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Abstract— In this article, we introduce the class of p-absolutely
summable fuzzy real-valued triple sequence space (36 b )5 We

make an effort to study some basic algebraic and topological
properties of the introduced sequence space, namelysolid,
monotone, symmetric, convergence free, sequence algebra are
studied. Further, we investigate some relation with the class of p-
Cesaro summable triple sequences and some other important
inclusion results.

Index terms - Fuzzy real numbers, lacunary sequence, triple
sequences, symmetric, convergence free, sequence algebra.

I. INTRODUCTION

The fuzzy set theory extended the basic mathematical concept
of a set. After the pioneering work done on fuzzy set theory by
L. A. Zadeh [32] in 1965, a huge number of research papers
have been appeared on fuzzy theory and its applications as
well as fuzzy analogues of the classical theories. Fuzzy set
theory is a powerful hand set for modeling, uncertainty and
vagueness in various problems arising in the field of science
and engineering. Several mathematicians have discussed
various aspects of the theory and applications of fuzzy sets
such as fuzzy topological spaces, similarity relations and fuzzy
orderings, fuzzy measures of fuzzy events, fuzzy mathematical
programming. In fact the fuzzy set theory has become an
active area of research in science and engineering for the last
51 years. While studying fuzzy topological spaces, we face
many situations where we need to deal with convergence of
fuzzy numbers.

Agnew [1] studied the summability theory of multiple
sequences and proved certain theorems for double sequences.
At the initial stage, the different types of notions of triple
sequences were introduced and investigated by Sahiner et al.
[20] and Sahiner and Tripathy [21]. Savas and Esi [25] have
introduced statistical convergence of triple sequences on
probabilistic normed space. Esi [9] introduced statistical
convergence of triple sequences in topological groups.
Recently more works on triple sequences are done by Kumar
et al. [14], Dutta et al. [6], Tripathy and Goswami [31], Nath
and Roy [15-18] and many others.

Fridy and Orhan [11] introduced the concept of Lacunary
statistical convergence. In the recent past, different classes of
Lacunary sequences have been studied by some renowned
researchers namely, K. Demirci [5], Bligin [4], Altin et al. [2],
Altin [3], Gokhan et al. [12], Subramanian and Esi [26], Esi
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[8], Savas [24], Tripathy and Baruah [27], Dutta et al. [7],
Tripathy and Dutta [28] etc.

A fuzzy number on R is a function X :R — L(=[01])

associating each real number t e Rhaving grade of
membership X (t). Every real number r can be expressed as a

r(t):{l’ if t=r

fuzzy number I as:

0, otherwise
The a-level set of a fuzzy number X ,0< o <1, is defined and
denoted as [X]* ={t e R: X (t) = o}
A fuzzy number X is said to be
X () = X(s) A X(r) =min(X(s), X(r)), where
s<t<r.
A fuzzy number X is called normal if there exists t, € Rsuch
that X(t,) =1.If for each ¢>0, X *[0,a+ ¢&)), for all

a e L is open in the usual topology of R, then a fuzzy number

X is called upper semi-continuous. The set of all upper semi
continuous, normal, convex fuzzy number is denoted by R(L),

convex if

whose additive and multiplicative identities are 0 and 1
respectively.

If D denotes the set of all closed bounded intervals
X=[x",x*] on the real line R and if
d(X,Y) = max (| X" -X®|,|Y"-YF|), then(D,d)is a
complete metric space. Also d : R(L) x R(L) — R defined by
d(X,Y)=supd([X]*,[Y]?), for X,Y eR(L) s also a

0<a<l

metric on R(L).

A lacunary sequence is an increasing integer sequence
0=(k,) (r=0123...)of positive integers such that
k,=0 and h =k, —k_ —owas
determined by @ will be defined by J, = (k, ,,k,] and the

r >oo. The intervals

ko
ratio —— will be
r-1

defined by (.

