
International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.11, November 2014 DOI:10.15693/ijaist/2014.v3i11.74-81

74

A Survey on Various Cloud Storage Integrity
Verifying Protocols

Rayees Ahmad Dar Kalyan Nandi Sebabrata Ghosh Vinod Kumar Yadav

M. Tech CSE

M. Tech CSE M. Tech CSE

 M. Tech CSE

Pondicherry University

Pondicherry University Pondicherry University Pondicherry University

Abstract— In cloud computing users outsource their data on

remote cloud servers for storage and access it from these remote

servers whenever required. However due to this outsourcing new

security challenges need to be tackled. One of the main

challenges is the ensuring the integrity of the data. There have

been numerous attempts to provide and develop mechanisms and

protocols which will ensure that the data on the remote servers

preserve the integrity. In this paper we shall survey some of the

prominent protocols developed in this regard against a set of

parameters discussed.

Keywords— Integrity, storage auditing, dynamic auditing, batch

auditing, provable data possession

I. INTRODUCTION

Cloud computing is a type of Internet-based computing

where computing services such as data, storage, applications,

software and computing are delivered to local devices through

Internet [8][12]. One of the important services provided by

cloud computing is storage where large amounts of data are

outsourced on cloud servers for storage, which is cost-

effective and reliable. However there are inherent security

threats that need to be addressed. In cloud the client is not in

control of his data which brings the issue of confidentiality

and integrity to the fore. Integrity implies that data should be

honestly stored on cloud servers and any violations (e.g., data

is lost, altered or compromised) are to be detected. Cloud

servers are distrusted in terms of both security and reliability

[6][11] because data could be lost from any infrastructure no

matter what high degree of reliable measures cloud service

providers (CSP) take. In some cases CSP may be dishonest as

well. They could discard data that is rarely accessed motivated

by saving storage space. Hence, owners must be convinced

about the integrity of their data.
Extensive research has taken place in order to develop

measures and protocols to ensure data integrity. In this paper
we survey the various techniques that have been put forward

to ensure integrity on cloud.
The rest of the paper is organised as follows: in Section II

we shall give a literature survey, in Section III the parameters
against which the various protocols are analysed will be

discussed, in section IV the various protocols will be analysed,

and finally conclusion will be given in Section V.

II. LITERATURE SURVEY

Data integrity is not a problem exclusive to cloud

computing only, rather it is a common cryptographic problem.

The traditional answer to it has been using the message

authentication codes (MAC) or digital signature. However

such strategies are not suitable for cloud environment since

there is tremendous amount of data involved hence methods

that require hashing for an entire file become prohibitive [11].

Further downloading a file for integrity verification is not

possible as it will consume bandwidth and is computationally

expensive as well.
However the integrity problem for cloud closely resembles

with that of archival systems. The first attempt in this regard

was taken by Ateniese et al. by proposing the Provable Data

Possession (PDP) [2] protocol which for the first time

provided a way to ensure integrity of data stored on remote

servers without downloading it. A similar protocol called

Proof of Retrievability (POR) [1] but with subtle differences

was proposed by Juels et al. However these protocols were

primarily designed for archival systems, they were not fully

compliant with cloud environment. Nevertheless they

provided a good base for future research. Almost all the

subsequent protocols developed were a direct or indirect

extension of PDP or POR.
One of the prominent requirements of cloud which makes it

different from archival systems is the support for dynamic

operations like append, modify, insert, delete etc. Simple PDP

and POR were only supportive of static data hence subsequent

research focussed on supporting dynamic data. Ateniese

himself along with others proposed Scalable and Efficient

PDP [6] to support dynamic operations. However, it involved

pre-computing the set of challenges and only limited number

of dynamic operations was supported. Erway et al. Proposed

Dynamic PDP [3] to support dynamic operation fully, but at

the cost of increased computational overhead.
The modern protocols are specially developed for cloud

environment and take in consideration all the requirements of

cloud. One of the notable features of these protocols is

introduction of a third party auditor (TPA) for carrying out the

auditing process (henceforth auditing protocol will mean a

protocol intended for integrity verification of data on CSPs).

