
International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.4, April 2015 DOI:10.15693/ijaist/2015.v4i4.26-30

26

LMS Adaptive Filter Implementation Using

Distributed Arithmetic For Noise Cancellation

Samayam Pullarao

M Tech Student

 Dept. of ECE

BMS College of Engineering

Bangalore

Dr. D Seshachalam

 Professor& HOD

Dept. of ECE

BMS College of Engineering

Bangalore

Abstract—In this paper, distributed arithmetic (DA) based

adaptive filter for noise cancellation application is presented.

Adaption of filter weights is done by using least mean square

(LMS) algorithm. Distributed arithmetic (DA) is bit serial in

nature, it is used to design bit-level architectures for vector-

vector multiplications. It replaces the multiply-accumulate

(MAC) operations in filtering process with a series of look-up-

table (LUT) access. However, implementing adaptive DA

filters require recalculating the LUT’s for each adaptation, it

increases the logical complexity. In this paper anti symmetric

product coding (APC)- odd multiple storage (OMS) techniques

are also implemented to reduce the computational complexity

of recalculating the LUT contents and it is also increases the

throughput of the filter. The zero-mean random noise signal is

completely eliminated by using proposed DA based adaptive

filter.

Index Terms—APC, DA, LMS, OMS, ANC, MAC, LUT.

 1. INTRODUCTION

Most of the portable electronic devices such as cellular

phones, personal digital assistants, and wireless devices often

require digital signal processing (DSP) for high performance.

Due to increase in the demand for complex DSP applications

low power, low area and high performance system-on-chip

(SOC) implementations of DSP algorithms are receiving

increased attention. Several types of DSP operations are

employed in practice. Filtering is one of the most widely

used signal processing operations. A discrete-time linear

finite impulse response (FIR) filter generates the output y[n]

as a sum of delayed and scaled input samples x[n] is

represented by the equation.

][][
1

0

knxwny
N

k

k 




 (1)

The generation of each output sample y(n) takes N+1

multiply-accumulate (MAC) operations. Since general-

purpose multipliers require significant chip area, alternate

methods of implementing multiplication are often used,

particularly when the coefficients values are known prior to

implementation. Distributed arithmetic (DA) is one way to

implement convolution multiplierlessly, where the MAC

operations are replaced by a series of LUT access and

summations.

 However, in many applications such as acoustic echo

cancellation, signal de-noising, sonar signal processing,

clutter rejection in radars, and channel equalization for

communications and networking systems coefficient

adaptation is needed. This adaption makes it challenging to

implement DA-based adaptive filters with low cost due to

the necessity of updating LUTs. Several approaches have

been developed for DA-based adaptive filters, i.e., from the

point of view of reducing logic complexity [1]–[3], [5].

 In this paper we developed DA based adaptive filter for

noise cancellation of zero-mean random noise signal.

Adaptive noise cancellation (ANC) is a technique of

estimating noise or interference in a corrupted signal by

passing it through an adaptive filter. DA based LMS

adaptive filter implementation is done in verilog. The LUT

optimization using the APC coding and OMS methodology

are the primary factors for LUT based adaptive FIR filter is

designed for DSP applications. The odd integer

representation is always used for input and output address

transformation [2],[6]. For noise cancellation application

original signal and noisy signals are generated from

MATLAB and converted in to 2‟s compliment binary

format.

 2. BACKGROUND

A. LMS Algorithm

LMS algorithm uses the estimates of the gradient vector

from the available data. LMS algorithm incorporates an

iterative procedure that makes successive corrections to the

weight vector in the direction of the negative of the gradient

vector which eventually leads to min-mean square error.

