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Abstract—The effect of elasticity on Herschel-Bulkley fluid 

in an inclined tube is investigated. The problem is solved 

analytically taking the stress of the elastic tube into 

consideration. The velocity of the inelastic tube is also 

considered. The effect of different parameters on flux and 

velocity are discussed through graphs. The results 

obtained for the flow characteristics reveal many 

interesting behaviors that warrant further study on the 

non-Newtonian fluid flow phenomena, especially the shear-

thinning phenomena. Shear thinning reduces the wall 

shear stress. 

 
Index terms -Herschel-Bulkley Fluid, Yield Stress, Inlet 

pressure, Outlet Pressure, Inclination, Elastic tube. 

I. INTRODUCTION 

In recent times, the flow of non-Newtonian fluids in 

an elastic tube is well known to be a crucial type of flow and 

finds various practical applications in engineering and 

medicine. It is well known that the circulatory system of a 

living body function, as a means of transporting and 

distributing essential substances to the tissues and removing 

byproducts of metabolism. Hence there must be adequate 

circulation at all times to the important organs of the body. 

Such an important circulatory system is made up of the heart 

and blood vessels. Blood vessels are defined as arteries, 

capillaries and veins. These blood vessels are elastic in nature. 

Modeling of blood vessels plays a vital role in the field of 

medicine for preparing artificial organs of the body.  

 Many authors are interested in non-Newtonian fluid 

flows in elastic tubes because of their applications in the world 

of medicine.  Rubinow and Keller [1] made an analytical study 

of the flows in elastic tubes and discussed the applicability of 

their results to the problem of blood flow in arteries. Fung [2] 

studied the flow of Newtonian fluid in an elastic tube. 

Vajravelu et al. [3] studied the flow of Herschel-Bulkley fluid 

in an elastic tube. The flow of Newtonian and power law 

fluids in elastic tubes was investigated by Sochi [4]. More 

recently Peristaltic transport of Herschel Bulkley fluid in an 

elastic tube was investigated by Vajravelu et al. [5]. 

 Biofluids are fluids which are present in the ducts of 

the living organisms. Blood, Interstitial fluid, Sweat, Mother's 

milk, tears, Cerebro-spinal Fluid, and so on are some of the 

examples of ballads. Herschel-Bulkley fluid is a semisolid 

rather than an actual fluid. A detailed discussion of the 

inappropriateness of the use of such models for fluids is 

discussed in the recent review paper by Krishnan and 

Rajagopal [6].  While such materials might not be fluids, there 

is value in studying them as they give some idea of the 

behavior of fluids of interest under certain limits. 

 

Among models of semisolid, the Herschel-Bulkley 

model is preferable because it describes blood behavior very 

closely. Also the Newtonian, Bingham and power-law models 

can be derived as special cases.  Furthermore, Hershel-Bulkley 

fluids describe very well material flows with a nonlinear 

stress, strain relationship, either as a shear-thickening or a 

shear-thinning one.  Some examples of fluids behaving in this 

manner include food products, pharmaceutical products, 

slurries, polymeric solutions and semisolid materials. The flow 

of biofluids in tubes and channels is investigated by several 

researchers Vajravelu et al. [7&8], Sreenadh et al. [9] analyzed 

same non-Newtonian fluid flows in tubes and channels under 

peristalsis. Peristaltic Flow of Herschel Bulkley Fluid in a 

Nonuniform Channel with Porous Lining was studied by 

Sankad [10], Santhosh et al. [11] studied Effect of slip on 

Herschel-Bulkley fluid flow through narrow tubes. Sankad et 

al. [12] studied Peristaltic Transport of a Herschel -Bulkley 

Fluid in a Non-Uniform Channel with Wall Effects.  

These works have motivated the authors to 

concentrate on the steady laminar flow of a Herschel-Bulkley 

fluid in an elastic tube.  In this paper the effect of shear 

thinning, shear thickening, elasticity on fluid flow 

characteristics has been discussed. Graphs are plotted for 

presenting the behavior of different parameters on flux and 

velocity. 