[4][5][9][14][17] are worth mentioning in this regard and shall

be surveyed in this paper.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.11, November 2014 DOI:10.15693/ijaist/2014.v3i11.74-81

75

III. PARAMETERS FOR ANALYSIS

There are certain inherent requirements that must be met by
any integrity verifying protocol developed for the cloud
computing. We present these parameters below:

A. Confidentiality

The integrity checking protocol should keep user’s data

confidential from anybody except for him including the cloud

service provider (CSP). The requirement is more stringent

when a third part auditor (TPA) is introduced for auditing

services. In that scenario the data will flow between the user,

TPA and CSP. Hence the protocol shall in no way reveal the

data to either CSP or TPA.

B. Dynamic operations

The cloud storage service is fairly different from the

archival systems. In the archival systems the data is static in

that once data is stored it is not changed. However in the case

of cloud, the data could be frequently modified a operations

such as insert, delete, modify etc should be supported by the

protocol.

C. Batch Auditing

The modern auditing protocols delegate the auditing services

to the TPA, where there are multiple owners of data and there

are multiple CSPs. At times an owner may use services of

multiple CSPs. A TPA may receive auditing requests from

multiple data owners. Hence the TPA must have the capability

to combine all these requests together and only conduct the

batch auditing for multiple owners simultaneously. Similarly

in case a data owner has data on multiple CSPs, it should have

the capability to combine responses from all the CSPs together

and do batch verification [9].

D. Timely Detection

The auditing protocol should detect error or losses in the
outsourced storage as well as anomalous behaviour of data

operations in a timely manner. It should not be the case that
auditing protocol detects any discrepancies at a time when the

damage caused thereof is tremendous. The discrepancy
detection should almost be instantaneous. This parameter is

closely related to ―unforgeability‖ which ensures that no

dishonest CSP pass the audit test by any means without
indeed keeping the users data intact.[16]

E. Light weight

The auditing protocol should not incur computational and

storage overheads unbearably on either the owner or the TPA.

In other words, the overheads should be as minimal as

possible. Also the bandwidth consumption should be kept as

low as possible [16].

IV. ANALYSIS

In this section we will analyse the various protocols that have
been developed for integrity verification against the
parameters discussed in the previous section.

A traditional approach to the data integrity problem is to

employ MACs as mentioned in section II, where a small

amount of MACs for the outsourced file is maintained by the

user. At a later time when the user finds a need to query the

server regarding the integrity of the file, the user can

download the file and recalculate the MAC, thereby

comparing the two for check if the file is intact or not.
Although this method ensures complete integrity, clearly it

is not suitable for the cloud as it requires downloading of the

file every time verification is to be carried out.
An improvement to the above problem could be to compute a

number of MACs on different keys and then query the server by

releasing one key per query. The computation can be delegated to

a trusted third party (TTP). But the evident drawback to this

improvement is that once the keys are over, new MACs need to

be calculated once again. Further dynamic operations are not

supported as any change to the file would render all of the

previously calculated MACs invalid [5].
Researchers have proposed the probabilistic solutions,

rather than deterministic ones, to the integrity problem taking
into account the problem and constraints discussed above.

The general idea of these schemes is that some metadata is

initially generated on the file blocks and stored locally (or on

a TTP) as well as with the file at the server. Later on the client

can query the server for certain blocks of the file randomly.

Using the queried blocks and their tags the server computes a

proof and sends it back to the client and then checked by him

to verify the integrity of the file.
So we can divide the operation of these protocols into two
stages as below:

A. Initialization:

In this stage the cryptographic keys and the metadata are
computed. Two algorithms are involved in this stage.

1) KeyGen: This algorithm generates the keys for the

protocol. The generated keys depend upon the scheme
to be used, i.e., symmetric key or asymmetric key
cryptography. Also the number of keys to be generated
too depends upon the protocol itself.

2) TagGen: This algorithm is responsible for generating
the tags (metadata) on the individual blocks (or a
selected set of blocks) using the keys generated in

KeyGen algorithm. Actually the file is divided into
individual blocks and tags are generated on them.
Finally the file along with the tags is sent to the server

for storage.