An adaptive filter changes its weights wk with time to

match a desired performance objective. Typically, the

performance of the adaptive filter is quantified in terms of

the mean square value of the error between its output y[n]

and a desired signal d[n]. The least mean-square (LMS)

adaptation algorithm updates the weights to minimize the

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.4, April 2015 DOI:10.15693/ijaist/2015.v4i4.26-30

27

mean-square error (MSE) of the output. The weight

adaptation in an LMS adaptive filter is given by eq no.2

][][][]1[knxnenwnw kk   (2)

Where e[n] = d[n] − y[n], y[n]= w[n] * x[n-k]

Several approximations of the LMS algorithms[2] are often

used for hardware implementations. In this paper, an LMS-

type algorithm is implemented where the term μe[n] is

quantized to a power of 2.

B. DA

DA was first introduced by Croisier et al [5]in 1973 and

further developed by Peled and Lui [3]. DA provides a

multiplier-less implementation of FIR filters through a bit-

serial computation utilizing all possible combination sums

of the filter coefficients. It is assumed that the inputs to the

filter are represented as B bit 2‟s complement binary

numbers with only the sign bit to the left of the radix point.

Then

 





1

1

0 2][
B

j

j

kjk xxknx (3)

Substitute eq. no(3) in eq. no(1), we get

j

N

k

B

j

N

k

kjkkk xwxwny 





 

   







 2][

0

1

1 0

0 (4)

It is noted that the terms in the square brackets may take

only one of 2
k

 possible values; these values, which are all

the possible combination sums of the filter coefficients, are

stored in an LUT, denoted as the DA filtering LUT . The

filtering operation may then be implemented, according to

Eq. 3, by B look-up, shift, and accumulate operations. The

block diagram of a typical DA implementation of a four tap

(K = 4) FIR filter is shown in Fig. 1.

Fig.1. Block diagram of DA implementation of a 4-tap (k=4) FIR filter.

Each coefficient has B bits of precision.

The bank of shift registers in Fig. 1 stores four consecutive

input samples. The concatenation of the rightmost bits of the

shift registers becomes the address of the LUT. The shift

registers are shifted right at every clock cycle. The

corresponding LUT entries are also shifted and accumulated

B consecutive times where B is the precision of the input

data.

 3. PROPOSED DA ADAPTIVE FILTER DESIGN

 To implement the LMS adaptive filter using the DA

architecture, the entries of the LUT, which contains all

possible combination sums of the filter weights, need to be

recalculated and updated on a sample-by-sample basis[10],

[11]. A brute-force implementation that updates each weight

individually according to (2), and then regenerates the LUT

using the new weights, will be computationally expensive

and time consuming, causing significant reduction in the

filter throughput.

In this paper LUT optimization is done by using anti

symmetric product coding (APC) and odd multiple storage

(OMS) to reduce the complexity in updating LUT contents

[6]. The tables of multiplication are pre-calculated and

stored in memory. For fast accessing of values from the

memory, LUT‟s are used for saving the computation

complexity. In digital logic, an n-bit LUT can be

implemented with a multiplexer whose select lines are the

inputs of LUT and inputs are constants. An n-bit LUT can

encode any n-input Boolean function by modelling with

truth tables. LUT‟s with 4-6 bits of input are the key

component of modem FPGAs and this is an efficient way of

encoding functions. General representation of LUT for

multiplication bits are shown in fig.2.

 X

 L

 AX
 Fig.2. Normal LUT multiplier

 In general LUT multiplier it has the input bit „X‟ of

length „L‟ and „AX‟ as output bit, where A is the constant

depends on the LUT value. 2^L words are required for

multiplying X of L-bit with constant. With the increase in

input size LUT size increases exponentially. LUT for input

of word length L=4 requires 16 address lines to store the

input bit sequence is shown in below table 1

LUT of
L2 Words

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.4, April 2015 DOI:10.15693/ijaist/2015.v4i4.26-30

28

Table 1. LUT representation.