 

II. FORMULATION AND SOLUTION OF THE PROBLEM 

 Consider the Poiseuille flow of a Herschel-

Bulkley fluid in an inclined elastic tube of radius ( )a z . The 

flow is axisymmetric. The axisymmetric geometry facilitates 

the choice of the cylindrical coordinate system ( , , )R Z  to 

study the problem. The fluid enters the tube at the pressure p1 
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and leaves it at the pressure 2p , 1( )p . while the pressure 

outside the tube is 0p . Let z  denote the distance along the 

tube from the inlet end. The pressure of the fluid in the tube 

decreases from 1(0)p p to 2( )p L p . The pressure 

difference at z inside the tube is denoted by 0(0)p p . Due 

to the pressure difference between inside and the outside the 

tube, the tube may expand or contract. which will be due to the 

elastic property of the wall . This conductivity σ of the tube at 

z will be function of pressure difference.  

The governing equations reduce to: 

 
1 Sin

rz

p
r

r r z F




 
  

 
   (2.1) 

where rz  is the shear stress and is given by 

0

n
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u

r
  
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   
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   (2.2) 

Here 0   represents the yield stress of the tube, n is the power 

– law index and μ is the viscosity.  

Non-dimensionalization of The Flow Quantities 

          The following non-dimensionalized quantities are 

introduced to make the basic equations and the boundary 

conditions dimensionless: 
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where 0a  is the radius of the tube in the absence of elasticity, 

L is the length of the tube and U is the average velocity of the 

fluid. 

The non-dimensional governing equations are (dropping the 

bars) 

 
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rzr P f
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 


    (2.4) 

where 
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and   (2.5) 

p
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Sin
f

F


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The non-dimensional boundary conditions are 

rz is finite at 0r     (2.7) 

0u  at r a    (2.8) 

 

Solving equations (2.4) and (2.5) subjected to conditions (2.7) 

and (2.8) we obtain the velocity field as  
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where
1

k
n

  Using the boundary condition 
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the upper limit of the plug flow region is 

obtained as 
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Also by using the condition atyx a r a    (Bird et. al., 

[13]) we obtain 

2 aP f
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   
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Using relation (2.10) and taking 0r r  in equation (2.9), we 

get the plug flow velocity as 
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 (2.11) 

The volume flux Q through any cross-section is given by 
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From equation (2.12), we find that, 
1 1

3

1
k k

k

dp Q
f

dz F a 

   
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   (2.14)  

Due to elastic property of the tube wall, the tube radius ‘a’ is a 

function of z. Integrating equation (2.14), we get 

 
3 1

0

1
( ) (0)

( )

n z

n

Q
p z p f dz

F a z


 
   

 
  (2.15)

 

 The integration constant is (0)p , the pressure at 0z  . The 

exit pressure is given by equation (2.15)       with 1z  .  

Now, let us turn our attention to the calculation of the radius 

( )a z  Let the tube be initially straight and uniform, with a 

radius 0a . Assume that the tube is thin walled and that the 

external pressure is zero. (If the external pressure is not zero, 
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we should replace p , below , by the difference of internal and 

external pressures). Then a simple analysis yields the average 

circumferential stress in the wall: 

( ( ) ) ( )p z f a z

h



  (Fung, [2])           (2.16) 

where h is the wall thickness. Let the axial tension be zero, 

and assume that the material obeys Hooke’s law. Then the   

circumferential strain is  

1
( )zz rre v v

E
          (2.17) 

where  is the Poisson’s ratio and E is the Young’s modules 

of the wall material. But zz  is assumed to be zero and rr  

is, in general, much smaller than  for thin-walled tubes. 

Hence equation (2.17) reduces to  

e
E





    (2.17a) 

The strain e  is equal to the change of radius divided by the 

original radius, 0a : 
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Combining  (2.16), (2.17a) and (2.18)  we obtain: 
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Substituting (2.19) into (2.14), we may write the result as 
(3 1)
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Recognizing the boundary conditions (0)p p  when 0z   

and  (1)p p  when 1z   and integrating Equation (2.20) 

from (0)p  to (1)p on the left and 0 to 1 on the right, we 

obtain the pressure-flow relationship: 
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   (2.21) 

which shows that the flow is not a linear function of pressure 

drop (0) (1)p p .  where F is given by equation   (2.13) 

Newtonian fluid : 0, 1n    

In this case equation (21) becomes 
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When 1n  and 0  eq (2.21) reduces to the corresponding 

results of Fung [2] for the flow of Newtonian fluid in an 

elastic tube. 