B. Verification:

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.11, November 2014 DOI:10.15693/ijaist/2014.v3i11.74-81

76

 Initialization

 Verifier Prover

 KeyGen() → Keys

 TagGen(File F, Keys) Tags

 Verification

 GenChal(Tags, Keys) Chal

 Proof GenProof(File F, tags, Chal)

 Verify(Proof, Tags, Chal) → 0/1
Figure 1: Generalised protocol for integrity verification.

Whenever the verifier finds a need to verify the integrity

of the file, he issues a query to the prover, the prover

computes the response and sends it back to the verifier who

verifies the response. Hence, three algorithms are involved in

this phase. Some protocols like the CPDP[17] involve more

algorithms but they can be adopted to this generalised

algorithm. Further the individual protocols have different

nomenclature for these algorithms, which will be pointed out

in their respective discussions.
1) GenChal: The algorithm is responsible for

generating a challenge/ query to the prover to prove
that a certain set of blocks are intact. This algorithm
takes as input the metadata/tags and keys generated
in the initialization phase.

2) GenProof: The prover on receiving the challenge
from the verifier computes the response/proof from

the blocks queried and the tags associated with them
and sends it back to the verifier. Keys are used to
generate responses in this stage also.

3) Verify: The verifier upon receiving the proof from
the prover verifies it.

In the above discussion we have presented a general

prover-verifier model where ―prover‖ is the server however

the ―verifier‖ could be the data owner himself or a third part

auditor (TPA). Hence two models are considered for the

protocol presented in figure 1. The two models are depicted in

figure 2 and figure 3. We shall first discuss about those

protocols which involve only the data owner and the server.

Later on we shall survey the protocols which involve a TPA to

carryout the auditing process.

Initialization

Challenge

Owner CSP

Proof

Figure 2 System Model for non-TPA based Auditing
Protocols..

A. Non – TPA Based Protocols:

The system model for these types of protocols is given in

figure 2. Below we survey some of the popular auditing
protocols under this model. We shall conclude this

discussion with the summary of the protocols under this

category.

1) Provable Data Possession (PDP) [2]: This is one of

the first protocols (along with POR discussed next) to

ensure data integrity over remote server without the
need to download data. It follows the algorithm given

in figure 1 with the following details:
a) KeyGen uses public key cryptography.
b) It uses Homomorphic Verifiable Tags (HVT)

which are unforgeable tags generated upon file

blocks to act as verification metadata for the file

blocks. The HVT allows blockless verification,

i.e., the prover can construct a proof that allows

the verifier to verify if the prover possesses

certain file blocks even when the verifier does

not have access to actual blocks. The HVTs have

the property that given two values Tm1 and Tm2

anyone can combine them into a value Tm1+m2

corresponding to m1+m2.
c) The challenges generated by GenChal of figure

1 are random ensured by a pseudorandom
function (PRF).

The scheme was however developed for static data

and hence provides no support for dynamic

operations. Further the protocol was built for largely

public data like libraries, i.e., anyone can access the

data on the server and hence no measure for

confidentiality was incorporated.

2) Proof of Retrievability (POR [1][7][10]): This

protocol was developed along with the PDP protocol.

However, this protocol, in addition to integrity

verification has error-correcting capabilities and

ensures that file is retrieved from the server. The

protocol with respect to the general protocol given in

figure 1 has the following details:

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.11, November 2014 DOI:10.15693/ijaist/2014.v3i11.74-81

77

a) KeyGen uses symmetric key cryptography.

b) The TagGen algorithm has four parts:
b.1) File F is divided into K-block chunks and an

error correcting code is applied to each chunk.
b.2) File F’ is encrypted using the symmetric cipher

key generated in KeyGen.
b.3) s sentinels are created using a suitable one-way

function and then these sentinels are appended
to the file F’. The sentinels are just like normal
file blocks.

b.4) The blocks of the encrypted file along with
sentinel blocks are permuted using a

pseudorandom permutation (PRP). This makes

the sentinels indistinguishable from normal
blocks.

c) During the verification phase, the verifier reveals
the location of a set of sentinels using the PRP
and requests the prover to return the sentinels.
The verifier later verifies the proof sent by
prover.