 Address

 Word

 Product

 Word

 0001 A

 0011 3A

 0101 5A

 0111 7A

 1001 9A

 1011 11A

 1101 13A

 1111 15A

Table 2. OMS based reduction scheme for LUT

 By using the OMS scheme only odd multiplies are stored

in the LUT and the even multiplies of the LUT are derived

by left shifting the odd multiplies by using the barrel shifter

scheme. By using the barrel shifter we can produce the

maximum (L-1) no. of left shifts to produce the even

multiples.

 The implementation of the APC-OMS combined LUT

for memory based multiplier uses two techniques. This

method is supposed to reduce the area to one fourth. The

address generation block converts our input to address d0,

d1, d2which is produced by combining both the APC and

OMS method. The 3-to-8 address line decoder converts the

address d0, d1, d2 to LUT address from w1 to w7. The

memory array is an LUT and barrel shifter converts the

LUT output to the desired output. The control circuit is used

to produce the controls s0, s1 which is used in the

proceeding blocks [4] [6]. The control and reset circuit can

be designed as

S0=x0+(x1+x2‟) (5)

S1=(x0+x1) (6)

Reset= x3 and x2‟x1‟ (7)

The barrel shifter will right shift circularly according to the

control values (s0 s1), using the basic gates to produce the

control elements reset, s0, s1. From the barrel shifter, thus

producing the address (d0d1d2) to use in the next sections.

The top-level circuit diagram of this proposed scheme for

an example four-tap FIR filter is shown in Fig. 3 and

address generator and controller module is shown in fig.4.

Fig 3. Top level circuit diagram of proposed DA adaptive filter.

Fig.4. RTL schematic diagram of address generator and controller unit.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.4, April 2015 DOI:10.15693/ijaist/2015.v4i4.26-30

29

 4. SIGNAL GENERATION

The input signals to the filter are generated from the

MATLAB [1]. Two types of signals are required for the

application of noise cancellation using adaptive filters. First

is original or actual signal, here we considered it as

sinusoidal signal. Second one is noisy signal, here we

considered it as zero-mean random noise signal. These

signals are converted to 2‟s compliment binary format and

saved as text files. These text files are accessed by the

Verilog implementation. Noisy signal is the primary input

and original signal is the desired signal to the adaptive filter

[12]. The signals are shown in the fig. 5.

Fig.5. GUI representation of zero-mean random noise signal from

MATLAB.

 5. IMPLEMENTATION METHODOLOGY.

 The whole implementation of DA based LMS adaptive

filter implementation is done by using Verilog HDL.

Implementation consist of four modules, 1. Address

generator and control module, 2. Adder or subtract module,

3. Barrel shifter module, 4. APC module.

 The address generator and controller module performs the

effective address calculations necessary to address data

operands in memory and contains the registers used to

generate the addresses and it also generates control signals

to indicate the filtering operation at that particular sample

time is completed or not, it is shown in fig.4. A barrel

shifter is a digital circuit that can shift a data word by a

specified number of bits in one clock cycle. It can be

implemented as a sequence of multiplexers (mux.), and in

such an implementation the output of one mux is connected

to the input of the next mux in a way that depends on the

shift distance. It is implemented with only combinational

logic.

 6. IMPLEMENTATION RESULTS

 To evaluate the performance of the proposed 16-tap DA

adaptive filter was implemented on Altera Cyclone IV GX

EP4CGX22CF19C6 FPGA. At each instant of time the

output signal bit pattern of the filter is exactly equal to the

desired signal bit pattern at that instant of time with some

processing delay. Simulation results are obtained by

simulating the design on Xilinx ISE design suite 14.2 and

the simulation wave forms are shown in fig.6.

Fig.6. simulation results of DA adaptive filter for the application of noise

cancellation.