A lacunary sequence 9 = k’(r) is said to be lacunary
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refinement of the lacunary sequence ¢ = (k) if k, < k'(r)

1l. PRELIMINARIES AND BACKGROUND

In this section, some fundamental notions and definitions are
defined, which are closely related to the paper. Throughout N,
R and C denote the sets of natural and real numbers
respectively.

Definition 2.1- A triple sequence is a function X:NxNxN

= <X mnl>
is a triple infinite array of fuzzy numbers X  eR(L) for all
m, n,l € N. We denote the class of all fuzzy real-valued

— R(C). A fuzzy real-valued triple sequence X

triple sequences by , (wF).
Definition 2.2- A fuzzy triple
X =(X ) is said to be convergent in Pringsheim’s sense

real-valued sequence

to the fuzzy number X, if for everye>0,3
m, =m,(g),n, =Ny (&)1, =1,(g) eN such  that
d(X . X)<e, forall m>=my,,n=n,,1>1,.
Definition 2.3- A triple sequence ¢,  ={(m, ,n,I)}
(r,s,t=01,2,.....) of positive integers is said to be
lacunary if there exists three increasing sequences of integers
{m, },{n.}, {1} such that
b =0,h,=m —-m_, >wasr—-ow
n, =0,h =
l,b, =0,h =1,
Let us denote m, .

N, —n_ —owasr—ow

r

—Il,, >oasr—>o.

=m.n. and h_,

r''s't

=h.h,h, and the

intervals are determined by  @__ . and it will be defined by

r,s,t
e ={mnl)m_ <m<m, ,n_<n<n I, <I<I}
and m n |
qr = m : ' qs = n > ' qt :Iit'
r-1 s-1 t-1

Definition 2.4- A triple sequence <an|> is said to be &

r.s,p

convergent to L if for every & > 0and there exists integers
n, € N suchthat _1 Y d(Xp L)<evr,s,t2n,

hr,s,t (m,n, I)EJ,S(

5O —limx =L

Definition 2.5- A fuzzy real-valued triple sequence X = <an|>
is said to be convergent in Pringsheims sense to the fuzzy real
number X, if for every & >0, 3 my =m,(&),n, =N, (&),
I, =1,(¢) € N such that d(X,. ., X)<e forall

m=my,,n=>ny, 1 >1,.

mnl ?

Definition 2.6- A fuzzy real-valued triple sequence X = <an|>
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bounded, if supa(an,,6)<00.

m,n,|
Definition 2.7- A fuzzy real-valued triple sequence space

s(W)is said to be solid if (Y, )e, (w")whenever

A\
<an,>e3 (WF) and d(Ymn,, )s ( m0)  for all
m,n,l € N.
Definition 2.8- A fuzzy real-valued triple sequence space
5 (W" ) is said to be monotone if it contains the canonical pre-

image of all its step spaces.
Definition 2.9- A fuzzy real-valued triple sequence space

s(WF)is said to be symmetric if <X7[(mn|)>e3 (wh),

is said to be

whenever (X .)€, (W™) where 7 is a permutation on

N x N x N.
Definition 2.10- A fuzzy real-valued triple sequence space

(W) is said to be convergence free if (Y, )€, (W)

whenever (X Ye;, (WF) and X, =0
Y. =0.

Definition 2.11- A fuzzy real-valued triple sequence space
. (WF) is said to sequence algebra if (X gt ® Y ) €5 (WF),

mnl
whenever (X ), (Yo ) € (WF).

implies

Definition 2.12- A fuzzy real-valued triple sequence <an,>
is said to be Cesaro summable to a fuzzy real number L, if

i 33 XL

j—>0 as Uu,V,W —> oo,
=1 n=1 I=1
Definition 2.13- A fuzzy real-valued triple sequence <an|>

is said to be strongly p-Cesaro summable to a fuzzy real

(333 |0

UVW \ e =2

number L

u,V, W — co.and we denote it by Ces,(p).