The idea behind the protocol is that if the server
has modified or deleted a substantial portion of the

outsourced file, then with high probability it would

also have suppressed a number of sentinels, resulting
in server’s inability to respond correctly.

A direct disadvantage of the protocol is that it

runs only a bounded number of times as the number

of sentinels are fixed a priori and at each verification

a subset of sentinel is revealed, hence rendering them

unusable. However later schemes attempted to

overcome this limitation [7]. Like PDP, this protocol

also supports only static data and has no support for

data dynamics.

3) Scalable and Efficient PDP (SPDP) [6]: As

mentioned above both PDP and POR were suitable

for static data only. SPDP attempted to add support

for dynamic operations as well as reducing some of

the computational overhead over the client. This

protocol is basically a modification of the original

PDP with two basic differences that (1) it is based on

entirely symmetric key cryptography, thereby

lowering the computational complexity on the client

side, and (2) allows outsourcing of dynamic data.
The main approach to support dynamic

operations is that it requires all challenges to be pre-

computed at setup phase. Hence the number of

challenges are limited which could result in the

server deceiving the owner by using previous

metadata or responses due to lack of randomness in

the challenges [17]. Further the number of updates is

limited, any update requires recomputing the whole

metadata and the dynamic operation support is also

minimal as there is no support for block insertions

anywhere [9].

4) Dynamic PDP (DPDP) [3]: This is also the

modification of the original PDP to fully allow

dynamic operations (insert, modify and delete). The

DPDP introduces three new operations known as

PrepareUpdate, PerformUpdate and VerifyUpdate.

PrepareUpdate is run by the owner to generate a

request for update which includes the updates to be

performed. An example of this request could be

delete block i, update block i etc. PerformUpdate is

run by the server to carry out the actual update. After

running the PerformUpdate the server returns the

update proof and the owner runs the VerifyUpdate to

verify if the update has been performed correctly.
It introduces rank-based authenticated skip-lists

(ASL) for blockless verification and data dynamics.
The nodes of the rank-based ASL contain tags. In the

GenChal algorithm the prover is asked to provide
the random tag Ti and its path from root of ASL. The
verifier then verifies to check if the block associated
with the tag is correctly stored or not based on path

returned by GenProof algorithm.
It must be noted that the ASL stores tags which

are authenticated by the skip-list itself while as the

tags authenticate the blocks. The TagGen algorithm

is modified here to support data dynamics. The index
information is removed from the tag computation (as

in PDP model) and ASL is used instead to

authenticate tag information of challenged or updated

blocks. The TagGen also returns the root of the ASL
to the verifier.

However, this scheme may cause heavy
computation burden to the server [9]. Also data
blocks may be leaked by the response of a challenge
[17]. Further there is no scope for batch auditing for
multi-cloud multi-owner cloud environment.

5) Summary of non-TPA Based Protocols: PDP

(including POR – based protocols) is a class of

problems that provides efficient and practical

approaches to verify the integrity of a file stored on

remote servers, without downloading the file. These

protocols evolved from supporting only static data to

dynamic operations. However since the verification

is only between client and the server, there is some

burden upon the client in terms of computation and

storage. This is particularly worrying in cloud model

as most of the clients are thin clients only with

limited storage and computational capabilities.

Further as the cloud has evolved into a multi-owner,

multi-cloud model, the non-TPA based approaches

fail to adapt to it, particularly the batch auditing.

Hence, a need arises there to move from non-TPA to

TPA based solutions.

A. TPA – Based Protocols:

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.11, November 2014 DOI:10.15693/ijaist/2014.v3i11.74-81

78

As mentioned above the cloud model today is a multi-

cloud multi-owner environment, batch auditing becomes

a compelling factor to be incorporated into the integrity

verification protocols for the cloud. Further considering

the nature of the clients, modern auditing protocols are

focussing much on third part auditing (TPA). This is

intended to relieve the client of most of the computational

and storage needs and such complexities will be

delegated to the TPA.