Bingham Fluid: 1n   

             In this case equation (2.21) becomes 
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Power-Law Fluid: 0   

             In this case equation (2.21) become 
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FIG 1: Physical Model 

 

 

 

Fig 2: Variation of flux with radius for different yield stress 

for fixed values of e = 0.03;h = 1;α =15;F=6;p0 = 0.3;p1 = 

0.6;n = 0.2; 
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Fig 3: Variation of flux with radius for different 

Young’s modulus, for fixed values of M = 0.5; 

h = 1;p0 = 0.3;p1 = 0.6;x=15;F=6;n = 0.2; 

 
 

 

Fig 4: Variation of flux with radius for different Inlet 

Pressure values for fixed values of M = 0.5;h = 1;e = 

0.03;F=6;x=15;p1 = 0.6;n = 0.2 

 

 
 

 

 

Fig 5: Variation of flux with radius for different Outlet 

Pressure values for fixed values of M = 0.5;h = 1;e = 

0.03;F= 6;x=15;p0 = 0.3;n = 0.2; 

 

 

 

Fig 6: Variation of flux with radius for different shear 

thinning effects for fixed values of M = 0.5; h = 1; 

p0 = 0.3;p1 = 0.6;x=15;e=0.03;F=6; 
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Fig 7: Variation of flux with radius for different shear 

thinning effects for fixed values of M = 0.5;h = 1;p0 = 

0.3;p1 = 0.6;x=15; e=0.03;F=6; 

 

 

Fig 8: Variation of flux with radius for different angles of 

inclination for fixed values of M = 0.5;h = 1;e = 

0.03;F=6;p1 = 0.6;n = 0.2; 

 

 

 

Fig 9: Variation of velocity with radius for different yield 

stress values for fixed values of p1=1;x=15;F=6;a=2.5;k=2 
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Fig 11: Variation of velocity with radius for different 

inclination values for fixed valuesp1=1; 

F=6;a=2.5;t=0.5;k=0.9; 

 

IV. RESULTS AND DISCUSSIONS 

In this problem the steady laminar flow of a Herschel-

Bulkley fluid in an inclined elastic tube is investigated. As the 

tube is elastic in nature, the flow of the fluid in the tube will be 

affected due to stress and due to pressure. The velocity of the 

inelastic tube is also evaluated. The effects of different 

parameters like inlet pressure, outlet pressure, Young’s 

modulus, yield stress, inclination and shear thinning and shear 

thickening effects are discussed through graphs. 

 Fig.2 shows the variation of flux with radius for 

different values of the yield stress. At a given radius of the 

tube the flux decreases with the increasing yield stress. For a 

given yield stress, the flux decreases with increasing radius. 

From this we observe that as the fluid becomes thick as 

toothpaste the fluid flow becomes slow.  

It is noticed from Fig.3 that as the Young’s modulus 

increases, the flux of the elastic tube also increases. As the 

inlet pressure increases, the flux is decreasing, which is shown 

in Fig.4. But in case of outlet pressure the flow behavior is 

different, that is as the outlet pressure increases the flux is 

increasing which is shown in fig. 5. It is true because if the 

outlet pressure is fixed and inlet pressure is more than the fluid 

flow will get reversed sometimes or the flow becomes slow, 

whereas the inlet pressure is fixed and outlet pressure is more, 

then the fluid flow will be more. 

As the Non Newtonian fluid depends on shear 

thinning and thickening effects it is depicted in figures.6 & 7. 

From these figures it is noticed that as shear thinning effect 

increases the flux is decreasing and as the shear thickening 

effect increases the flux is increasing. The variation of flux 

with radius for different inclination is shown in fig. 8. This 

graph indicates that as the inclination is increasing the fluid 

flow is increasing. 

Velocity profiles are shown in fig.9, fig.10 and fig.11 

for the variation of yield stress, index value and inclination 

respectively. Graphs provide the information that as the 

increase in the values of yield stress, Index value and 

inclination the velocity observes to be decreasing.  
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