The class of fuzzy real-valued triple sequences 3fF(p)
introduced by Nath and Roy [14] as follows:
e [ N\ [Prk
3fF(p)={x = (%) DY [ (X . O) <oo}.
m=1 n=1 I=1
where p=<pmm> is a triple sequence of bounded strictly

positive numbers.
We introduce the class of fuzzy real-valued triple sequences

F
(35 0 )0 as follows:

(36,})5{ =(xmn.):mfo[h1 D d(anl,O)jp<oo},

rst=1\ st mnlel ¢,

1< p<oo
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To prove some results in the paper, the following existing
result will be used.

Lemma 2.1- Every normal sequence space is monotone.
lll. MAIN RESULTS

In this section, we examine some basic topological and
algebraic properties of the introduced sequence space and
obtain some inclusion relation related to the space.

F
Theorem 3.1- The class of sequence space (3€ b )g is closed

under addition and scalar multiplication operations.
Proof. Let 0, ={m,,n,, I } beatriple lacunary

ro s
sequence and <an,> € (36 0 )E
Since H(CX o oY )=|c|a( XeYe )we have
d(cX,cY)=|dd (X,Y)forany ceR.
This gives

)

r,s,t=111 r,st mnled, o
p
90,00,00 1 — —
Sl EHab. o)
rst=L11\ Vst mnled; o,
P
o 5[ S lo)] <
rst=L11\ st mnled; g
<CX mnl> (3£ p)E )
Next let
<anl> <Ymnl> € (3£p)z'
-d (Xntfnl +Yon 0 Xg Yo' )Sa( mni xa)
+d (Ynf;, +Y," )
. _ B p
" Z [hl Z d{(x mnI+Ymn|)’O}J <
r,s,t=111 rstmnled o

p p
00,00,00 1 . _ 0,00,00 1 _ _
Z [h Z d(xmnIlO)J + Z [h Z d(YmnI'O)] <o,
rst=L11\ Y st mnled; o rst=L11\ Y st mnled; ¢

Thus <X ol +Ymn|> (3€p)§. n
Theorem 3.2- Let

r,s,t

{mr, n,, I, } be a triple lacunary
sequence and liminf g, >1, liminf g, >1, and

liminf g/ >1,thenfor 0< p<1, Ces,(p)c (3£ p)';.
Proof. Let liminf g, >1, liminf g >1and

liminf g/ >1.
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Then there exists & > Osuchthat q, >1+0, q; >1+9
and @, >1+9.

. . . ml’ — mr — ql’ < 5
This implies hh, m -m., q -1 1+6
n__n _ 9 _ o6 Lk_ W _a _ 5
h! n,-n., q.-1 1+5'h 1. -1, q/-1" 1+5
Let <X il > € Ces; (). Then we can write
90,00,00 1 me vnsvlt — — P (1)
d (X, 0)} <00 seeeeessini
r,s,tzl,l,lmrnslt {m_l,nzl,l_l m! }
We have
p
0,00,00 1 _ _
Z r Z d (X mnl ’0)
rst=LL1\ Yrst mnled, o
0,00,00 1 meng _ 1 Mg gby — P
= Z hi Z d(xmnllo)_T d(anI’O)
rst=111] st m=ln-11=1 rst m=ln-11=1

00,00,00 mengly
< > { > d(

rs,t=111 r,s,t m=Ln-11=1

p
mnl' :I -
o0

> { YA mn.,O)}

=111 hrst m=1,n-1,1=1

r,s,

m.nl 0,00,00 MmN g by
Z d(anll :| Z |:hh ” Z d(anI’