Challenge

(TPA) Servers Proof

Initialization
Initialization

Owner

Figure 3 System Model for Protocols with TPA

However, the TPA cannot be directly added to the

previous solutions. The reason is that in PDP – based
solutions the prover responds with a proof using HLA
(Homomorphic Linear Authenticator), which can
potentially reveal the user data to the TPA and violate
the privacy preserving guarantee. HLA is nothing but a
linear combination of blocks = ∑ . Specifically by
challenging the same set of blocks m1, m2, ... , mc using c
different sets of random coefficients {vi}, TPA can
accumulate c different linear combinations μ1, μ2, ... , μc.
With {μi} and {vi}, TPA can derive the data m1, m2, ... ,
mc by simply solving a set of linear equations [4].

Therefore, solution have been put forward in this
regard which will be discussed below. The system model
is given in figure 3.

1) Privacy Preserving Public Auditing [4][5][14]: In

[14], the authors proposed the use of HLA to

support public auditability along with MHTs

(Merkel Hash Trees) where leaf nodes of the tree are

ordered set of hashes of ―file tags‖ H(mi) for data

dynamics. However, as pointed out for the DPDP

scheme, this solution also suffers from the privacy

problem. The authors extended their scheme to be

privacy preserving in [4]. In their privacy preserving
scheme they coupled the homomorphic

authenticators with masking. The details of their

solution with respect to generalised protocol of
figure 1 are:

a) KeyGen generates the public and secret

parameters. Specifically the user chooses a
random signing key pair (ssk, spk) for signing
the root of the MHT.

b) In the TagGen (here called SigGen)
authenticators for each block are computed and
the set of authenticators are denoted by Φ. The
SigGen also computes a file tag t which is a
combination of the filename and its signature.
The pair (Φ, t) is sent to the server. The root of

the MHT is sent to the TPA.
c) In the verification phase (here called as Audit),

the TPA first retrieves the file tag t, and
verifies it using spk thereby retrieves the
filename if the verification is successful.

d) Now a random challenge is generated
specifying the portion of blocks required to be
audited.

e) The server in GenProof generates the proof.
However, here the masking is used to protect
the privacy of data against TPA. Also the AAI

(Auxiliary Authentication Information) of

challenged blocks is sent.
f) In Verify phase the TPA first uses the root of

MHT and AAI to authenticate the tags and
later tags are then used to verify the response.

In [9] the authors claim that this scheme may leak

the data content to the auditor since it requires the

prover to send linear combination of data clocks to

the auditor. In [4] the authors extended their

dynamic auditing scheme to be privacy preserving

and supportive of batch auditing for multi-owner

environment. However it incurs a heavy storage

overhead on the server since a large number of data

tags are involved.

2) Cooperative PDP (CPDP) [17]: To address

the problem of high storage overhead in [4], Zhu et

al. introduced a fragment structure in [16] where a

file is split into n blocks and each block is further

split into s sectors. Here a tag is still generated for

each block; however we can reduce the number of

tags generated by increasing the number of sectors

in each block.
For dynamic operations, they proposed the use

of IHT (Index Hash Table) to record changes of file

blocks as well as to generate the hash value of each

block during verification phase. The IHT consists of

records which contain serial number, block number,

version number and a random integer. The structure

of the IHT is similar to the block allocation table in

file systems.
Later on the authors in [17] extended the same

concept to have incorporated the support for batch
auditing.

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.11, November 2014 DOI:10.15693/ijaist/2014.v3i11.74-81

79

 Table 1

 Comparison of Various Integrity Checking Protocols

 Property Confidentiality Dynamic Batch auditing Computational Communication Unforgeability Prob. Of

 operations Complexity complexity detection

Paper
 Multi- Multi- Server Verifier

 owner cloud

 PDP[2] Yes No No No O(t) O(t) O(1) Yes 1 - (1 - ρ)
t

 POR[1] Yes No No No O(t + s) O(t + s) O(t + s) Yes 1 - (1 - ρ)
ts

 SPDP[6] Yes Partial No No O(t) O(t) O(1) Vulnerable 1 - (1 - ρ)
t

 DPDP[3] Vulnerable Yes No No O(t log n) O(t log n O(t log n) Yes 1 - (1 - ρ)
t

 Audit[4][5] Vulnerable Yes Yes Yes O(t log n O(t log n O(t log n) Yes 1 - (1 - ρ)
t