Implementation details :

Quartus II Version 11.0 Build 157 04/27/2011 SJ

Web Edition

Revision Name DA_Adaptive_filter

Top-level Entity Name DA_Adaptive_filter

Family Cyclone IV GX

Total logic elements 64 / 21,280 (< 1 %)

Total registers 64

Total pins 51 / 167 (31 %)

Device EP4CGX22CF19C6

Total Thermal Power Dissipation 87.35 mW

Core Dynamic Thermal Power Dissipation 0.00 mW

Core Static Thermal Power Dissipation 81.18 mW

I/O Thermal Power Dissipation 6.17 mW

THROUGHPUT:

The throughput is defined as the number of signal samples

processed by an adaptive filter per second [10]. If „t‟ is the

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.4, No.4, April 2015 DOI:10.15693/ijaist/2015.v4i4.26-30

30

number of clock cycles required for filtering and updating

the filter weights according to the adaption algorithm, then

t

clockrate
Throughput 

 (8)

It is obvious that the throughput of any system is depends

on it‟s processing time. The throughput of proposed design

depends up on the size of LUTs since updating them takes

the longest time in the entire system processing time. The

size of LUTs are reduced by using the LUT optimization

techniques. The throughput comparison between MAC

based adaptive filter and proposed DA based adaptive filter

is shown in fig.7.

Fig 7: Throughput comparison

 7. CONCLUSION

In this brief, LMS adaptive filter implementation based on

DA for the application of noise cancellation has been

presented. The DA concept involves the implementation of

a multiply-and-accumulate operation using look-up-

tables(LUT). The proposed scheme uses LUT optimization

techniques anti symmetric product coding and odd multiple

storage (APC-OMS) to reduce the computational

complexity involved in LUT updation. By using this only

half of the LUT contents are need to be recomputed, hence

the logical complexity and area and power consumption are

reduced significantly. Zero-mean random noise signal is

completely eliminated from the original signal by passing it

through the proposed DA adaptive filter is shown in the

simulation results.

 8. REFERENCES

 [1] S. Haykin, Adaptive Filter Theory. Upper Saddle River,

 NJ: Prentice-Hall, 1996.

[2] B. Farhang-Boroujeny, Adaptive Filters: Theory and

 Applications. Chichester, U.K.: Wiley, 1998.

[3] K. K. Parhi, VLSI Digital Signal Processing Systems:

 Design and Implementation. Hoboken, NJ: Wiley, 1999.

[4] R. Guo and L. S. DeBrunner, “Two high-performance

 adaptive filter implementation schemes using distributed

 arithmetic” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol.

 58, no. 9, pp. 600–604, Sep. 2011.

[5] Eldho John, P. Dinesh Kumar “MODIFIED APC-OMS

 COMBINED LUT FOR MEMORY BASED

 COMPUTATION”, International Journal of Systems,

 Algorithms & Applications Volume 2, Issue 3, March 2012,

 ISSN Online: 2277-2677.

[6] Sang Yoon Park, Pramod Kumar Meher “ Low Power,

 High-Throughput, and Low-Area Adaptive FIR Filter

 Based on Distributed Arithmetic” IEEE Trans. On

 Circuits and Systems Vol. 60, No.6, June 2013.

 [7] C. H.Wei and J. J. Lou, “Multi memory block structure

 for implementing a digital adaptive filter using

 distributed arithmetic,” Proc. Inst. Elect. Eng., vol. 133,

 no. 1, pt. G, pp. 19–26, Feb. 1986.

[8] C. F. N. Cowan and J. Mavor, “New digital adaptive-filter

 implementation using distributed-arithmetic techniques,”

 Proc. Inst. Elect. Eng., vol. 128, no. 4, pt. F, pp. 225–230,

 Feb. 1981.

 [9] D. J. Allred, H. Yoo, V. Krishnan, W. Huang, and D. V.

 Anderson, “A novel high performance distributed

 arithmetic adaptive filter implementation on an FPGA,”

 in Proc. IEEE Int. Conf. Acoust., Speech, Signal

 Process., 2004, vol. 5, pp. V-161–V-164.

[10] S. A. White, “Applications of distributed arithmetic to

 digital signal processing: A tutorial review,” IEEE ASSP

 Mag., vol. 6, no. 3, pp. 4–19, Jul. 1989.