0,00,00
m=1,n-1,=1 St=111 m=1,n-1,l=1

rst=111

00,00,00 1 m n Il m..ng,ly
mn L d(X 0
rst=111 mrnslt |: hr h; " Z ( mnl ):|

m=1,n-1,I=1
0,00,00 LU R LT - P
Z 1 |:mrl nsfl It—l . Z | d (X 0):|

mnl?
r,s,t=111 mrflnsflltfl hr hé ! m=1,n-1,1=1

2
1+5j e
< Z z d (x mnI’O)
( o rstlllmnlt m=1.n-11=1

2 0,00,00 Mg g gbeg — P
3]s :1{ > d<X.m“0{
0) rsmamon il | naslia
From (1), we have
p
00,00,00 1 — -
Z [h_ Z d (X mnl,O)J <o
r,s,t=111 rst mnled o
. F
A Xo) el )
o F
This implies Ces,(p) < (3€ p)g ..
Theorem 3.3- Let 6, ,, {m n,, I, } be a triple lacunary

1 sy

sequence and limsup ¢, < oo, limsup q; < 00, and lim sup

g, <o, then for 0< p <1, (3£p)5 — Ces,(p).
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Proof. Letlimsup (, <o, limsup q; < ooand lim sup
g, <.

Then there exists M > Osuchthat q, <M, q, <M
and g7 <M forallr,s,t.

Let <an|> € (3€ 0 )'; and & >0 be given, then there exist

Iy >0,8, >0 and t, >0 such that .
1

Let A, == [d (X
rs.t mnIeJ,S[

J>Syand k>t,.
Let K =max{ Ay :1<r<r;1<s<s;1<t<t;}and

)] < g, forevery i > 1y,

mnl?

choose a, band csuchthat m_, <a<m_ n., <b<n,
and |, , <c<l,.
Then we have
ab,c p me.ng, | p
1 ot
[d (X mnl' )] m— [d (x mnl' )]

ame =1,n- 1I1 r—1''s—1't—1 m= 1n—1|1

i 8| sl

r71n571 t-1 u=Lv=lw=l | mnled,,

1 To,S0.t0

= I Z hu,V,WAJ,V,W +
M, 1 Ne 4l uavatwa
I Z hu v,W AJ v,W

mr lns —1't—1 (rp<u<r)u(sg<v<s)u(ty<w<t)

K ,S0.,to
S 2wt

mr 1ns 1|t —1 u=l,v=l,w=1

1
Z UVWA.IVW

I’nr 1ns 1It -1 (rg<u<r)u(sy<v<s)u(ty<w<t)
- Km, ng I, 15Set, N 1

Z uvava

mr—lns—llt—l m _1n _1|1_1 (rp<u<r)u(sy<v<s)uU(ty<w<t)

Km, n I oSt 1

——+ Sup (A.I,V,W) — z hu,v,w

m ns 1|1 1 (u>rg)L(v>sp)u(w>ty) mr 1n5 1It 1 (1 <U<r) (8 <V<8) Uty <w<t)

- Km, n I, 1r5Set, 1 h
" m._n_,l N monl_° Z e
r-1' st r-1'fs—1't-1  (rp<u<r)u(sp<v<s)(to<w<t)
- Km, ng I, 15Sot, VY
mr—lns—llt—l

We note that m,,Ng
a,b,c — oo, thereby

and |, will tend to infinity as
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ab,c
% m=1,n 1[(1()( mm’O)] e

< mnl> ECeS (p)
This implies (Sfp)'; c Ces,(p). =
Theorem 3.4- Let 6, { m,, n,, |, } be a triple lacunary

sequence. If 1< liminf g, <limsupg, <,
1<liminf g, <limsupq; <o and
1<liminf g/ < limsupg; < oo, then (,¢ ) =Ces, (p).

Proof. From the Theorem 3.2 and Theorem 3.3, the result
easily follows. m

Theorem 3.5- The class of sequences (3€ . )E is normal and
monotone.
Proof. Let 9r‘ {m ng, I, } be a triple lacunary sequence.

r1 sy

Let consider the triple sequences (X ), (Yo ) €5 (WF)
mn,,6)sa(xmm,6) forallm,n,l € N.