 CPDP[15] Yes Yes No Yes O(ts) O(t + s) O(t + s) Vulnerable 1 - (1 - ρ)
ts

 Dynamic Yes Yes Yes Yes O(ts) O(t) O(t) Yes 1 - (1 - ρ)
ts

 Auditing[8]

n is the total number of data blocks of a file; t is the number of challenged data blocks in an auditing query; s is the number of sectors in each data block; ρ
is the probability of block/sector corruption

One of the striking features of the protocol is

the hierarchy structure that provided a virtualization

approach to conceal the storage details of multiple

CSPs. This hash-index hierarchy (figure 4) maps

efficiently with the multi-cloud model. It provides

three layers of abstraction for storage as:
a) Express Layer provides abstract representation

of the stored resources.
b) Service Layer offers and manages cloud services.

This layer exposes the various CSPs.
c) Storage Layer realises data storage on many

physical devices. It exposes the actual storage
infrastructure.

Figure 4 Index hash hierarchy of CPDP model

To support the multi-cloud model they extended the concept of
HVT to responses, where given two responses θi and θj for two
challenges Qi and Qj from two CSPs, there exists an efficient
algorithm to combine them into a response θ corresponding to
the sum of challenges ∪ . This reduces the

communication complexity as well as conceals the

location of outsourced data in multi-cloud

environment. With respect to generalised protocol of
figure 1, CPDP has following details:
a) KeyGen: is used again to generate public –

private keys.
b) TagGen: Here the file is split into × sectors and

the tags are generated for each block taking into
account the hierarchy structure provided. It
constructs the hash-table as well. Here the TTP stores
the index-table and the tag information while as CSP
is uploaded with the file along with tags. The data
owner saves the secrets used to generate the tags.

c) Verification is a five stage algorithm where

GenChal (of figure 1) is split into three

algorithms commitment, challenge1 and
challenge2 as below:

c.1) The organiser initiates the protocol and sends a
commitment to the verifier.

c.2) The verifier returns a challenge to the organiser.
c.3) The organiser relays the challenge to each CSP

according to exact position of each data block.

d) The GenProof is also split into two
algorithms, Response1 and Response2 as below:

d.1) Each CSP generates response to the challenge
received and returns the same to the organiser.

d.2) The organiser aggregates all the challenges
using HVR and forwards to the owner.

e) In the Verify algorithm the owner verifies the
aggregated response.
Wang et al. in [15] argue about the knowledge

soundness of the system and claim that any attacker

can get the pay without storing the client’s data.

Hence this scheme is vulnerable to forgeability
attack.

Yang et al. [9] argue that it is impossible for

this scheme to support batch auditing for multiple
owners because parameters for generating tags for

each owner are different and hence data tags cannot

be combined from multiple owners to conduct batch

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.11, November 2014 DOI:10.15693/ijaist/2014.v3i11.74-81

80

auditing. Also the introduction of the organiser is
not practical in cloud storage systems.

3) Dynamic Auditing [9]: This protocol adopts the

fragment structure of [16][17] and provides support

for batch auditing to multi-owner environment as

well. However the hierarchy structure is not used

here, since it conceals the actual CSPs from the

users. For data dynamics IHT is again used. With

respect to protocol given in figure 1, the details of

this scheme are:
a) KeyGen: It generates the secret tag and hash

keys and a public tag key.
b) TagGen; It generates data tags as before and

also generates IHT.
c) GenChal: The auditor runs this algorithm to

generate a random challenge for the CSP. For
batch auditing, it generates a random challenge

for each CSP as an aggregation of challenges

corresponding to each owner. The challenges
are then delegated to each CSP.

d) GenProof: Each CSP generates the proof for
each challenge as a combination of data proof
and tag proof.

e) Verify: Here the TPA verifies the responses
received from CSPs.

