j 

(d)= log(Prob(xi,j= αi,j )/Prob(xi,j =d)) and αi,j (αi,j) = 0.bi,j 

and βi,j (d) are defined from the CN perspective similarly.  

III. EXTENDED MIN-SUM ALGORITHM 

Initialization: Set z j = arg mind€ GF(q) ʎj (d). For all ij with 

hi,j ≠ 0, set  αi,j (hi,j*d) = ʎj (d). Set k = 0. 

Step 1) Parity check: Compute the syndrome z*H
T
 If z*H

T 

= 0, stop decoding and output z as the decoded codeword; 

otherwise go to Step 2. 

Step 2) If K =kmax , stop decoding and declare a decoding 

failure; otherwise, go to Step 3. 

Step 3) CN processing: Let the configurations £i(xi,j=d) be 

the sequence [αi,j]j €Ni such that ∑j j €Ni xi,j=d and x i;j = d. 

With a preset scaling factor 0 < c ≤ 1, compute the C2V 

messages by  

1 1

, 1

, , ,( )
\

( ) . min ( )
i i j

i

i j i j i jL x d
j N j

d c x 




 
      (1) 

Step 4) VN processing: k←k + 1. Compute V2C messages 

in two steps. First compute the primitive messages by 

  1 1

1

, j i, j , ,
\

h ( ) ( )

j

i j i j i j
i i

d d h d  


   

          (2) 

Step 5) Message normalization: Obtain V2C messages by 

normalizing with respect to the ML symbol 

^

,,
( )

arg min ( )i ji j
d GF q

d 



             (3) 

^ ^

, ,, ,( ) ( ) ( ( ))i j i ji j i jd d d    
          (4) 

Step 6) Tentative Decisions: 
^

, ,( ) ( ) ( )
i

j j i j i jd d h d  


  
          (5) 

^

,
( )

min ( )i jj
d GF q

Z d



                         (6) 

 

IV.THE SIMPLIFIED MIN-SUM ALGORITHM 

 

Initialization: Set zj = arg mindεGF(q)λj(d). For all i, j with hi, 

j ≠ 0, set ai, j = hi, j x zj  and )()( jjijij zh 




 set k=0. 
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Step 1) and 2) (The same as Step 1 and 2 in the EMSA) 

Step 3.1) Compute the C2V hard messages: 


jNij

jaijbi
\'

',,


            (7) 

Step 3.2) Compute the step-1 soft messages: 

)(',)( min
\'

)1(

,
 


ji

JNij
ji



            (8) 

Step 3.3) Compute the step-2 soft messages by selecting 

the combination of k symbols 

1

( ) (1)~ ~

,,

1

( ) min ( )
k

ll

k k

i ji j l

l 

   










   (9) 

Step 3.4) Scaling and reordering: 

with )(,.)(,10

~

,

~

  ji
ncc

ji


      (10) 

For d ≠ bi,j,βi,j(d) = β’i,j(bi,j d); otherwise βi,j(bi,j) = 0. 

Step 4) (The same as Step 4 in the EMSA) 

Step 5) Message normalization and recording: 

)(arg ,

)(
, min da ji

qGFd
ji 



          (11) 

)()()( ,,,, jijijiji add            (12) 

)()( ,,, jijiji a           (13) 

Step 6) (The same as the Step 6 in the EMSA) 

Go to Step 1. 

As a result, the soft message generation is conducted in 

two steps (Step 3.2 and 3.3). To compute C2V message 

ji , , first in Step 3.2 we compute the minimal entry 

values minj, ji , ( ) over all j’ε Ni\j for each δ ε GF(q) \ 

0. Then in Step 3.3, the minimal values are used to 

generate the approximation of ji , ( ). Instead of the 

configurations of all dc VNs in Ni, (20) optimizes over the 

combinations of k symbols chosen from the field. 

Comparing Theorem 3 to (19) and (20), we can find that 

by our approximation method, in the SMSA, the 

optimization is performed over the VN set and symbol 

combination set separately and thus has the advantage of a 

much smaller search space. 

 

Algorithm3. Generate the look-up table for GF(q). 

1: for δ’ = 1….q-1 do 

2:      for δ’’ = (δ’ 1)…q-1 do 

3: δ = δ’  δ’’; 

4: D(δ).Add(δ’, δ’’); 

5:       end 

6: end 

 

V. SIMULATION RESULTS 

 

In this section, we demonstrate the performance 

of the above proposed SMSA for decoding NB-LDPC 

codes. The existing algorithm EMSA is used for 

performance comparison. The SMSA includes the fixed 

point (SMSA) and floating point (SMSA) versions. The 

three codes over GF(2
4
), GF(2

6
), and GF(2

8
) are 

considered. We show that the SMSA fixed point has very 

good performance for different finite fields and 

modulations. And the SMSA fixed point has small 

performance loss compared to the SMSA floating point 

over GF(2
4
) and GF(2

5
). We study the fixed-point 

realizations of SMSA and find that it is exceptionally 

suitable for hardware implementation. To investigate the 

effectiveness of the SMSA, we evaluate the block error 

performance of the (620,310) code over GF(2
5
) taken from 

the parity-check matrix of the code is a 10 x 20 array of 31 

x 31 circulant permutation matrices and zero matrices. The 

SMSA floating point shows its reliability with higher 

channel randomness. In this work deeply analysis the 

convergence speed of SMSA and show that it converges 

almost as fast as EMSA. 

 

Fig 1. LDPC Decoding output 

 

Fig 2. Comparison of EMS and SMSA 

with block error rate 
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Fig 3. Comparison of  floating point and fixed point with BLER 

 

VI. CONCLUSIONS 

In this paper, we have presented a hardware-

efficient decoding algorithm, called the SMSA, This 

algorithm is devised based on significantly reducing the 

search space of combinatorial optimization. Two practical 

realizations, the Fixed point and Floating point SMSAs, 

are proposed for effective complexity-performance 

tradeoffs. Simulation results show that with field size up 

to 256, the fixed point SMSA has negligible error 

performance loss compared to the SMSA over the EMSA. 

The important feature of SMSA is simplicity. Based on 

our analysis, the SMSA has much lower computational 

complexity and memory usage compared to other 

decoding algorithms for NB-LDPC codes. 
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