Let (X i) st ), then z[ Y @ X )]p

such that d(

r=ls=1t=1\ "rst mnled;

We have

5l gl < 5[ sl <

r=ls=1t=1\ st mnled; r=ls=1t=1\ st mnled;
. F
. <Ymnl> € (SEp)H '
F .

Hence the class of sequences (36 b )g isnormal. Now by
Lemma 2.1, the space is monotone. m

Fo.
Theorem 3.6- The class of sequences (3€ o )9 is sequence

algebra.
Proof. Let 6, = { m,, ng, |, } be a triple lacunary sequence

and <anl>’<Ymnl> E(3€p)';'
), 00 _ — P
Then '§° [1 3 d(anl,O)] <o,
r=1s=1t=1 hrs[mn|EJrsl

5 lva0)] <

rst mnled, o,

Now '§* [hl Y d(x mm@Ymn,,o)]p.

r=ls=1t=1\ Mrst mnled; o

< wiw [hl Z a(X mnI'O)d(Ymnl’O)] .

r=ls=Lt=1\ 'lrst mnled, o

r=1,s=1t=1

and miw [
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p p
0,00,00 1 _ _ ,00,00 1 _ _
< Z . z d(anI’O) Z . Z d(YmnI’O) <.
r=1,s=Lt=1 hryg‘[ mnled; r=l,s=1t=1 hr‘s‘l mnled; o

F .
Hence the class of sequences (35 p)g is sequence algebra. m

Proposition 3.7 - The class of sequences (36 p)f is not

convergence free in general.
Proof. The proof of result follows from the following
example.

Let 6, = (3r, 3, 3") be a triple lacunary sequence.

Consider the double sequence <an| > defined by
{l+(Mm+n+1)%t}, for —%stso;
(m+n+l)
X () =9 L= (M+n+1)%t}, for O<t<———;
(m+n+l)

0, otherwise

Then

5 [hl y d(xml,o)]p: ) [431t2

r=ls=Lt=1\ st mnled, r=1,s=1t=1

(X ) e, )

Now consider the double sequence <Ymnl > defined by

Y (m+n+|)‘2]<oo.

mnled

{L+tvm+n+1}, for — !

———<t<0;
Jman+l
Yo () =4 {L-t/m+n+13, for 0<t< :
m+n+l

0, otherwise

r=1s=1t=1

Then 57 [hl y d(Ymnl,O)jp

rst mnled;

r=1,s=1t=1 lel
Yo e (50, )5

Hence the sequence space (36 p)s is not convergent free. m

0,0, 1 1
- Z (Wm,n,z (m+n+|)2J=oo.

rst

©0,00,00 1

Theorem 3.8- ¢ (p) (3€ o )'0: , if

< o0,
r=1,s=1t=1"'r st

Proof. Let (X, /)€, £7 (p).

We choose M, > 0 such that Z[J(Xmm’a)]l’ <1, forall

m,n,I>mq

m,n,l >m,.
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p
Thisimplies § | 1 T |
r_1,sZ1,t_1[ z ( mnl ) <00,

hr‘s,t mnled, g

(X e (50, )

F

Hence 3Z':(p)c(gép)g.-
Theorem 3.9- For 0< p<q, (3€p)F c(séq)';.

o

Proof. From the following inclusion relation:

p q
00,00,00 1 _ _ 00,00,00 1 . _
) [ Zd(xmmﬂ)]c ) [ za(xm.,o)]-
r=Ls=Lt=1\ st mnled ¢, r=Ls=Lt=1\ st mnled ¢,

the result follows. m

IV. CONCLUSION

For the development of any sequence space, convergence of
that sequence space plays an important role. In this research
work, we have introduced and studied the notion of the class
of p-absolutely summable fuzzy real-valued triple sequence

space (3£ p)',,: Some fundamental algebraic and topological

properties of this sequence space are established. The
introduced notion can be applied for further investigations
from different aspects.
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