In [13] Ni et al. have shown that that the

protocol is insecure when an active adversary is

involved in the cloud environment that can fool the

TPA by modifying the proof that data is correctly

stored while it wouldn’t be. They also proposed a

solution to fix the problem by employing digital

signature to prevent proof from being modified.
This scheme is the best scheme which has all the

required qualities (after fixing the problem pointed
out in [13]) and as of now is the promising protocol

4) Summary of TPA – based Protocols: These solutions

have the capability of relieving the owner of storage

and computational complexities. Also TPA – based

approaches are more suitable for today’s cloud

environment. The protocols have adopted the

dynamic capabilities from existing non-TPA – based

solutions and also added the batch auditing for

complete auditing solution.

V. CONCLUSION

Integrity is the main issue with storage as are service in

cloud environments. The PDP scheme laid the foundation for

developing the auditing protocols which can verify the

integrity of a file without downloading the actual file. This

basic scheme has been since modifies to correctly model the

cloud environment. Support for data dynamics and multi-

owner, multi-cloud, i.e., batch auditing has been added by

various researchers starting from Wang et al. in [4][5][14][16]

through [17] to [9]. [9] as of now singles itself out to be the

most promising protocol to enforce integrity in the cloud.
However there is scope for further research in minimizing the

bandwidth and computational and storage complexity of
clients.

Table 1 provides the comparison of various protocols
surveyed in this paper against the parameters discussed in
section III.

REFERENCES

[1] Ari Juels and Burton S. Kaliski, Jr.. 2007. Pors: proofs
of retrievability for large files. InProceedings of the
14th ACM conference on Computer and
communications security (CCS '07). ACM, New York,
NY, USA, 584-597.

[2] Ateniese, Giuseppe; Burns, Randal; Curtmola, Reza;
Herring, Joseph; Kissner, Lea; Peterson, Zachary;
and Song, Dawn, "ProvableData Possession at
Untrusted Stores" (2007). Department of Electrical
and Computer Engineering.Paper 37.

[3] Chris Erway, Alptekin Küpçü, Charalampos
Papamanthou, and Roberto Tamassia. 2009.
Dynamic provable data possession. In Proceedings of
the 16th ACM conference on Computer and
communications security (CCS '09). ACM, New York,
NY, USA, 213-222.

[4] Cong Wang; Chow, S.S.M.; Qian Wang; Kui Ren;
Wenjing Lou, "Privacy-Preserving Public Auditing for
Secure Cloud Storage," Computers, IEEE
Transactions on , vol.62, no.2, pp.362,375, Feb. 2013,

[5] Cong Wang; Kui Ren; Wenjing Lou; Jin Li, "Toward
publicly auditable secure cloud data storage
services," Network, IEEE , vol.24, no.4, pp.19,24,
July-August 2010

[6] Giuseppe Ateniese, Roberto Di Pietro, Luigi V.
Mancini, and Gene Tsudik. 2008. Scalable and
efficient provable data possession. In Proceedings of
the 4th international conference on Security and
privacy in communication netowrks (SecureComm
'08). ACM, New York, NY, USA, , Article 9 , 10 pages.

[7] Jiawei Yuan and Shucheng Yu. 2013. Proofs of
retrievability with public verifiability and constant
communication cost in cloud. In Proceedings of the
2013 international workshop on Security in cloud
computing (Cloud Computing '13). ACM, New York,
NY, USA, 19-26.

[8] Stanoevska-Slabeva, T. Wozniak, and S. Ristol “Grid
and cloud computing- a business perspective on
technology and applications,” Springer-Verlag, Berlin,
Heidelberg, 2009.

[9] Kan Yang; Xiaohua Jia, "An Efficient and Secure
Dynamic Auditing Protocol for Data Storage in Cloud
Computing," Parallel and Distributed Systems, IEEE
Transactions on , vol.24, no.9, pp.1717,1726, Sept.
2013

International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682

Vol.3, No.11, November 2014 DOI:10.15693/ijaist/2014.v3i11.74-81

81

[10] Kevin D. Bowers, Ari Juels, and Alina Oprea. 2009.
Proofs of retrievability: theory and implementation. In
Proceedings of the 2009 ACM workshop on Cloud
computing security (CCSW '09). ACM, New York, NY,
USA, 43-54.

[11] Minqi Zhou; Rong Zhang; Wei Xie; Weining Qian;
Aoying Zhou, "Security and Privacy in Cloud
Computing: A Survey," Semantics Knowledge and
Grid (SKG), 2010 Sixth International Conference on ,
vol., no., pp.105,112, 1-3 Nov. 2010

[12] National Institute of Standards and Technology, “The
NIST definitionof cloud computing,” Information
Technology Laboratory, 2009.

[13] Ni, J.; Yu, Y.; Mu, Y.; Xia, Q., "On the Security of an
Efficient Dynamic Auditing Protocol in Cloud
Storage," Parallel and Distributed Systems, IEEE
Transactions on , vol.PP, no.99, pp.1,1, 0

[14] Qian Wang; Cong Wang; Kui Ren; Wenjing Lou; Jin
Li, "Enabling Public Auditability and Data Dynamics
for Storage Security in Cloud Computing," Parallel
and Distributed , IEEE Transactions on , vol.22, no.5,
pp.847,859, May 2011

[15] Wang, Huaqun; Zhang, Yuqing, "On the Knowledge
Soundness of a Cooperative Provable Data
Possession Scheme in Multicloud Storage," Parallel
and Distributed Systems, IEEE Transactions on ,
vol.25, no.1, pp.264,267, Jan. 2014

[16] Yan Zhu; Gail-Joon Ahn; Hongxin Hu; Yau, S.S.; An,
H.G.; Chang-Jun Hu, "Dynamic Audit Services for
Outsourced Storages in Clouds," Services
Computing, IEEE Transactions on , vol.6, no.2,
pp.227,238, April-June 2013.

[17] Yan Zhu; Hongxin Hu; Gail-Joon Ahn; Mengyang Yu,
"Cooperative Provable Data Possession for Integrity
Verification in Multicloud Storage," Parallel and
Distributed Systems, IEEE Transactions on , vol.23,
no.12, pp.2231,2244, Dec. 2012

Authors Profile

Kalyan Nandi received the B.Sc. degree
in Computer Applications (Major) from
the Ramakrishna Mission Vidyamandira
College, Belur, Calcutta University, West
Bengal, India, in 2011 & M.Sc. degree in
Computer Science from Pondicherry
University, Pondicherry, India. He is
currently doing M.Tech. in Computer

Science and engineering from Pondicherry University,
Pondicherry, India. His research interests include Bio Inspired
Algorithm, Machine learning, Distributed System & Cloud
Computing.

Sebabrata Ghosh received the B.Sc.
degree in Computer Applications (Major)
from the Ramakrishna Mission
Vidyamandira College, Belur, Calcutta
University, West Bengal, India, in 2011
& M.Sc. degree in Computer Science
from Pondicherry University,
Pondicherry, India. He is currently doing

M.Tech. in Computer Science and Engineering from
Pondicherry University, Pondicherry, India. His research
interests include Bio Inspired Algorithms, Machine learning,
Artificial Intelligence and Web Technology.

Vinod Kumar received the B.Sc. degree
from Erwing Christain College, Allahabad,
University of Allahabad, India, in 2008 &
M.C.A. degree from IGNOU, India.
Pondicherry University, Pondicherry, India.
He is currently doing M.Tech. in Computer
Science and Engineering from Pondicherry

University, Pondicherry, India. His research interests include
Artificial Intelligence, Computer Vision, Information Fusion
and Distributed Computing.

Rayees A. Dar is currently pursuing his
M.Tech. in Computer Science and
Engineering from Pondicherry University,
Pondicherry, India. He was formerly
Assistant Professor in the department of
Computer Science and Engineering at
IUST, J&K, India. He has received his

B.Tech (CSE) from Islamic University of Science and
Technology, J&K, India. His research interests include
Natural Language Processing, Text Analysis, Plagiarism
Detection, Assistive Computing and Information Retrieval.

